A Chemical Approach to Obtaining α-copaene from Clove Oil and Its Application in the Control of the Medfly
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Biological Assays
2.3. Obtention of Vacuum Distillation Fractions and Pure α-copaene
2.4. Data Analysis
3. Results
3.1. Obtaining Distillation Fractions Rich in α-copaene
3.1.1. De-Eugenolyzed Clove Essential Oil
3.1.2. IF Industrial Fraction
3.2. Isolation of α-copaene
3.2.1. Open Column
- DCO. A practically pure fraction in α-copaene was obtained eluting with hexane the initial DCO. This fraction had a richness of 99% (GC) and a yield of 85% of the DCOα-copaene, corresponding to 1.8% of the total oil. In Figure 1, the analytical HPLC chromatogram is shown. This DCOα-copaene was used in attraction tests. In the following fractions, α-cubebene, β-caryophyllene, and α-humulene were separated. The β-caryophyllene fraction had a richness of 98% and contained 85% of the total DCOβ-caryophyllene.
- 2.
- IF industrial fraction. A practically pure fraction in α-copaene was obtained with a richness of 99% (GC) and a 90% yield of the IFα-copaene, corresponding to 3.7% of the total IF. The β-caryophyllene fraction contained 98% of total IFβ-caryophyllene, with a 92% yield.
3.2.2. Preparative HPLC
3.2.3. Chiroptical Characterization of the α-copaene from the DCO
3.3. Attraction Assays
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EC (European Commission). EU Biodiversity Strategy for 2030. Bringing Nature Back into Our Lives. Available online: https://op.europa.eu/en/publication-detail/-/publication/31e4609f-b91e-11eb-8aca-01aa75ed71a1 (accessed on 1 March 2023).
- EC (European Commission). The European Green Deal. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52019DC0640&from=EN (accessed on 1 March 2023).
- Hader, J.D.; Lane, T.; Boxall, A.B.A.; MacLeod, M.; Di Guardo, A. Enabling forecasts of environmental exposure to chemicals in European agriculture under global change. Sci. Total Environ. 2022, 840, 156478. [Google Scholar] [CrossRef]
- Benelli, G.; Daane, K.M.; Canale, A.; Niu, C.Y.; Messing, R.H.; Vargas, R.I. Sexual communication and related behaviours in Tephritidae: Current knowledge and potential applications for Integrated Pest Management. J. Pest Sci. 2014, 87, 385–405. [Google Scholar] [CrossRef]
- Suckling, D.M.; Stringer, L.D.; Stephens, A.E.; Woods, B.; Williams, D.G.; Baker, G.; El-Sayed, A.M. From integrated pest management to integrated pest eradication: Technologies and future needs. Pest Manage. Sci. 2014, 70, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Garcia, F.R.M.; Ovruski, S.M.; Suárez, L.; Cancino, J.; Liburd, O.E. Biological control of tephritid fruit flies in the Americas and Hawaii: A review of the use of parasitoids and predators. Insects 2020, 11, 662. [Google Scholar] [CrossRef] [PubMed]
- Noman, M.S.; Liu, L.; Bai, Z.; Li, Z. Tephritidae bacterial symbionts: Potentials for pest management. Bull. Entomol. Res. 2020, 110, 1–14. [Google Scholar] [CrossRef]
- Spinozzi, E.; Ferrati, M.; Cappellacci, L.; Caselli, A.; Perinelli, D.R.; Bonacucina, G.; Maggi, F.; Strzemski, M.; Petrelli, R.; Pavela, R.; et al. Carlina acaulis L. (Asteraceae): Biology, phytochemistry, and application as a promising source of effective green insecticides and acaricides. Ind. Crops Prod. 2023, 192, 116076. [Google Scholar] [CrossRef]
- de Pedro, L.; Beitia, F.; Tormos, J. Two Better Than One? Potential Effects of Intraguild Predation on the Biological Control of Ceratitis capitata (Diptera: Tephritidae) by the Parasitoid Aganaspis daci (Hymenoptera: Figitidae) and the Predator Pseudoophonus rufipes (Coleoptera: Carabidae). Agronomy 2023, 13, 87. [Google Scholar] [CrossRef]
- Coelho, R.S.; Pec, M.; Silva, A.L.R.; Peñaflor, M.F.G.V.; Marucci, R.C. Predation potential of the earwig Euborellia annulipes on fruit fly larvae and trophic interactions with the parasitoid Diachasmimorpha longicaudata. J. Appl. Entomol. 2023, 147, 147–156. [Google Scholar] [CrossRef]
- Scolari, F.; Valerio, F.; Benelli, G.; Papadopoulos, N.T.; Vaníčková, L. Tephritid fruit fly semiochemicals: Current knowledge and future perspectives. Insects 2021, 12, 408. [Google Scholar] [CrossRef]
- Boulahia-Kheder, S. Advancements in management of major fruit flies (Diptera: Tephritidae) in North Africa and future challenges: A review. J. Appl. Entomol. 2021, 145, 939–957. [Google Scholar] [CrossRef]
- Follett, P.A.; Haynes, F.E.M.; Dominiak, B.C. Host Suitability Index for Polyphagous Tephritid Fruit Flies. J. Econ. Entomol. 2021, 114, 1021–1034. [Google Scholar] [CrossRef] [PubMed]
- Liquido, N.J.; Barr, P.G.; Cunningham, R.T. Medhost: An Encyclopedic Bibliography of the Host Plants of the Mediterranean Fruit by, Ceratitis capitata (Wiedemann) (Electronic Database/Program); USDA-ARS: Washingtonm, DC, USA, 1997; p. ARS-144.
- Alfaro, C.; Vacas, S.; Zarzo, M.; Navarro-Llopis, V.; Primo, J. Solid phase microextraction of volatile emissions of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae): Influence of fly sex, age, and mating status. J. Agric. Food Chem. 2011, 59, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Light, D.M.; Jang, E.B.; Binder, R.G.; Flath, R.A.; Kint, S. Minor and intermediate components enhance attraction of female mediterranean fruit flies to natural male odor pheromone and its synthetic major components. J. Chem. Ecol. 1999, 25, 2757–2777. [Google Scholar] [CrossRef]
- Navarro-Llopis, V.; Primo, J.; Vacas, S. Efficacy of attract-and-kill devices for the control of Ceratitis capitata. Pest Manage. Sci. 2013, 69, 478–482. [Google Scholar] [CrossRef]
- Duarte, F.; Caro, A.; Delgado, S.; Asfennato, A.; López, L.; Hernández, F.; Calvo, M.V. Sterile insect technique (SIT) effectiveness to control Ceratitis capitata (Diptera: Tephritidae) and medfly catches in two mass trapping layouts. Int. J. Pest Manage. 2022, 68, 402–413. [Google Scholar] [CrossRef]
- Bakhtaoui, Z.; Elouissi, M.; Lazreg, F.; Elouissi, A. Evaluation of the effectiveness of two types of traps for Ceratitis capitata (Wiedemann, 1824) (Diptera; Tephritidae). J. Entomol. Res. 2022, 46, 234–237. [Google Scholar] [CrossRef]
- Manrakhan, A.; Daneel, J.H.; Beck, R.; Love, C.N.; Gilbert, M.J.; Virgilio, M.; De Meyer, M. Effects of male lure dispensers and trap types for monitoring of Ceratitis capitata and Bactrocera dorsalis (Diptera: Tephritidae). Pest Manage. Sci. 2021, 77, 2219–2230. [Google Scholar] [CrossRef]
- Bali, E.M.D.; Moraiti, C.A.; Ioannou, C.S.; Mavraganis, V.; Papadopoulos, N.T. Evaluation of mass trapping devices for early seasonal management of Ceratitis capitata (Diptera: Tephritidae) populations. Agronomy 2021, 11, 1101. [Google Scholar] [CrossRef]
- Abu-Ragheef, A.H.; Hamdan, F.Q.; Al-Hussainawy, K.J. Evaluation of type, color of traps and different attractants in attracting and capturing of mediterranean fruit fly Ceratitis capitata (Wied.). Plant Arch. 2020, 20, 52–55. [Google Scholar]
- San Andrés, V.; Ayala, I.; Abad, M.C.; Primo, J.; Castañera, P.; Moya, P. Laboratory evaluation of the compatibility of a new attractant contaminant device containing Metarhizium anisopliae with Ceratitis capitata sterile males. Biol. Control 2014, 72, 54–61. [Google Scholar] [CrossRef]
- Katsoyannos, B.I.; Heath, R.R.; Papadopoulos, N.T.; Epsky, N.D.; Hendrichs, J. Field evaluation of Mediterranean fruit fly (Diptera: Tephritidae) female selective attractants for use in monitoring programs. J. Econ. Entomol. 1999, 92, 583–589. [Google Scholar] [CrossRef]
- Epsky, N.D.; Hendrichs, J.; Katsoyannos, B.I.; Vásquez, L.A.; Ros, J.P.; Zümreoglu, A.; Pereira, R.; Bakri, A.; Seewooruthun, S.I.; Heath, R.R. Field evaluation of female-targeted trapping systems for Ceratitis capitata (Diptera: Tephritidae) in seven countries. J. Econ. Entomol. 1999, 92, 156–164. [Google Scholar] [CrossRef]
- Leblanc, L.; Vargas, R.I.; Rubinoff, D. Attraction of Ceratitis capitata (Diptera: Tephritidae) and endemic and introduced nontarget insects to BioLure bait and its individual components in Hawaii. Environ. Entomol. 2010, 39, 989–998. [Google Scholar] [CrossRef]
- Navarro-Llopis, V.; Alfaro, F.; Domínguez, J.; Sanchis, J.; Primo, J. Evaluation of traps and lures for mass trapping of Mediterranean fruit fly in citrus groves. J. Econ. Entomol. 2008, 101, 126–131. [Google Scholar] [CrossRef]
- Siciliano, P.; He, X.L.; Woodcock, C.; Pickett, J.A.; Field, L.M.; Birkett, M.A.; Kalinova, B.; Gomulski, L.M.; Scolari, F.; Gasperi, G.; et al. Identification of pheromone components and their binding affinity to the odorant binding protein CcapOBP83a-2 of the Mediterranean fruit fly, Ceratitis capitata. Insect Biochem. Mol. Biol. 2014, 48, 51–62. [Google Scholar] [CrossRef]
- Gómez-Escobar, E.; Alavez-Rosas, D.; Castellanos, D.; Quintero-Fong, L.; Liedo, P.; Malo, E.A. Effect of Aging on Three Lures Used for Monitoring Ceratitis capitata (Diptera: Tephritidae): Release Rate, Volatile Composition, and Fly Recaptures. J. Econ. Entomol. 2022, 115, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Broughton, S.; Rahman, T. Evaluation of lures and traps for male and female monitoring of Mediterranean fruit fly in pome and stone fruit. J. Appl. Entomol. 2017, 141, 441–449. [Google Scholar] [CrossRef]
- Hill, A.R. Comparison between trimedlure and capilure®–attractants for male Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Aust. J. Entomol. 1987, 26, 35–36. [Google Scholar] [CrossRef]
- Domínguez-Ruiz, J.; Sanchis, J.; Navarro-Llopis, V.; Primo, J. A new long-life trimedlure dispenser for mediterranean fruit fly. J. Econ. Entomol. 2008, 101, 1325–1330. [Google Scholar] [CrossRef]
- Kouloussis, N.A.; Mavraganis, V.G.; Damos, P.; Ioannou, C.A.; Bempelou, E.; Koveos, D.S.; Papadopoulos, N.T. Trapping of Ceratitis capitata using the low-cost and non-toxic attractant Biodelear. Agronomy 2022, 12, 525. [Google Scholar] [CrossRef]
- Barud, F.J.; Gómez, M.P.; Ruiz, M.J.; Bachmann, G.E.; Goane, L.; Segura, D.F.; Lara, N.; Murúa, F.; Asfennato, A.; Gómez, E.; et al. Sexual competitiveness of sterile Ceratitis capitata males exposed to essential oils from non-host plant species native to Argentina. Entomol. Exp. Appl. 2023, 171, 146–155. [Google Scholar] [CrossRef]
- Niogret, J.; Epsky, N.D. Attraction of Ceratitis capitata (Diptera: Tephritidae) sterile males to essential oils: The importance of linalool. Environ. Entomol. 2018, 47, 1287–1292. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.; Yuval, B.; Liedo, P.; Teal, P.E.A.; Shelly, T.E.; McInnis, D.O.; Hendrichs, J. Improving sterile male performance in support of programmes integrating the sterile insect technique against fruit flies. J. Appl. Entomol. 2013, 137, 178–190. [Google Scholar] [CrossRef]
- Kouloussis, N.A.; Katsoyannos, B.I.; Papadopoulos, N.T.; Ioannou, C.S.; Iliadis, I.V. Enhanced mating competitiveness of Ceratitis capitata males following exposure to citrus compounds. J. Appl. Entomol. 2013, 137, 30–38. [Google Scholar] [CrossRef]
- Shelly, T.E. Exposure to α-copaene and α-copaene-containing oils enhances mating success of male Mediterranean fruit flies (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 2001, 94, 497–502. [Google Scholar] [CrossRef]
- Warthen, J.D., Jr.; McInnis, D.O. Isolation and identification of male medfly attractive components in Litchi chinensis stems and Ficus spp. stem exudates. J. Chem. Ecol. 1989, 15, 1931–1946. [Google Scholar] [CrossRef]
- Cunningham, R.T. Parapheromones. In Fruit Flies: Their Biology, Natural Enemies and Control; Robinson, A.S., Hooper, G., Eds.; Elsevier: Amsterdam, Netherlands, 1989; Volume 3A, pp. 221–230. [Google Scholar]
- Steiner, L.F.; Miyashita, D.H.; Christenson, L.D. Angelica oils as Mediterranean fruit fly lures. J. Econ. Entomol. 1957, 50, 505. [Google Scholar] [CrossRef]
- Steiner, L.F.; Rohwer, G.G.; Ayers, E.L.; Christenson, L.D. The role of attractants in the recent Mediterranean fruit fly eradication program in Florida. J. Econ. Entomol. 1961, 50, 30–35. [Google Scholar] [CrossRef]
- Fornasiero, U.; Guiotto, A.; Caporale, G.; Baccichetti, F.; Musajo, L. Identificazione della sostanza attrattiva per i maschi della Ceratitis capitata, contenunuta nell’olio essenziale dei semi di Angelica archangelica. Gazz. Chim. Ital. 1969, 99, 700–710. [Google Scholar]
- Duke, J.A. Handbook of Phytochemical Constituents of GRAS Herbs and Other Economic Plants: Herbal Reference Library, 2nd ed.; Routledge: New York, NY, USA, 2001; 674p. [Google Scholar] [CrossRef]
- Blythe, E.K.; Tabanca, N.; Demirci, B.; Kendra, P.E. Chemical Composition of Essential Oil From Tetradenia riparia and Its Attractant Activity for Mediterranean Fruit Fly, Ceratitis capitata. Nat. Prod. Commun. 2020, 15. [Google Scholar] [CrossRef]
- Haro-González, J.N.; Castillo-Herrera, G.A.; Martínez-Velázquez, M.; Espinosa-Andrews, H. Clove essential oil (Syzygium aromaticum L. Myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health. Molecules 2021, 26, 6387. [Google Scholar] [CrossRef] [PubMed]
- Bauer, K.; Garbe, D.; Surburg, H. Common Fragrance and Flavor Materials: Preparation, Properties and Uses, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2001. [Google Scholar]
- EC (European Commission). Authorising Certain Products and Substances for Use in Organic Production and Establishing Their Lists. C(2021) 5149 Final. Available online: https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12377-Organic-farming-list-ofproducts-&-substances-authorised-in-organic-production-update-_en (accessed on 1 March 2023).
- Kumar Pandey, V.; Shams, R.; Singh, R.; Dar, A.H.; Pandiselvam, R.; Rusu, A.V.; Trif, M. A comprehensive review on clove (Caryophyllus aromaticus L.) essential oil and its significance in the formulation of edible coatings for potential food applications. Front. Nutr. 2022, 9, 987674. [Google Scholar] [CrossRef] [PubMed]
- Chaieb, K.; Hajlaoui, H.; Zmantar, T.; Kahla-Nakbi, A.B.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): A short review. Phytother. Res. 2007, 21, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oils by Ion-Trap Mass Spectroscopy; Academic Press Inc.: San Diego, CA, USA, 1989. [Google Scholar] [CrossRef]
- Nishida, R.; Shelly, T.E.; Whittier, T.S.; Kaneshiro, K.Y. α-Copaene, a potential rendezvous cue for the Mediterranean fruit fly, Ceratitis capitata? J. Chem. Ecol. 2000, 26, 87–100. [Google Scholar] [CrossRef]
- Flath, R.A.; Cunningham, R.T.; Mon, T.R.; John, J.O. Additional male Mediterranean fruitfly (Ceratitis capitata Wied.) attractants from angelica seed oil (Angelica archangelica L.). J. Chem. Ecol. 1994, 20, 1969–1984. [Google Scholar] [CrossRef]
- Jacobson, M.; Uebel, E.C.; Lusby, W.R.; Waters, R.M. Optical isomers of α-copaene derived from several plant sources. J. Agric. Food Chem. 1987, 35, 798–800. [Google Scholar] [CrossRef]
- Shelly, T.E.; Edu, J. Capture of mass-reared vs. wild-like males of Ceratitis capitata (Dipt., Tephritidae) in trimedlure-baited traps. J. Appl. Entomol. 2009, 133, 640–646. [Google Scholar] [CrossRef]
- Gonçalves, M.A. Mass trapping of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) on pomegranate in southern Portugal (Algarve). Acta Hortic. 2019, 1254, 269–274. [Google Scholar] [CrossRef]
- Howse, P.E.; Stevens, I.D.; Jones, C.O. Insect Pheromones and Their Use in Pest Management; Springer: Dordrecht, Netherlands, 1998; pp. 280–313. [Google Scholar]
- Leonhardt, B.A.; Rice, R.E.; Harte, E.M.; Cunningham, R.T. Evaluation of dispensers containing trimedlure, the attractant for the Mediterranean fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 1984, 77, 744–749. [Google Scholar] [CrossRef]
- Shelly, T.; Kurashima, R. Field capture of male Mediterranean fruit flies (Diptera: Tephritidae) in traps baited with varying amounts of trimedlure. Fla. Entomol. 2020, 103, 16–22. [Google Scholar] [CrossRef]
- Bayoumy, M.H.; El-Metwally, M.M.; El-Adly, R.A.; Majerus, T.M.O. Improving the lifetime efficiency of trimedlure-dispensing system in trapping the fruit fly Ceratitis capitata using polyethylene matrix. J. Econ. Entomol. 2020, 113, 315–320. [Google Scholar] [CrossRef]
- Dean, D.; Pierre, H.; Mosser, L.; Kurashima, R.; Shelly, T. Field longevity and attractiveness of trimedlure plugs to male ceratitis capitata in Florida and Hawaii. Fla. Entomol. 2018, 101, 441–446. [Google Scholar] [CrossRef]
- Leonhardt, B.A.; Cunningham, R.T.; Rice, R.E.; Harte, E.M.; McGovern, T.P. Performance of controlled release formulations of trimedlure to attract the Mediterranean fruit fly (Ceratitis capitata). Entomol. Exp. Appl. 1987, 44, 45–51. [Google Scholar] [CrossRef]
- Shelly, T.E.; Pahio, E. Relative attractiveness of enriched ginger root oil and trimedlure to male Mediterranean fruit flies (Diptera: Tephritidae). Fla. Entomol. 2002, 85, 545–551. [Google Scholar] [CrossRef]
- Moshrefi Zenoozi, Z.; Soltaninezhad, B.; Hashemi, M.; Noori, S.M.A. A review of effective essential oils and their biologically active compounds to protect the safety of food stored against insect pests. J. Essent. Oil Res. 2022, 34, 111–122. [Google Scholar] [CrossRef]
- Lucia, A.; Guzmán, E. Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management. Adv. Colloid. Interface Sci. 2021, 287, 102330. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Kedia, A.; Das, S.; Dubey, N.K. Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: Prospects and retrospects. Environ. Sci. Pollut. Res. 2021, 28, 18918–18940. [Google Scholar] [CrossRef]
- Heathcock, C.H.; Badger, R.A.; Patterson, J.W., Jr. Total synthesis of (±)-copaene and (±)-ylangene. A General Method for the Synthesis of Tricyclo[4.4.0.02,7]decanes. J. Am. Chem. Soc. 1967, 89, 4133–4145. [Google Scholar] [CrossRef]
- Corey, E.J.; Watt, D.S. A Total Synthesis of (±)-α- and (±)-β-Copaenes and Ylangenes. J. Am. Chem. Soc. 1973, 95, 2303–2311. [Google Scholar] [CrossRef]
- Heathcock, C.H. The Total Synthesis of (±)-Copaene and (±)-8-Isocopaene. J. Am. Chem. Soc. 1966, 88, 4110–4112. [Google Scholar] [CrossRef]
- Archer, D.A.; Bromidge, S.M.; Sammes, P.G. Studies on a new route to (±)-copaene and (±)-ylangene. J. Chem. Soc. Perkin trans. 1 1988, 1, 3223–3228. [Google Scholar] [CrossRef]
- Wenkert, E.; Bookser, B.C.; Arrhenius, T.S. Total Syntheses of (±)-α-and (±)-β-Copaene and Formal Total Syntheses of (±)-Sativene, (±)-cis-Sativenediol, and (±)-Helminthosporalt. J. Am. Chem. Soc. 1992, 114, 644–654. [Google Scholar] [CrossRef]
- Morris, W.L.; Ducreux, L.J.M.; Shepherd, T.; Lewinsohn, E.; Davidovich-Rikanati, R.; Sitrit, Y.; Taylor, M.A. Utilisation of the MVA pathway to produce elevated levels of the sesquiterpene α-copaene in potato tubers. Phytochemistry 2011, 72, 2288–2293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhao, X.; He, X.; Yang, L.; Wang, Y.; Liu, F.; Wang, C.; Hua, Q.; Wu, Y.; Liu, Z. Metabolic engineering of Escherichia coli for the biosynthesis of α-copaene from glucose. Biochem. Eng. J. 2022, 186, 108561. [Google Scholar] [CrossRef]
- Izadi, R.; Assarian, D.; Altaee, A.; Mahinroosta, M. Investigation of methods for fuel desulfurization wastewater treatment. Chem. Eng. Res. Des. 2023, 190, 198–219. [Google Scholar] [CrossRef]
- Faisal, F.; Rasul, M.G.; Jahirul, M.I.; Schaller, D. Pyrolytic conversion of waste plastics to energy products: A review on yields, properties, and production costs. Sci. Total Environ. 2023, 861, 160721. [Google Scholar] [CrossRef]
- Bamasag, A.; Almatrafi, E.; Alqahtani, T.; Phelan, P.; Ullah, M.; Mustakeem, M.; Obaid, M.; Ghaffour, N. Recent advances and future prospects in direct solar desalination systems using membrane distillation technology. J. Clean. Prod. 2023, 385, 135737. [Google Scholar] [CrossRef]
- Alves-Ferreira, J.; Duarte, L.C.; Fernandes, M.C.; Pereira, H.; Carvalheiro, F. Cistus ladanifer as a potential feedstock for biorefineries: A review. Energies 2023, 16, 391. [Google Scholar] [CrossRef]
- Roni, K.A.; Martini, S. The effectiveness of octane booster as additive for fuel quality improvement. Asia-Pac. J. Sci. Technol. 2022, 27. [Google Scholar] [CrossRef]
- Thomann, R.; Bauermann, U.; Trautmann, S.; Trautmann, L. Experiences in the development of a container system for the distillation of essential oils at the agrargenossenschaft hedersleben e.G. Z. Arznei Gewurzpflanz. 2012, 17, 84–88. [Google Scholar]
- Shaw, D.; Tripathi, A.D.; Paul, V.; Agarwal, A.; Mishra, P.K.; Kumar, M. Valorization of essential oils from citrus peel powder using hydro-distillation. Sustain. Chem. Pharm. 2023, 32, 101036. [Google Scholar] [CrossRef]
- Ainane, A.; Mohamed Abdoul-Latif, F.; Mohamed Abdoul-Latif, T.; Ainane, T. Evaluation of biological activities of two essential oils as a safe environmental bioinsecticides: Case of Eucalyptus globulus and Rosmarinus officinalis. Sci. Rev. Eng. Environ. Sci. 2021, 29, 544–556. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential-A review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Hatami, T.; Johner, J.C.F.; Zabot, G.L.; Meireles, M.A.A. Supercritical fluid extraction assisted by cold pressing from clove buds: Extraction performance, volatile oil composition, and economic evaluation. J. Supercrit. Fluids 2019, 144, 39–47. [Google Scholar] [CrossRef]
- Golmakani, M.T.; Zare, M.; Razzaghi, S. Eugenol enrichment of clove bud essential oil using different microwave-assisted distillation methods. Food Sci. Technol. Res. 2017, 23, 385–394. [Google Scholar] [CrossRef]
- Ayub, M.A.; Goksen, G.; Fatima, A.; Zubair, M.; Abid, M.A.; Starowicz, M. Comparison of conventional extraction techniques with superheated steam distillation on chemical characterization and biological activities of Syzygium aromaticum L. essential oil. Separations 2023, 10, 27. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Iqbal, J.; Bathula, C.; Al-Muhtaseb, A.H. Challenges and perspectives on innovative technologies for biofuel production and sustainable environmental management. Fuel 2022, 325, 124845. [Google Scholar] [CrossRef]
- Das, N.; Dey, A.; Mandal, S.K.; Chatterjee, D.; Logesh, R.; Devkota, H.P. Secondary metabolites of clove (Syzygium aromaticum). In Clove (Syzygium aromaticum): Chemistry, Functionality and Applications; Ramadan, M.F., Ed.; Academic Press (Elsevier): London, UK, 2022; pp. 175–193. [Google Scholar] [CrossRef]
- Moustafa, S.A.; Nabih, S.A.; Kenawy, I.M.; Abou-Elzahab, M.M.; Abdel-Mogib, M. Clove oil as a source of attractant pheromones to the fruit flies, Ceratits capitata (Wiedemann) and Bactrocera zonata (saunders) (Diptera: Tephritidae). J. Plant. Protect. Pathol. 2012, 3, 1377–1385. [Google Scholar] [CrossRef]
- Hu, Z.J.; Yang, J.W.; Chen, Z.H.; Chang, C.; Ma, Y.P.; Li, N.; Deng, M.; Mao, G.L.; Bao, Q.; Deng, S.Z.; et al. Exploration of clove bud (Syzygium aromaticum) essential oil as a novel attractant against Bactrocera dorsalis (Hendel) and its safety evaluation. Insects 2022, 13, 918. [Google Scholar] [CrossRef]
- Singh, G.; Arora, H.; Hariprasad, P.; Sharma, S. Development of clove oil based nanoencapsulated biopesticide employing mesoporous nanosilica synthesized from paddy straw via bioinspired sol-gel route. Environ. Res. 2023, 220, 115208. [Google Scholar] [CrossRef]
- Milićević, Z.; Krnjajić, S.; Stević, M.; Ćirković, J.; Jelušić, A.; Pucarević, M.; Popović, T. Encapsulated clove bud essential oil: A new perspective as an eco-friendly biopesticide. Agriculture 2022, 12, 338. [Google Scholar] [CrossRef]
- Coetzee, D.; Militky, J.; Venkataraman, M. Functional coatings by natural and synthetic agents for insect control and their applications. Coatings 2022, 12, 476. [Google Scholar] [CrossRef]
- Casaña-Giner, V.; Navarro-Llopis, V.; Levi, V.; Jang, E.B. Implication of SAR of male medfly attractants in insect olfaction. SAR QSAR Environ. Res. 2002, 13, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Flath, R.A.; Cunningham, R.T.; Mon, T.R.; John, J.O. Male lures for mediterranean fruitfly (Ceratitis capitata Wied.): Structural analogs of α-copaene. J. Chem. Ecol. 1994, 20, 2595–2609. [Google Scholar] [CrossRef] [PubMed]
- Delrio, G.; Nannini, M.; Ortu, S. Field observations on attraction of Ceratitis capitata Wiedemann to alphacopaene. Bull. OILB SROP 1995, 18, 136–139. [Google Scholar]
- Shelly, T.E.; Cowan, A.N.; Edu, J.; Pahio, E. Mating success of male Mediterranean fruit flies following exposure to two sources of α-copaene, manuka oil and mango. Fla. Entomol. 2008, 91, 9–15. [Google Scholar] [CrossRef]
- De Alfonso, I.; Vacas, S.; Primo, J. Role of α-copaene in the susceptibility of olive fruits to Bactrocera oleae (Rossi). J. Agric. Food Chem. 2014, 62, 11976–11979. [Google Scholar] [CrossRef]
- Owens, D.; Kendra, P.E.; Tabanca, N.; Narvaez, T.I.; Montgomery, W.S.; Schnell, E.Q.; Carrillo, D. Quantitative analysis of contents and volatile emissions from α-copaene and quercivorol lures, and longevity for attraction of Euwallacea nr. fornicatus in Florida. J. Pest Sci. 2019, 92, 237–252. [Google Scholar] [CrossRef]
- Kendra, P.E.; Montgomery, W.S.; Schnell, E.Q.; Deyrup, M.A.; Epsky, N.D. Efficacy of α-copaene, cubeb, and eucalyptol lures for detection of redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae). J. Econ. Entomol. 2016, 109, 2428–2435. [Google Scholar] [CrossRef]
Fraction | Vol (mL) | % | Tª (°C) | α-cubebene (%) | α-copaene (%) | β-caryophyllene (%) | α-humulene (%) | δ-cadinene (%) |
---|---|---|---|---|---|---|---|---|
Total | 500 | 0.76 | 2.12 | 87.63 | 8.46 | 1.03 | ||
DCO1 | 5.3 | 1.06 | 40–106 | 5.15 | 5.79 | 62.32 | 2.21 | ND |
DCO2 | 14.1 | 2.82 | 106–114 | 4.81 | 6.06 | 82.91 | 3.03 | ND |
DCO3 | 133.9 | 26.78 | 114–122 | 1.30 | 3.48 | 88.51 | 5.02 | 0.05 |
DCO4 | 82.7 | 16.54 | 122 | 0.54 | 2.3 | 89.21 | 6.58 | 0.28 |
DCO5 | 153 | 30.6 | 122 | 0.18 | 1.28 | 87.88 | 8.66 | 0.51 |
DCO6 | 31.5 | 6.3 | 122 | ND | 0.52 | 85 | 13 | 1.03 |
DCO7 | 79.5 | 15.9 | – | ND | ND | 52.19 | 16.63 | 8.24 |
Fraction | Vol (mL) | % | Tª (°C) | α-cubebene (%) | α-copaene (%) | β-caryophyllene (%) | α-humulene (%) |
---|---|---|---|---|---|---|---|
Total | 500 | 2.46 | 4.62 | 86.27 | 6.02 | ||
IF1 | 16 | 3.2 | 68–109 | 10.02 | 9.75 | 65.63 | 1.78 |
IF2 | 50 | 17.6 | 109 | 5.12 | 7.50 | 82.00 | 2.63 |
IF3 | 396 | 79.2 | – | 1.93 | 4.10 | 86.68 | 6.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lull, C.; Gil-Ortiz, R.; Cantín, Á. A Chemical Approach to Obtaining α-copaene from Clove Oil and Its Application in the Control of the Medfly. Appl. Sci. 2023, 13, 5622. https://doi.org/10.3390/app13095622
Lull C, Gil-Ortiz R, Cantín Á. A Chemical Approach to Obtaining α-copaene from Clove Oil and Its Application in the Control of the Medfly. Applied Sciences. 2023; 13(9):5622. https://doi.org/10.3390/app13095622
Chicago/Turabian StyleLull, Cristina, Ricardo Gil-Ortiz, and Ángel Cantín. 2023. "A Chemical Approach to Obtaining α-copaene from Clove Oil and Its Application in the Control of the Medfly" Applied Sciences 13, no. 9: 5622. https://doi.org/10.3390/app13095622
APA StyleLull, C., Gil-Ortiz, R., & Cantín, Á. (2023). A Chemical Approach to Obtaining α-copaene from Clove Oil and Its Application in the Control of the Medfly. Applied Sciences, 13(9), 5622. https://doi.org/10.3390/app13095622