Progress in Energy Storage Technologies and Methods for Renewable Energy Systems Application
Abstract
:1. Introduction
2. Materials and Method
2.1. Document Co-Citation Network
Cluster ID | Size | Silhouette Score | Label (LLR) | Mean (Cite Year) |
---|---|---|---|---|
0 | 41 | 0.916 | storage technologies | 2020 |
1 | 40 | 0.993 | large-scale energy storage | 2014 |
2 | 40 | 0.915 | transport solution | 2015 |
3 | 31 | 0.983 | flexible electricity generation grid exchange | 2018 |
4 | 31 | 1 | dual-layered film | 2018 |
5 | 25 | 0.989 | integrated natural gas | 2016 |
6 | 24 | 0.956 | hydrogen system | 2020 |
7 | 21 | 0.951 | hydro storage | 2013 |
8 | 16 | 0.915 | electrical energy storage | 2017 |
9 | 14 | 1 | microgrid system | 2012 |
10 | 14 | 0.988 | life cycle assessment | 2016 |
11 | 13 | 1 | fundamental | 2020 |
12 | 12 | 1 | state | 2012 |
13 | 12 | 0.976 | microgrid system | 2020 |
Citation Counts | References | Cluster |
---|---|---|
9 | Luo et al. [21], 2015, Appl Energy | 5 |
8 | Yang et al. [22], 2011, Chen Rev | 1 |
8 | Cheng et al. [23], 2017, Chen Rev | 4 |
8 | Buttler and Spliethoff [24], 2018, Renew Suet Energ Rev | 0 |
7 | Ahmadi and Abdi [25], 2016, Sol Energy | 0 |
7 | Beaudin et al. [26], 2010, Energy Sustain Dev | 2 |
6 | Schiebahn et al. [27], 2015, Int J Hydrogen Energ | 10 |
6 | Lin et al. [28], 2017, Nat Nanotechnol | 4 |
6 | Zheng et al. [29], 2017, Nat Energy | 4 |
6 | Dunn B et al. [30], 2011, Science | 1 |
2.2. Author Co-Citation Network
2.3. Journal Co-Citation Network
2.4. Emerging Trends of Energy Storage and Renewable Energy
2.5. Keyword Analysis
3. The Progress of Energy Storage Technologies
3.1. Hydrogen Storage
3.2. Pumped Hydro Storage
3.3. Lead-Acid Batteries
3.4. Lithium-Ion Batteries
3.5. Flywheels
3.6. Sodium–Sulfur Batteries
3.7. Superconducting Magnetic Energy Storage
3.8. Capacitors and Supercapacitors
4. Research Classification
4.1. Electrochemical Energy Storage System
4.2. Application Scenarios of Energy Storage System
5. Discussion
5.1. Summary of the CiteSpace Analysis
5.2. Summary of Energy Storage
5.3. Summary of Future
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Alternating Current |
BC | Betweenness Centrality |
BCMS | Battery Cluster Management System |
BMS | Battery Management System |
BMSC | Battery Management System Controller |
BMU | Battery Module Management Unit |
DCN | Document Co-Citation Network |
DMU | DC Management Unit |
EES | Electrical Energy Storage |
EESS | Electrochemical Energy Storage System |
EMS | Energy Management System |
ESS | Energy Storage Systems |
FES | Flywheel Energy Storage |
HTS | High Temperature Superconducting |
IRENA | International Renewable Energy Agency |
LLR | Likelihood Rate Weighting Algorithm |
LTS | Low Temperature Superconducting |
NaS | Sodium–Sulfur Battery |
PCS | Power Conversion System |
PHS | Pumped Hydro Storage |
SMES | Superconducting Magnetic Energy Storage |
WOS | Web Of Science |
References
- Al-Sharafi, A.; Sahin, A.Z.; Ayar, T.; Yilbas, B.S. Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renew. Sustain. Energy Rev. 2017, 69, 33–49. [Google Scholar] [CrossRef]
- Olabi, A.G.; Onumaegbu, C.; Wilberforce, T.; Ramadan, M.; Abdelkareem, M.A.; Al—Alami, A.H. Critical review of energy storage systems. Energy 2021, 214, 118987. [Google Scholar] [CrossRef]
- Ruth, M.F.; Zinaman, O.R.; Antkowiak, M.; Boardman, R.D.; Cherry, R.S.; Bazilian, M.D. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs. Energy Convers. Manag. 2014, 78, 684–694. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Adebayo, T.S. Do public-private partnerships in energy and renewable energy consumption matter for consumption-based carbon dioxide emissions in India? Environ. Sci. Pollut. Res. 2021, 28, 30139–30152. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Moubarak, M. Renewable energy consumption—Economic growth nexus for China. Renew. Sustain. Energy Rev. 2014, 40, 111–117. [Google Scholar] [CrossRef]
- Ocal, O.; Aslan, A. Renewable energy consumption–economic growth nexus in Turkey. Renew. Sustain. Energy Rev. 2013, 28, 494–499. [Google Scholar] [CrossRef]
- Afungchui, D.; Aban, C.E. Analysis of wind regimes for energy estimation in Bamenda, of the North West Region of Cameroon, based on the Weibull distribution. J. Renew. Energ. 2014, 17, 137–147. [Google Scholar]
- Fasihi, M.; Weiss, R.; Savolainen, J.; Breyer, C. Global potential of green ammonia based on hybrid PV-wind power plants. Appl. Energy 2021, 294, 116170. [Google Scholar] [CrossRef]
- Subburaj, A.S.; Kondur, P.; Bayne, S.B.; Giesselmann, M.G.; Harral, M.A. Analysis and Review of Grid Connected Battery in Wind Applications. In Proceedings of the 2014 Sixth Annual IEEE Green Technologies Conference, Corpus Christi, TX, USA, 3–4 April 2014; IEEE: Piscataway, NJ, USA; pp. 1–6. [Google Scholar]
- Fleta-Asín, J.; Muñoz, F. Renewable energy public–private partnerships in developing countries: Determinants of private investment. Sustain. Dev. 2021, 29, 653–670. [Google Scholar] [CrossRef]
- Ferrall, I.; Heinemann, G.; von Hirschhausen, C.; Kammen, D.M. The Role of Political Economy in Energy Access: Public and Private Off-Grid Electrification in Tanzania. Energies 2021, 14, 3173. [Google Scholar] [CrossRef]
- Reihani, E.; Sepasi, S.; Roose, L.R.; Matsuura, M. Energy management at the distribution grid using a Battery Energy Storage System (BESS). Int. J. Electr. Power Energy Syst. 2016, 77, 337–344. [Google Scholar] [CrossRef]
- Li, Y.; Gao, W.; Ruan, Y. Performance investigation of grid-connected residential PV-battery system focusing on enhancing self-consumption and peak shaving in Kyushu, Japan. Renew. Energy 2018, 127, 514–523. [Google Scholar] [CrossRef]
- Geth, F.; Brijs, T.; Kathan, J.; Driesen, J.; Belmans, R. An overview of large-scale stationary electricity storage plants in Europe: Current status and new developments. Renew. Sustain. Energy Rev. 2015, 52, 1212–1227. [Google Scholar] [CrossRef]
- O’Meara, S. China’s plan to cut coal and boost green growth. Nature 2020, 584, S1–S3. [Google Scholar] [CrossRef]
- Kanakadhurga, D.; Prabaharan, N. Demand side management in microgrid: A critical review of key issues and recent trends. Renew. Sustain. Energy Rev. 2022, 156, 111915. [Google Scholar] [CrossRef]
- Dugan, J.; Mohagheghi, S.; Kroposki, B. Application of Mobile Energy Storage for Enhancing Power Grid Resilience: A Review. Energies 2021, 14, 6476. [Google Scholar] [CrossRef]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Mustafee, N.; Katsaliaki, K.; Fishwick, P. Exploring the modelling and simulation knowledge base through journal co-citation analysis. Scientometrics 2014, 98, 2145–2159. [Google Scholar] [CrossRef]
- Fang, Y.; Yin, J.; Wu, B. Climate change and tourism: A scientometric analysis using CiteSpace. J. Sustain. Tour. 2018, 26, 108–126. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, J.; Kintner-Meyer, M.C.W.; Lu, X.; Choi, D.; Lemmon, J.P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577–3613. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117, 10403–10473. [Google Scholar] [CrossRef] [PubMed]
- Buttler, A.; Spliethoff, H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renew. Sustain. Energy Rev. 2018, 82, 2440–2454. [Google Scholar] [CrossRef]
- Ahmadi, S.; Abdi, S. Application of the Hybrid Big Bang–Big Crunch algorithm for optimal sizing of a stand-alone hybrid PV/wind/battery system. Sol. Energy 2016, 134, 366–374. [Google Scholar] [CrossRef]
- Beaudin, M.; Zareipour, H.; Schellenberglabe, A.; Rosehart, W. Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy Sustain. Dev. 2010, 14, 302–314. [Google Scholar] [CrossRef]
- Schiebahn, S.; Grube, T.; Robinius, M.; Tietze, V.; Kumar, B.; Stolten, D. Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. Int. J. Hydrog. Energy 2015, 40, 4285–4294. [Google Scholar] [CrossRef]
- Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206. [Google Scholar] [CrossRef]
- Zheng, J.; Engelhard, M.H.; Mei, D.; Jiao, S.; Polzin, B.J.; Zhang, J.-G.; Xu, W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2017, 2, 17012. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef]
- Olabi, A.G.; Alami, A.H.; Rezk, H.; Abdelkareem, M.A. Large-scale hydrogen production and storage technologies: Current status and future directions. Int. J. Hydrog. Energy 2021, 46, 23498–23528. [Google Scholar] [CrossRef]
- Zheng, J.; Tian, J.; Wu, D.; Gu, M.; Xu, W.; Wang, C.; Gao, F.; Engelhard, M.H.; Zhang, J.-G.; Liu, J.; et al. Lewis Acid–Base Interactions between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries. Nano Lett. 2014, 14, 2345–2352. [Google Scholar] [CrossRef]
- Hansen, K.; Breyer, C.; Lund, H. Status and perspectives on 100% renewable energy systems. Energy 2019, 175, 471–480. [Google Scholar] [CrossRef]
- Mathiesen, B.V.; Lund, H.; Connolly, D.; Wenzel, H.; Østergaard, P.A.; Möller, B.; Nielsen, S.; Ridjan, I.; Karnøe, P.; Sperling, K.; et al. Smart Energy Systems for coherent 100% renewable energy and transport solutions. Appl. Energy 2015, 145, 139–154. [Google Scholar] [CrossRef]
- Ma, T.; Yang, H.; Lu, L.; Peng, J. Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong. Renew. Energy 2014, 69, 7–15. [Google Scholar] [CrossRef]
- Chen, S.; Zheng, J.; Yu, L.; Ren, X.; Engelhard, M.H.; Niu, C.; Lee, H.; Xu, W.; Xiao, J.; Liu, J.; et al. High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes. Joule 2018, 2, 1548–1558. [Google Scholar] [CrossRef]
- Arteconi, A.; Hewitt, N.J.; Polonara, F. State of the art of thermal storage for demand-side management. Appl. Energy 2012, 93, 371–389. [Google Scholar] [CrossRef]
- Zeng, Q.; Fang, J.; Li, J.; Chen, Z. Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion. Appl. Energy 2016, 184, 1483–1492. [Google Scholar] [CrossRef]
- Amrollahi, M.H.; Bathaee, S.M.T. Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response. Appl. Energy 2017, 202, 66–77. [Google Scholar] [CrossRef]
- Lu, X.; Li, K.; Xu, H.; Wang, F.; Zhou, Z.; Zhang, Y. Fundamentals and business model for resource aggregator of demand response in electricity markets. Energy 2020, 204, 117885. [Google Scholar] [CrossRef]
- Hemmati, M.; Mirzaei, M.A.; Abapour, M.; Zare, K.; Mohammadi-ivatloo, B.; Mehrjerdi, H.; Marzband, M. Economic-environmental analysis of combined heat and power-based reconfigurable microgrid integrated with multiple energy storage and demand response program. Sustain. Cities Soc. 2021, 69, 102790. [Google Scholar] [CrossRef]
- Khodaei, A. Reliability-Constrained Optimal Sizing of Energy Storage System in a Microgrid. IEEE Trans. Smart Grid 2012, 3, 2056–2062. [Google Scholar] [CrossRef]
- Zhang, X.; Bauer, C.; Mutel, C.L.; Volkart, K. Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications. Appl. Energy 2017, 190, 326–338. [Google Scholar] [CrossRef]
- Ji, X.; Lee, K.T.; Nazar, L.F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Duan, S.; Cai, T.; Liu, B.; Hu, G. Smart energy management system for optimal microgrid economic operation. IET Renew. Power Gener. 2011, 5, 258. [Google Scholar] [CrossRef]
- Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Gahleitner, G. Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications. Int. J. Hydrog. Energy 2013, 38, 2039–2061. [Google Scholar] [CrossRef]
- Saravanan, K.; Mason, C.W.; Rudola, A.; Wong, K.H.; Balaya, P. The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries. Adv. Energy Mater. 2013, 3, 444–450. [Google Scholar] [CrossRef]
- Guney, M.S.; Tepe, Y. Classification and assessment of energy storage systems. Renew. Sustain. Energy Rev. 2017, 75, 1187–1197. [Google Scholar] [CrossRef]
- García-Olivares, A.; Solé, J.; Osychenko, O. Transportation in a 100% renewable energy system. Energy Convers. Manag. 2018, 158, 266–285. [Google Scholar] [CrossRef]
- Barthelemy, H.; Weber, M.; Barbier, F. Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrog. Energy 2017, 42, 7254–7262. [Google Scholar] [CrossRef]
- Tung, C.-W.; Hsu, Y.-Y.; Shen, Y.-P.; Zheng, Y.; Chan, T.-S.; Sheu, H.-S.; Cheng, Y.-C.; Chen, H.M. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat. Commun. 2015, 6, 8106. [Google Scholar] [CrossRef]
- Pickard, W.F. The History, Present State, and Future Prospects of Underground Pumped Hydro for Massive Energy Storage. Proc. IEEE 2012, 100, 473–483. [Google Scholar] [CrossRef]
- Barnes, F.S.; Levine, J.G. Large Energy Storage Systems. NY Taylor Fr. Group 2011. [Google Scholar]
- Papaefthymiou, S.V.; Karamanou, E.G.; Papathanassiou, S.A.; Papadopoulos, M.P. A Wind-Hydro-Pumped Storage Station Leading to High RES Penetration in the Autonomous Island System of Ikaria. IEEE Trans. Sustain. Energy 2010, 1, 163–172. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Finn, P.; Mathiesen, B.V.; Leahy, M. Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage. Energy Policy 2011, 39, 4189–4196. [Google Scholar] [CrossRef]
- May, G.J.; Davidson, A.; Monahov, B. Lead batteries for utility energy storage: A review. J. Energy Storage 2018, 15, 145–157. [Google Scholar] [CrossRef]
- Posada, J.O.G.; Rennie, A.J.R.; Villar, S.P.; Martins, V.L.; Marinaccio, J.; Barnes, A.; Glover, C.F.; Worsley, D.A.; Hall, P.J. Aqueous batteries as grid scale energy storage solutions. Renew. Sustain. Energy Rev. 2017, 68, 1174–1182. [Google Scholar] [CrossRef]
- Zou, C.; Zhang, L.; Hu, X.; Wang, Z.; Wik, T.; Pecht, M. A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors. J. Power Sources 2018, 390, 286–296. [Google Scholar] [CrossRef]
- Dufo-López, R.; Lujano-Rojas, J.M.; Bernal-Agustín, J.L. Comparison of different lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems. Appl. Energy 2014, 115, 242–253. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, J.; Xia, Y. Recent Progress in Aqueous Lithium-Ion Batteries. Adv. Energy Mater. 2012, 2, 830–840. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Q.; Zheng, G.; Seh, Z.W.; Yao, H.; Cui, Y. Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance. Nano Lett. 2013, 13, 5534–5540. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Zhang, Q.; Cha, J.J.; Yang, Y.; Li, W.; Seh, Z.W.; Cui, Y. Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries. Nano Lett. 2013, 13, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Mousavi G, S.M.; Faraji, F.; Majazi, A.; Al-Haddad, K. A comprehensive review of Flywheel Energy Storage System technology. Renew. Sustain. Energy Rev. 2017, 67, 477–490. [Google Scholar] [CrossRef]
- Werfel, F.N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P. Superconductor bearings, flywheels and transportation. Supercond. Sci. Technol. 2012, 25, 014007. [Google Scholar] [CrossRef]
- Pena-Alzola, R.; Sebastian, R.; Quesada, J.; Colmenar, A. Review of flywheel based energy storage systems. In Proceedings of the 2011 International Conference on Power Engineering, Energy and Electrical Drives, Malaga, Spain, 11–13 May 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–6. [Google Scholar]
- Sebastián, R.; Peña Alzola, R. Flywheel energy storage systems: Review and simulation for an isolated wind power system. Renew. Sustain. Energy Rev. 2012, 16, 6803–6813. [Google Scholar] [CrossRef]
- Díaz-González, F.; Sumper, A.; Gomis-Bellmunt, O.; Bianchi, F.D. Energy management of flywheel-based energy storage device for wind power smoothing. Appl. Energy 2013, 110, 207–219. [Google Scholar] [CrossRef]
- Aydin, K.; Aydemir, M.T. A control algorithm for a simple flywheel energy storage system to be used in space applications. Turk. J. Electr. Eng. Comput. Sci. 2013, 21, 1328–1339. [Google Scholar] [CrossRef]
- Lee, H.; Jung, S.; Cho, Y.; Yoon, D.; Jang, G. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system. Phys. C Supercond. 2013, 494, 246–249. [Google Scholar] [CrossRef]
- Eng, A.Y.S.; Kumar, V.; Zhang, Y.; Luo, J.; Wang, W.; Sun, Y.; Li, W.; Seh, Z.W. Room-Temperature Sodium–Sulfur Batteries and Beyond: Realizing Practical High Energy Systems through Anode, Cathode, and Electrolyte Engineering. Adv. Energy Mater. 2021, 11, 2003493. [Google Scholar] [CrossRef]
- Mao, J.; Iocozzia, J.; Huang, J.; Meng, K.; Lai, Y.; Lin, Z. Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 2018, 11, 772–799. [Google Scholar] [CrossRef]
- Wei, S.; Xu, S.; Agrawral, A.; Choudhury, S.; Lu, Y.; Tu, Z.; Ma, L.; Archer, L.A. A stable room-temperature sodium–sulfur battery. Nat. Commun. 2016, 7, 11722. [Google Scholar] [CrossRef]
- Ye, C.; Jiao, Y.; Chao, D.; Ling, T.; Shan, J.; Zhang, B.; Gu, Q.; Davey, K.; Wang, H.; Qiao, S. Electron-State Confinement of Polysulfides for Highly Stable Sodium–Sulfur Batteries. Adv. Mater. 2020, 32, 1907557. [Google Scholar] [CrossRef]
- Zhang, B.; Sheng, T.; Wang, Y.; Chou, S.; Davey, K.; Dou, S.; Qiao, S. Long-Life Room-Temperature Sodium–Sulfur Batteries by Virtue of Transition-Metal-Nanocluster–Sulfur Interactions. Angew. Chem. Int. Ed. 2019, 58, 1484–1488. [Google Scholar] [CrossRef]
- Cao, Y.; Xiao, L.; Wang, W.; Choi, D.; Nie, Z.; Yu, J.; Saraf, L.V.; Yang, Z.; Liu, J. Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life. Adv. Mater. 2011, 23, 3155–3160. [Google Scholar] [CrossRef]
- Linder, J.; Robinson, J.W.A. Superconducting spintronics. Nat. Phys. 2015, 11, 307–315. [Google Scholar] [CrossRef]
- Markoulidis, F.; Lei, C.; Lekakou, C. Fabrication of high-performance supercapacitors based on transversely oriented carbon nanotubes. Appl. Phys. A 2013, 111, 227–236. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhao, D.; Cheng, M.; Zhou, J.; Owusu, K.A.; Mai, L.; Yu, Y. A New View of Supercapacitors: Integrated Supercapacitors. Adv. Energy Mater. 2019, 9, 1901081. [Google Scholar] [CrossRef]
- Carew, N.; Warnock, W.; Bayindir, R.; Hossain, E.; Rakin, A.S. Analysis of pumped hydroelectric energy storage for large-scale wind energy integration. Int. J. Electr. Eng. Educ. 2020, 002072092092845. [Google Scholar] [CrossRef]
- Guo, C.; Xu, Y.; Zhang, X.; Guo, H.; Zhou, X.; Liu, C.; Qin, W.; Li, W.; Dou, B.; Chen, H. Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage. Energy 2017, 135, 876–888. [Google Scholar] [CrossRef]
- Olabi, A.G. Renewable energy and energy storage systems. Energy 2017, 136, 1–6. [Google Scholar] [CrossRef]
- Wu, S.; Yan, T.; Kuai, Z.; Pan, W. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review. Energy Storage Mater. 2020, 25, 251–295. [Google Scholar] [CrossRef]
- Deng, D. Li-ion batteries: Basics, progress, and challenges. Energy Sci. Eng. 2015, 3, 385–418. [Google Scholar] [CrossRef]
- Xin, S.; Yin, Y.-X.; Guo, Y.-G.; Wan, L.-J. A High-Energy Room-Temperature Sodium-Sulfur Battery. Adv. Mater. 2014, 26, 1261–1265. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Luo, Q.; Li, B.; Wei, X.; Li, L.; Yang, Z. Recent Progress in Redox Flow Battery Research and Development. Adv. Funct. Mater. 2013, 23, 970–986. [Google Scholar] [CrossRef]
- Aydin, D.; Casey, S.P.; Riffat, S. The latest advancements on thermochemical heat storage systems. Renew. Sustain. Energy Rev. 2015, 41, 356–367. [Google Scholar] [CrossRef]
- Lawder, M.T.; Suthar, B.; Northrop, P.W.C.; De, S.; Hoff, C.M.; Leitermann, O.; Crow, M.L.; Santhanagopalan, S.; Subramanian, V.R. Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications. Proc. IEEE 2014, 102, 1014–1030. [Google Scholar] [CrossRef]
- Pan, A.Q.; Li, X.Z.; Shang, J.; Feng, J.H.; Tao, Y.B.; Ye, J.L.; Li, C.; Liao, Q.Q.; Yang, X. The applications of echelon use batteries from electric vehicles to distributed energy storage systems. In Proceedings of the 2019 International Conference on New Energy and Future Energy System, Macao, China, 21–24 July 2019. [Google Scholar]
- Zia, M.F.; Elbouchikhi, E.; Benbouzid, M. Microgrids energy management systems: A critical review on methods, solutions, and prospects. Appl. Energy 2018, 222, 1033–1055. [Google Scholar] [CrossRef]
- Mariano-Hernández, D.; Hernández-Callejo, L.; Zorita-Lamadrid, A.; Duque-Pérez, O.; Santos García, F. A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis. J. Build. Eng. 2021, 33, 101692. [Google Scholar] [CrossRef]
- Zhao, B.; Song, Q.; Liu, W.; Sun, Y. Overview of Dual-Active-Bridge Isolated Bidirectional DC–DC Converter for High-Frequency-Link Power-Conversion System. IEEE Trans. Power Electron. 2014, 29, 4091–4106. [Google Scholar] [CrossRef]
- Pires, V.F.; Romero-Cadaval, E.; Vinnikov, D.; Roasto, I.; Martins, J.F. Power converter interfaces for electrochemical energy storage systems—A review. Energy Convers. Manag. 2014, 86, 453–475. [Google Scholar] [CrossRef]
- Novakovic, B.; Nasiri, A. Modular Multilevel Converter for Wind Energy Storage Applications. IEEE Trans. Ind. Electron. 2017, 64, 8867–8876. [Google Scholar] [CrossRef]
- Youwei, H.; Xu, Z.; Junping, H.; Yi, Q. The improvement of micro grid hybrid energy storage system operation mode. In Proceedings of the 2014 IEEE PES T&D Conference and Exposition, Chicago, IL, USA, 14–17 April 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–6. [Google Scholar]
- Wang, Z.; Wang, Y.; Ding, Q.; Wang, C.; Zhang, K. Energy Storage Economic Analysis of Multi-Application Scenarios in an Electricity Market: A Case Study of China. Sustainability 2020, 12, 8703. [Google Scholar] [CrossRef]
- Steen, D. Modeling of thermal storage systems in MILP distributed energy resource models. Appl. Energy 2015, 137, 782–792. [Google Scholar] [CrossRef]
- Diaz-Gonzalez, F.; Bianchi, F.D.; Sumper, A.; Gomis-Bellmunt, O. Control of a Flywheel Energy Storage System for Power Smoothing in Wind Power Plants. IEEE Trans. Energy Convers. 2014, 29, 204–214. [Google Scholar] [CrossRef]
- De Siqueira, L.M.S.; Peng, W. Control strategy to smooth wind power output using battery energy storage system: A review. J. Energy Storage 2021, 35, 102252. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, S.; Xiao, F.; Gao, D. Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: A review. Energy Convers. Manag. 2013, 71, 101–114. [Google Scholar] [CrossRef]
- Wu, H.; Sun, K.; Li, Y.; Xing, Y. Fixed-Frequency PWM-Controlled Bidirectional Current-Fed Soft-Switching Series-Resonant Converter for Energy Storage Applications. IEEE Trans. Ind. Electron. 2017, 64, 6190–6201. [Google Scholar] [CrossRef]
- Delille, G.; Francois, B.; Malarange, G. Dynamic Frequency Control Support by Energy Storage to Reduce the Impact of Wind and Solar Generation on Isolated Power System’s Inertia. IEEE Trans. Sustain. Energy 2012, 3, 931–939. [Google Scholar] [CrossRef]
- Yuanmao, Y.; Cheng, K.W.E. Zero-Current Switching Switched-Capacitor Zero-Voltage-Gap Automatic Equalization System for Series Battery String. IEEE Trans. Power Electron. 2012, 27, 9. [Google Scholar] [CrossRef]
- Kabir, M.N.; Mishra, Y.; Ledwich, G.; Dong, Z.Y.; Wong, K.P. Coordinated Control of Grid-Connected Photovoltaic Reactive Power and Battery Energy Storage Systems to Improve the Voltage Profile of a Residential Distribution Feeder. IEEE Trans. Ind. Inform. 2014, 10, 967–977. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, B.-C. Capturing Taylor–Görtler vortices in a streamwise-rotating channel at very high rotation numbers. J. Fluid Mech. 2018, 838, 658–689. [Google Scholar] [CrossRef]
- Elliott, R.T.; Lockyear, B.; Zyskowski, J.; Kirschen, D.S. Sharing Energy Storage Between Transmission and Distribution. IEEE Trans. Power Syst. 2018, 34, 152–162. [Google Scholar] [CrossRef]
- Xu, Y.; Singh, C. Power System Reliability Impact of Energy Storage Integration With Intelligent Operation Strategy. IEEE Trans. Smart Grid 2014, 5, 1129–1137. [Google Scholar] [CrossRef]
- Li, C.; Zhang, S.; Zhang, J.; Qi, J.; Li, J.; Guo, Q.; You, H. Method for the Energy Storage Configuration of Wind Power Plants with Energy Storage Systems used for Black-Start. Energies 2018, 11, 3394. [Google Scholar] [CrossRef]
- Khan, S.; Mehmood, K.; Haider, Z.; Rafique, M.K.; Kim, C.-H. A Bi-Level EV Aggregator Coordination Scheme for Load Variance Minimization with Renewable Energy Penetration Adaptability. Energies 2018, 11, 2809. [Google Scholar] [CrossRef]
- Atzeni, I.; Ordonez, L.G.; Scutari, G.; Palomar, D.P.; Fonollosa, J.R. Demand-Side Management via Distributed Energy Generation and Storage Optimization. IEEE Trans. Smart Grid 2013, 4, 866–876. [Google Scholar] [CrossRef]
- Gils, H.C. Assessment of the theoretical demand response potential in Europe. Energy 2014, 67, 1–18. [Google Scholar] [CrossRef]
- Li, J.; Niu, D.; Wu, M.; Wang, Y.; Li, F.; Dong, H. Research on Battery Energy Storage as Backup Power in the Operation Optimization of a Regional Integrated Energy System. Energies 2018, 11, 2990. [Google Scholar] [CrossRef]
- Sciacovelli, A.; Vecchi, A.; Ding, Y. Liquid air energy storage (LAES) with packed bed cold thermal storage—From component to system level performance through dynamic modelling. Appl. Energy 2017, 190, 84–98. [Google Scholar] [CrossRef]
- Shivaie, M.; Sepasian, M.S.; Sheikh-El-Eslami, M.K. Multi-objective transmission expansion planning based on reliability and market considering phase shifter transformers by fuzzy-genetic algorithm: MULTI-OBJECTIVE TRANSMISSION EXPANSION PLANNING. Int. Trans. Electr. Energy Syst. 2013, 23, 1468–1489. [Google Scholar] [CrossRef]
- Amirante, R.; Cassone, E.; Distaso, E.; Tamburrano, P. Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies. Energy Convers. Manag. 2017, 132, 372–387. [Google Scholar] [CrossRef]
- Cho, J.; Jeong, S.; Kim, Y. Commercial and research battery technologies for electrical energy storage applications. Prog. Energy Combust. Sci. 2015, 48, 84–101. [Google Scholar] [CrossRef]
- Eftekhari, A.; Fang, B. Electrochemical hydrogen storage: Opportunities for fuel storage, batteries, fuel cells, and supercapacitors. Int. J. Hydrog. Energy 2017, 42, 25143–25165. [Google Scholar] [CrossRef]
- Koohi-Kamali, S.; Tyagi, V.V.; Rahim, N.A.; Panwar, N.L.; Mokhlis, H. Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review. Renew. Sustain. Energy Rev. 2013, 25, 135–165. [Google Scholar] [CrossRef]
- Ebrahimi, H.; Yazdaninejadi, A.; Golshannavaz, S. Demand response programs in power systems with energy storage system-coordinated wind energy sources: A security-constrained problem. J. Clean. Prod. 2022, 335, 130342. [Google Scholar] [CrossRef]
- Ebrahimi, H.; Yazdaninejadi, A.; Golshannavaz, S. Decentralized prioritization of demand response programs in multi-area power grids based on the security considerations. ISA Trans. 2023, 134, 396–408. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.; Li, G.; Zhao, D.; Tian, W. Optimal Scheduling of an Isolated Microgrid with Battery Storage Considering Load and Renewable Generation Uncertainties. IEEE Trans. Ind. Electron. 2019, 66, 1565–1575. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Li, G.; Wang, J.; Zhao, D.; Chen, C. Improving operational flexibility of integrated energy system with uncertain renewable generations considering thermal inertia of buildings. Energy Convers. Manag. 2020, 207, 112526. [Google Scholar] [CrossRef]
Author | Frequency | BC | Author | Frequency | BC |
---|---|---|---|---|---|
Y. Li | 52 | 0.22 | Y. Zhang | 38 | 0.01 |
Y. Wang | 47 | 0.07 | Y. Liu | 36 | 0.05 |
X. Wang | 44 | 0.08 | J. Liu | 35 | 0.03 |
J. Wang | 42 | 0.02 | H. Wang | 34 | 0.03 |
X. Zhang | 42 | 0.03 | Z. Li | 31 | 0.01 |
Journal | Frequency | BC |
---|---|---|
Applied Energy | 229 | 0.06 |
Energy | 209 | 0.02 |
Renewable and Sustainable Energy Reviews | 200 | 0.01 |
Renewable Energy | 170 | 0.01 |
Energy Convers Manage | 163 | 0.02 |
Journal of Power Sources | 142 | 0.13 |
Energy & Environmental Science | 128 | 0.04 |
Science | 116 | 0.00 |
IEEE TPOWERSYST | 112 | 0.03 |
Energy Policy | 109 | 0.05 |
References | Year | Strength | Begin | End | 2012–2021 |
---|---|---|---|---|---|
Yang Z [22], 2011 | 2011 | 3.04 | 2013 | 2016 | |
Chen C [45], 2011 | 2011 | 2.17 | 2013 | 2014 | |
Ji X [44], 2009 | 2009 | 2.17 | 2013 | 2014 | |
Dunn B [30], 2011 | 2011 | 2.62 | 2013 | 2015 | |
Beaudin M [26], 2010 | 2010 | 3.63 | 2014 | 2015 | |
Carmo M [46], 2013 | 2013 | 2.67 | 2015 | 2016 | |
Gahleitner G [47], 2013 | 2013 | 2.54 | 2015 | 2017 | |
Schiebahn S [27], 2015 | 2015 | 2.60 | 2017 | 2018 | |
Cheng X [23], 2017 | 2017 | 3.40 | 2018 | 2019 | |
Buttler A [24], 2018 | 2018 | 2.68 | 2019 | 2021 |
Energy Storage Name | Advantages | Applicable Scenarios | Maturity |
---|---|---|---|
Pumped Hydroelectric Storage [81] | mature technology, large scale | For large reservoirs | Mature |
Compressed air energy storage [82] | large capacity, long-time storage | involved in grid frequency regulation | Used |
Flywheel energy storage [65] | high power density, long life | power quality control of the distribution network | Developed |
Superconducting energy storage [83] | high conversion rate, fast response | solve power quality problems with sensible heat storage | Developing |
Phase change thermal storage [84] | large phase change dazzle, high energy density, small system size | Mature | |
Li-ion battery [85] | milliseconds response time, high cycle efficiencies | Commercializing | |
Lead-acid battery [60] | low cycling times | Mature | |
Sodium–sulfur battery [86] | high pulse power capability | Initially commercialized, suitable for new energy vehicles, power grid field | Commercializing |
Liquid flow battery [87] | Developing | ||
Thermochemical heat storage [88] | high heat storage density can realize long-term storage | Developed |
Energy Storage Type | Typical Power Rating | Rated Energy | Features | |
---|---|---|---|---|
Physical Energy Storage | PHS [81] | 100–2000 MW | 4–10 h | For large scale, mature technology, slow response, and need for geographic resources |
CAES [82] | 10–300 MW | 1–20 h | For large scale, slow response, need geographic resources | |
Flywheel [65] | 5 kW–10 MW | 1 s–30 min | Higher power ratio, high cost, high noise | |
Electromagnetic Energy Storage | Superconducting Energy Storage [83] | 10 kW–50 MW | 2 s–5 min | Response is fast, high specific power, high cost, difficult maintenance |
High Energy Capacitor | 1–10 MW | 1–10 s | Response fast, high specific power, low specific energy | |
Supercapacitor | 10 kW–1 MW | 1–30 s | Response fast, high specific power, high cost, low energy storage | |
Electrochemical Energy Storage | Lead-acid battery [60] | 10 kW–50 MW | min–h | Mature technology, low cost, short life, environmental problems |
Liquid flow battery [87] | 5 kW–100 MW | 1–20 h | Long life, deep discharge, suitable for combination, high efficiency, good environmental protection, but slightly lower energy storage density | |
Sodium–sulfur battery [86] | 100 kW–100 MW | h | Higher specific energy and specific power, high-temperature conditions, and operational safety issues to be improved | |
Li-ion battery [85] | kW–MW | min–h | Hour-high specific energy, group life, and safety issues need to be improved |
Power Generation Side | Grid Side | Customer Side | |
---|---|---|---|
Program tracking [98] | √ | ||
Smoothing control [99,100] | √ | ||
Peaking [101] | √ | √ | |
Primary frequency modulation [102] | √ | √ | |
Automatic generation control (AGC) [103] | √ | √ | |
Automatic Voltage Control (AVC) [103,104] | √ | √ | |
Reactive support [105] | √ | √ | |
Rotating/non-rotating standby [106] | √ | ||
Transmission and distribution congestion relief [107,108] | √ | ||
Black start [109] | √ | √ | |
Peak shaving and valley filling [110] | √ | √ | |
Demand management [37,111] | √ | ||
Demand-side response [112] | √ | ||
Backup power [113] | √ | ||
Electrical energy leveling [114] | √ | √ | √ |
Delayed transformer expansion [115] | √ | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, P.; Abid, M.; Adun, H.; Kemena Awoh, D.; Cai, D.; Zaini, J.H.; Bamisile, O. Progress in Energy Storage Technologies and Methods for Renewable Energy Systems Application. Appl. Sci. 2023, 13, 5626. https://doi.org/10.3390/app13095626
Wei P, Abid M, Adun H, Kemena Awoh D, Cai D, Zaini JH, Bamisile O. Progress in Energy Storage Technologies and Methods for Renewable Energy Systems Application. Applied Sciences. 2023; 13(9):5626. https://doi.org/10.3390/app13095626
Chicago/Turabian StyleWei, Pengyu, Muhammad Abid, Humphrey Adun, Desire Kemena Awoh, Dongsheng Cai, Juliana Hj Zaini, and Olusola Bamisile. 2023. "Progress in Energy Storage Technologies and Methods for Renewable Energy Systems Application" Applied Sciences 13, no. 9: 5626. https://doi.org/10.3390/app13095626
APA StyleWei, P., Abid, M., Adun, H., Kemena Awoh, D., Cai, D., Zaini, J. H., & Bamisile, O. (2023). Progress in Energy Storage Technologies and Methods for Renewable Energy Systems Application. Applied Sciences, 13(9), 5626. https://doi.org/10.3390/app13095626