The Role of Cryptogams in Soil Property Regulation and Vascular Plant Regeneration: A Review
Abstract
:1. Introduction
2. Effects of Cryptogam on Soil Properties
2.1. Effects of Cryptogam on Content and Vertical Distribution of Soil Water
2.2. Effects of Cryptogam on Soil Fertility and Nutrients Availability
2.2.1. Effects of Cryptogam on Soil Organic Matter and Carbon Turnover
2.2.2. Effects of Cryptogam on Soil Nitrogen Content and Availability
2.2.3. Effects of Cryptogam on the Content and Availability of Phosphorus, Potassium and Micronutrients in Soil
3. Effects of Cryptogam on Vascular Plants Regeneration
3.1. Physical Barrier
3.2. Allelopathy
3.3. Cryptogam Indirectly Affects Vascular Plant Regeneration by Regulating Soil Conditions
3.4. Other Effects
4. Challenges and Opportunities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wills, A.J.; Cranfield, R.J.; Ward, B.G.; Tunsell, V.L. Cryptogam recolonization after wildfire: Leaders and laggards in assemblages? Fire Ecol. 2018, 14, 65–84. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Lang, S.I.; Soudzilovskaia, N.A.; During, H.J. Comparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistry. Ann. Bot. 2007, 99, 987–1001. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.S.; Bu, C.F.; Mu, X.M.; Shao, H.B.; Zhang, K.K. Interactive effects of moss-dominated crusts and Artemisia ordosica on wind erosion and soil moisture in Mu Us Sandland, China. Sci. World J. 2014, 9, 649816. [Google Scholar] [CrossRef]
- Xiao, B.; Hu, K.L. Moss-dominated biocrusts decrease soil moisture and result in the degradation of artificially planted shrubs under semiarid climate. Geoderma 2017, 291, 47–54. [Google Scholar] [CrossRef]
- Xiao, B.; Sun, F.H.; Hu, K.L.; Kidron, G.J. Biocrusts reduce surface soil infiltrability and impede soil water infiltration under tension and ponding conditions in dryland ecosystem. J. Hydrol. 2019, 568, 792–802. [Google Scholar] [CrossRef]
- Xu, H.K.; Zhang, Y.J.; Kang, B.Y.; Qin, F.W.; Liu, X.L.; Zhou, H.K.; Shao, X.Q. Different types of biocrusts affect plant communities by changing the microenvironment and surface soil nutrients in the Qinghai-Tibetan Plateau. Arid Land Res. Manag. 2020, 34, 306–318. [Google Scholar] [CrossRef]
- Li, S.L.; Xiao, B. Cyanobacteria and moss biocrusts increase evaporation by regulating surface soil moisture and temperature on the northern Loess Plateau, China. Catena 2022, 212, 106068. [Google Scholar] [CrossRef]
- Perez, F.L. Biogeomorphic relationships between slope processes and globular Grimmia mosses in Haleakala’s Crater (Maui, Hawai’i). Geomorphology 2010, 116, 218–235. [Google Scholar] [CrossRef]
- Thiet, R.K.; Doshas, A.; Smith, S.M. Effects of biocrusts and lichen-moss mats on plant productivity in a US sand dune ecosystem. Plant Soil 2014, 377, 235–244. [Google Scholar] [CrossRef]
- Kakeh, J.; Gorji, M.; Mohammadi, M.H.; Asadi, H.; Khormali, F.; Sohrabi, M.; Eldridge, D.J. Biocrust islands enhance infiltration, and reduce runoff and sediment yield on a heavily salinized dryland soil. Geoderma 2021, 404, 115329. [Google Scholar] [CrossRef]
- Xiao, B.; Zhao, Y.G.; Wang, Q.H.; Li, C. Development of artificial moss-dominated biological soil crusts and their effects on runoff and soil water content in a semi-arid environment. J. Arid Environ. 2015, 117, 75–83. [Google Scholar] [CrossRef]
- Xiao, B.; Hu, K.L.; Ren, T.S.; Li, B.G. Moss-dominated biological soil crusts significantly influence soil moisture and temperature regimes in semiarid ecosystems. Geoderma 2016, 263, 35–46. [Google Scholar] [CrossRef]
- Sun, F.H.; Xiao, B.; Kidron, G.J. Towards the influences of three types of biocrusts on soil water in drylands: Insights from horizontal infiltration and soil water retention. Geoderma 2022, 428, 116136. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Z.; Yang, Y.; Yuan, S. Effects of moss dominated crusts on soil physicochemical properties under three types of vegetation in Mu Us Sandland. Res. Soil Water Conserv. 2014, 21, 340–344. [Google Scholar]
- Xiao, B.; Veste, M. Moss-dominated biocrusts increase soil microbial abundance and community diversity and improve soil fertility in semi-arid climates on the Loess Plateau of China. Appl. Soil Ecol. 2017, 117, 165–177. [Google Scholar] [CrossRef]
- Hu, R.; Wang, X.P.; Pan, Y.X.; Zhang, Y.F.; Zhang, H. The response mechanisms of soil N mineralization under biological soil crusts to temperature and moisture in temperate desert regions. Eur. J. Soil Biol. 2014, 62, 66–73. [Google Scholar] [CrossRef]
- Ferrenberg, S.; Faist, A.M.; Howell, A.; Reed, S.C. Biocrusts enhance soil fertility and Bromus tectorum growth, and interact with warming to influence germination. Plant Soil 2018, 429, 77–90. [Google Scholar] [CrossRef]
- Zhang, B.C.; Zhou, X.B.; Zhang, Y.M. Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert, Xinjiang. J. Arid Land 2015, 7, 101–109. [Google Scholar] [CrossRef]
- Wang, Y.L.; Li, X.R.; Zhao, J.C.; Liu, L.C.; Yang, H.Y.; Zhou, Y.Y. Population dynamics of Echinops gmelinii Turcz. at different successional stages of biological soil crusts in a temperate desert in China. Plant Biol. 2019, 21, 1140–1149. [Google Scholar] [CrossRef]
- Cheng, C.; Gao, M.; Zhang, Y.D.; Long, M.Z.; Wu, Y.J.; Li, X.N. Effects of disturbance to moss biocrusts on soil nutrients, enzyme activities, and microbial communities in degraded karst landscapes in southwest China. Soil Biol. Biochem. 2021, 152, 108065. [Google Scholar] [CrossRef]
- Cheng, C.; Li, Y.J.; Long, M.Z.; Gao, M.; Zhang, Y.D.; Lin, J.Y.; Li, X.N. Moss biocrusts buffer the negative effects of karst rocky desertification on soil properties and soil microbial richness. Plant Soil 2022, 475, 153–168. [Google Scholar] [CrossRef]
- Cheng, C.; Li, Y.; Zhang, Y.; Gao, M.; Li, X. Effects of moss crusts on soil nutrients and ecological stoichiometry characteristics in karst rocky desertification region. Acta Ecol. Sin. 2020, 40, 9234–9244. [Google Scholar]
- Li, B.; Wu, Z.; Tao, Y.; Zhou, X.; Zhang, B. Effects of biological soil crust type on herbaceous diversity in the Gurbantunggut Desert. Arid Zone Res. 2021, 38, 438–449. [Google Scholar]
- Sun, S.Q.; Liu, T.; Wu, Y.H.; Wang, G.X.; Zhu, B.; DeLuca, T.H.; Wang, Y.Q.; Luo, J. Ground bryophytes regulate net soil carbon efflux: Evidence from two subalpine ecosystems on the east edge of the Tibet Plateau. Plant Soil 2017, 417, 363–375. [Google Scholar] [CrossRef]
- Hu, R.; Wang, X.P.; Pan, Y.X.; Zhang, Y.F.; Zhang, H.; Chen, N. Seasonal variation of net N mineralization under different biological soil crusts in Tengger Desert, North China. Catena 2015, 127, 9–16. [Google Scholar] [CrossRef]
- Song, G.; Li, X.R.; Hui, R. Biological soil crusts increase stability and invasion resistance of desert revegetation communities in northern China. Ecosphere 2020, 11, e03043. [Google Scholar] [CrossRef]
- Yan, D.; Zhang, S.; Huang, H.; Yan, T. Effect of decomposition of desert moss crust plant on soil improvement. Res. Soil Water Conserv. 2020, 27, 225. [Google Scholar]
- Sedia, E.G.; Ehrenfeld, J.G. Differential effects of lichens, mosses and grasses on respiration and nitrogen mineralization in soils of the New Jersey Pinelands. Oecologia 2005, 144, 137–147. [Google Scholar] [CrossRef]
- Koranda, M.; Michelsen, A. Mosses reduce soil nitrogen availability in a subarctic birch forest via effects on soil thermal regime and sequestration of deposited nitrogen. J. Ecol. 2021, 109, 1424–1438. [Google Scholar] [CrossRef]
- Jackson, T.A. Weathering, secondary mineral genesis, and soil formation caused by lichens and mosses growing on granitic gneiss in a boreal forest environment. Geoderma 2015, 251, 78–91. [Google Scholar] [CrossRef]
- Yu, J.; Guan, P.T.; Zhang, X.K.; Ma, N.N.; Steinberger, Y. Biocrusts beneath replanted shrubs account for the enrichment of macro and micronutrients in semi-arid sandy land. J. Arid Environ. 2016, 128, 1–7. [Google Scholar] [CrossRef]
- Li, X.R.; Jia, X.H.; Long, L.Q.; Zerbe, S. Effects of biological soil crusts on seed bank, germination and establishment of two annual plant species in the Tengger Desert (N China). Plant Soil 2005, 277, 375–385. [Google Scholar] [CrossRef]
- Michel, P.; Burritt, D.J.; Lee, W.G. Bryophytes display allelopathic interactions with tree species in native forest ecosystems. Oikos 2011, 120, 1272–1280. [Google Scholar] [CrossRef]
- Wang, Q.T.; Zhao, C.Y.; Gao, C.C.; Xie, H.H.; Qiao, Y.; Gao, Y.F.; Yuan, L.M.; Wang, W.B.; Ge, L.J.; Zhang, G.D. Effects of environmental variables on seedling-sapling distribution of Qinghai spruce (Picea crassifolia) along altitudinal gradients. For. Ecol. Manag. 2017, 384, 54–64. [Google Scholar] [CrossRef]
- Jeschke, M.; Kiehl, K. Effects of a dense moss layer on germination and establishment of vascular plants in newly created calcareous grasslands. Flora 2008, 203, 557–566. [Google Scholar] [CrossRef]
- Sedia, E.G.; Ehrenfeld, J.G. Lichens and mosses promote alternate stable plant communities in the New Jersey Pinelands. Oikos 2003, 100, 447–458. [Google Scholar] [CrossRef]
- Tiebel, K.; Karge, A.; Wagner, S. Does shading and ground cover of moss and litter improve germination and establishment of Betula pendula Roth, Salix caprea L. and Populus tremula L. seedlings during drought stress in climate change?—A greenhouse study. For. Ecol. Manag. 2023, 544, 121212. [Google Scholar] [CrossRef]
- Mallik, A.; Kayes, I. Lichen matted seedbeds inhibit while moss dominated seedbeds facilitate black spruce (Picea mariana) seedling regeneration in post-fire boreal forest. For. Ecol. Manag. 2018, 427, 260–274. [Google Scholar] [CrossRef]
- Freestone, A.L. Facilitation drives local abundance and regional distribution of a rare plant in a harsh environment. Ecology 2006, 87, 2728–2735. [Google Scholar] [CrossRef]
- Li, B.; Gao, J.R.; Wang, X.R.; Ma, L.; Cui, Q.A.; Vest, M. Effects of biological soil crusts on water infiltration and evaporation Yanchi Ningxia, Maowusu Desert, China. Int. J. Sediment Res. 2016, 31, 311–323. [Google Scholar] [CrossRef]
- Yang, Y.S.; Bu, C.F.; Mu, X.M.; Zhang, K.K. Effects of differing coverage of moss-dominated soil crusts on hydrological processes and implications for disturbance in the Mu Us Sandland, China. Hydrol. Process. 2015, 29, 3112–3123. [Google Scholar] [CrossRef]
- Florentin, A.; Agam, N. Estimating non-rainfall-water-inputs-derived latent heat flux with turbulence-based methods. Agric. For. Meteorol. 2017, 247, 533–540. [Google Scholar] [CrossRef]
- Li, S.L.; Bowker, M.A.; Xiao, B. Biocrusts enhance non-rainfall water deposition and alter its distribution in dryland soils. J. Hydrol. 2021, 595, 126050. [Google Scholar] [CrossRef]
- Li, S.L.; Bowker, M.A.; Xiao, B. Biocrust impacts on dryland soil water balance: A path toward the whole picture. Glob. Chang. Biol. 2022, 28, 6462–6481. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.M.; Downing, A.; Cheng, J.H.; Zhou, X.B.; Zhang, B.C. The influence of biological soil crusts on dew deposition in Gurbantunggut Desert, Northwestern China. J. Hydrol. 2009, 379, 220–228. [Google Scholar] [CrossRef]
- Kidron, G.J.; Tal, S.Y. The effect of biocrusts on evaporation from sand dunes in the Negev Desert. Geoderma 2012, 179, 104–112. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Wang, X.P.; Pan, Y.X.; Hu, R. Comparison of diurnal dynamics in evaporation rate between bare soil and moss-crusted soil within a revegetated desert ecosystem of northwestern China. J. Earth Syst. Sci. 2016, 125, 95–102. [Google Scholar] [CrossRef]
- Voortman, B.R.; Bartholomeus, R.P.; van Bodegom, P.M.; Gooren, H.; van der Zee, S.; Witte, J.P.M. Unsaturated hydraulic properties of xerophilous mosses: Towards implementation of moss covered soils in hydrological models. Hydrol. Process. 2014, 28, 6251–6264. [Google Scholar] [CrossRef]
- Sun, F.H.; Xiao, B.; Kidron, G.J.; Tuller, M. Towards the effects of moss-dominated biocrusts on surface soil aeration in drylands: Air permeability analysis and modeling. Catena 2023, 223, 106942. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Wang, H.; Wang, J. Biocrusts and subshrub development and soil water through a slope-gully system in a vegetation-restored site on the Loess Plateau of China. Catena 2022, 216, 106344. [Google Scholar] [CrossRef]
- Lu, J.N.; Feng, S.; Wang, S.K.; Zhang, B.L.; Ning, Z.Y.; Wang, R.X.; Chen, X.P.; Yu, L.L.; Zhao, H.S.; Lan, D.M.; et al. Patterns and driving mechanism of soil organic carbon, nitrogen, and phosphorus stoichiometry across northern China’s desert-grassland transition zone. Catena 2023, 220, 106695. [Google Scholar] [CrossRef]
- Concostrina-Zubiri, L.; Berdugo, M.; Valencia, E.; Mendoza, B.J.; Maestre, F.T. Decomposition of dryland biocrust-forming lichens and mosses contributes to soil nutrient cycling. Plant Soil 2022, 481, 23–34. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Z.R.; Huang, H.Y.; Song, J.J.C.; Wu, B.H.; Wang, M.L.; Xu, H. Assessment about bioindicator capacity of acrocarpous moss Campylopus schmidii exposed to abandoned pyritic tailings. J. Environ. Manag. 2022, 317, 115471. [Google Scholar] [CrossRef] [PubMed]
- Bragazza, L.; Robroek, B.J.M.; Jassey, V.E.J.; Arif, M.S.; Marchesini, R.; Guglielmin, M.; Cannone, N. Soil microbial community structure and enzymatic activity along a plant cover gradient in Victoria Land (continental Antarctica). Geoderma 2019, 353, 144–151. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Y. Effects of soil crusts on physicochemical properties of shallow soil in alpine sandy area. J. Arid Land Resour. Environ. 2022, 36, 154–160. [Google Scholar]
- Kasimir, A.; He, H.; Jansson, P.E.; Lohila, A.; Minkkinen, K. Mosses are important for soil carbon sequestration in forested peatlands. Front. Environ. Sci. 2021, 9, 383. [Google Scholar] [CrossRef]
- De Long, J.R.; Dorrepaal, E.; Kardol, P.; Nilsson, M.C.; Teuber, L.M.; Wardle, D.A. Understory plant functional groups and litter species identity are stronger drivers of litter decomposition than warming along a boreal forest post-fire successional gradient. Soil Biol. Biochem. 2016, 98, 159–170. [Google Scholar] [CrossRef]
- Silva, F.C.; Vieira, D.C.S.; van der Spek, E.; Keizer, J.J. Effect of moss crusts on mitigation of post-fire soil erosion. Ecol. Eng. 2019, 128, 9–17. [Google Scholar] [CrossRef]
- Slate, M.L.; Sullivan, B.W.; Callaway, R.M. Desiccation and rehydration of mosses greatly increases resource fluxes that alter soil carbon and nitrogen cycling. J. Ecol. 2019, 107, 1767–1778. [Google Scholar] [CrossRef]
- Janssens, I.A.; Dieleman, W.; Luyssaert, S.; Subke, J.A.; Reichstein, M.; Ceulemans, R.; Ciais, P.; Dolman, A.J.; Grace, J.; Matteucci, G.; et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 2010, 3, 315–322. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Gao, M.; Yu, C.Y.; Zhang, H.B.; Yan, N.; Wu, Q.M.; Song, Y.H.; Li, X.A. Soil nutrients, enzyme activities, and microbial communities differ among biocrust types and soil layers in a degraded karst ecosystem. Catena 2022, 212, 106057. [Google Scholar] [CrossRef]
- Cheng, C.; Chen, Y.; Yu, C.Y.; Wu, J.J.; Zhu, S.X.; Long, M.Z.; Li, X.N. Moss biocrusts buffer soil CO2 effluxes in a subtropical karst ecosystem. Catena 2023, 232, 107388. [Google Scholar] [CrossRef]
- Rousk, K.; Jones, D.L.; DeLuca, T.H. Moss-nitrogen input to boreal forest soils: Tracking N-15 in a field experiment. Soil Biol. Biochem. 2014, 72, 100–104. [Google Scholar] [CrossRef]
- Bay, G.; Nahar, N.; Oubre, M.; Whitehouse, M.J.; Wardle, D.A.; Zackrisson, O.; Nilsson, M.C.; Rasmussen, U. Boreal feather mosses secrete chemical signals to gain nitrogen. New Phytol. 2013, 200, 54–60. [Google Scholar] [CrossRef]
- Jackson, B.G.; Nilsson, M.-C.; Wardle, D.A. The effects of the moss layer on the decomposition of intercepted vascular plant litter across a post-fire boreal forest chronosequence. Plant Soil 2013, 367, 199–214. [Google Scholar] [CrossRef]
- Ball, B.A.; Guevara, J.A. The nutrient plasticity of moss-dominated crust in the urbanized Sonoran Desert. Plant Soil 2015, 389, 225–235. [Google Scholar] [CrossRef]
- Hui, R.; Tan, H.J.; Li, X.R.; Zhao, R.M.; Yang, H.T. A comparative study of soil nutrient availability and enzyme activity under biological soil crusts in different erosion regions of the Loess Plateau, China. Plant Soil 2023, 484, 425–440. [Google Scholar] [CrossRef]
- Videla, M.E.C.; Aranibar, J.N.; Greco, S. Biological soil crusts from the Monte desert affect soil moisture and nutrients, and improve Leptochloa crinita grass development. Acta Oecologica-Int. J. Ecol. 2021, 110, 103712. [Google Scholar] [CrossRef]
- Siwach, A.; Kaushal, S.; Sarma, K.; Baishya, R. Interplay of moss cover and seasonal variation regulate soil physicochemical properties and net nitrogen mineralization rates in Central Himalayas, India. J. Environ. Manag. 2023, 345, 118839. [Google Scholar] [CrossRef]
- Siwach, A.; Kaushal, S.; Baishya, R. Effect of Mosses on physical and chemical properties of soil in temperate forests of Garhwal Himalayas. J. Trop. Ecol. 2021, 37, 126–135. [Google Scholar] [CrossRef]
- Bao, T.L.; Zhao, Y.G.; Gao, L.Q.; Yang, Q.Y.; Yang, K. Moss-dominated biocrusts improve the structural diversity of underlying soil microbial communities by increasing soil stability and fertility in the Loess Plateau region of China. Eur. J. Soil Biol. 2019, 95, 103120. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Zhu, Q.K.; Li, P.; Zhao, L.L.; Wang, L.L.; Zheng, X.L.; Ma, H. Effects of artificially cultivated biological soil crusts on soil nutrients and biological activities in the Loess Plateau. J. Arid Land 2014, 6, 742–752. [Google Scholar] [CrossRef]
- Augusto, L.; Achat, D.L.; Jonard, M.; Vidal, D.; Ringeval, B. Soil parent material—A major driver of plant nutrient limitations in terrestrial ecosystems. Glob. Chang. Biol. 2017, 23, 3808–3824. [Google Scholar] [CrossRef]
- Pan, S.Y.; Dong, C.D.; Su, J.F.; Wang, P.Y.; Chen, C.W.; Chang, J.S.; Kim, H.; Huang, C.P.; Hung, C.M. The role of biochar in regulating the carbon, phosphorus, and nitrogen cycles exemplified by soil systems. Sustainability 2021, 13, 5612. [Google Scholar] [CrossRef]
- Sardans, J.; Penuelas, J. Potassium: A neglected nutrient in global change. Glob. Ecol. Biogeogr. 2015, 24, 261–275. [Google Scholar] [CrossRef]
- Aranibar, J.N.N.; Repetur, M.J.J.; Garcia, V.R.R.; Dazat, R.E.J.; Videla, M.; Villagra, P. Functional responses of biological soil crusts to simulated small precipitation pulses in the Monte desert, Argentina. Geoderma 2022, 410, 115660. [Google Scholar] [CrossRef]
- Han, B.; Niu, D.; Shi, M.; Yuan, X.; Wu, S.; Shi, G.; Fu, H. Soil nutrients characteristics and differences of algae and moss crusts in natural grasslands of the Loess Plateau, China. Chin. J. Grassl. 2017, 39, 56–62. [Google Scholar]
- Shen, J.C.; Zhang, Z.H.; Liu, R.; Wang, Z.H. Ecological restoration of eroded karst utilizing pioneer moss and vascular plant species with selection based on vegetation diversity and underlying soil chemistry. Int. J. Phytoremediation 2018, 20, 1369–1379. [Google Scholar] [CrossRef]
- Bubier, J.L.; Moore, T.R.; Bledzki, L.A. Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Glob. Chang. Biol. 2007, 13, 1168–1186. [Google Scholar] [CrossRef]
- Niu, S.L.; Wu, M.Y.; Han, Y.; Xia, J.Y.; Zhang, Z.; Yang, H.J.; Wan, S.Q. Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Glob. Chang. Biol. 2010, 16, 144–155. [Google Scholar] [CrossRef]
- Metcalfe, D.B.; Eisele, B.; Hasselquist, N.J. Effects of nitrogen fertilization on the forest floor carbon balance over the growing season in a boreal pine forest. Biogeosciences 2013, 10, 8223–8231. [Google Scholar] [CrossRef]
- Yuan, Z.W.; Jiang, S.Y.; Sheng, H.; Liu, X.; Hua, H.; Liu, X.W.; Zhang, Y. Human Perturbation of the Global Phosphorus Cycle: Changes and Consequences. Environ. Sci. Technol. 2018, 52, 2438–2450. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Ma, G.H.; Zhang, Q.M.; Guo, Q.F.; Wang, J.; Wang, Z.F. Moss is a key nurse plant for reintroduction of the endangered herb, Primulina tabacum Hance. Plant Ecol. 2010, 209, 313–320. [Google Scholar] [CrossRef]
- Laberge, V.; Hugron, S.; Rochefort, L.; Poulin, M. Influence of different bryophyte carpets on vascular plant establishment around pools in restored peatlands. Land Degrad. Dev. 2015, 26, 813–818. [Google Scholar] [CrossRef]
- Su, Y.G.; Li, X.R.; Zheng, J.G.; Huang, G. The effect of biological soil crusts of different successional stages and conditions on the germination of seeds of three desert plants. J. Arid Environ. 2009, 73, 931–936. [Google Scholar] [CrossRef]
- Godinez-Alvarez, H.; Morin, C.; Rivera-Aguilar, V. Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert. Plant Biol. 2012, 14, 157–162. [Google Scholar] [CrossRef]
- Peter, G.; Leder, C.V.; Funk, F.A. Effects of biological soil crust and water availability on seedlings of three perennial Patagonian species. J. Arid Environ. 2016, 125, 122–126. [Google Scholar] [CrossRef]
- Bianchi, E.; Bugmann, H.; Bigler, C. Early emergence increases survival of tree seedlings in Central European temperate forests despite severe late frost. Ecol. Evol. 2019, 9, 8238–8252. [Google Scholar] [CrossRef]
- Funk, F.A.; Loydi, A.; Peter, G. Effects of biological soil crusts and drought on emergence and survival of a Patagonian perennial grass in the Monte of Argentina. J. Arid Land 2014, 6, 735–741. [Google Scholar] [CrossRef]
- Morgan, J.W.; Ebsary, J. Shrinking opportunities for establishment of native annual forbs in fragmented grassy woodlands. Appl. Veg. Sci. 2020, 23, 575–585. [Google Scholar] [CrossRef]
- Drake, P.; Grimshaw-Surette, H.; Heim, A.; Lundholm, J. Mosses inhibit germination of vascular plants on an extensive green roof. Ecol. Eng. 2018, 117, 111–114. [Google Scholar] [CrossRef]
- Deines, L.; Rosentreter, R.; Eldridge, D.J.; Serpe, M.D. Germination and seedling establishment of two annual grasses on lichen-dominated biological soil crusts. Plant Soil 2007, 295, 23–35. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Corbin, J.D. Biological soil crusts inhibit seed germination in a temperate pine barren ecosystem. PLoS ONE 2019, 14, e0212466. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, N.; Abedi, M.; Sohrabi, M.; Rosbakh, S. Contrasting seed germination response to moss and lichen crusts in Stipa caucasica, a key species of the Irano-Turanian steppe. Folia Geobot. 2021, 56, 205–213. [Google Scholar] [CrossRef]
- Pace, M.; Fenton, N.J.; Pare, D.; Stefani, F.O.P.; Massicotte, H.B.; Tackaberry, L.E.; Bergeron, Y. Lichens contribute to open woodland stability in the boreal forest through detrimental effects on pine growth and root ectomycorrhizal development. Ecosystems 2019, 22, 189–201. [Google Scholar] [CrossRef]
- Serpe, M.D.; Orm, J.M.; Barkes, T.; Rosentreter, R. Germination and seed water status of four grasses on moss-dominated biological soil crusts from arid lands. Plant Ecol. 2006, 185, 163–178. [Google Scholar] [CrossRef]
- Song, G.; Li, X.R.; Hui, R. Biological soil crusts determine the germination and growth of two exotic plants. Ecol. Evol. 2017, 7, 9441–9450. [Google Scholar] [CrossRef]
- Gao, Y.H.; Jia, R.L.; Liu, Y.P.; Zhao, Y.; Wu, Y.S.; Yang, H.T.; Liu, L.C.; Duan, Y.L.; Zhao, L.A.; You, W.X. Biocrust and sand burial together promote annual herb community assembly in an arid sandy desert area. Plant Soil 2023, 491, 645–663. [Google Scholar] [CrossRef]
- Morgan, J.W. Bryophyte mats inhibit germination of non-native species in burnt temperate native grassland remnants. Biol. Invasions 2006, 8, 159–168. [Google Scholar] [CrossRef]
- Hernandez, R.R.; Sandquist, D.R. Disturbance of biological soil crust increases emergence of exotic vascular plants in California sage scrub. Plant Ecol. 2011, 212, 1709–1721. [Google Scholar] [CrossRef]
- Slate, M.L.; Callaway, R.M.; Pearson, D.E. Life in interstitial space: Biocrusts inhibit exotic but not native plant establishment in semi-arid grasslands. J. Ecol. 2019, 107, 1317–1327. [Google Scholar] [CrossRef]
- Briggs, A.L.; Morgan, J.W. Seed characteristics and soil surface patch type interact to affect germination of semi-arid woodland species. Plant Ecol. 2011, 212, 91–103. [Google Scholar] [CrossRef]
- Huber, J.K.; Kollmann, J. Recruitment filtering by a moss layer disadvantages large-seeded grassland species. Basic Appl. Ecol. 2020, 42, 27–34. [Google Scholar] [CrossRef]
- Guo, L.J.; Xue, P.P.; Li, M.; Shao, X.H. Seed bank and regeneration dynamics of Emmenopterys henryi population on the western side of Wuyi Mountain, South China. J. For. Res. 2017, 28, 943–952. [Google Scholar] [CrossRef]
- Wang, Q.T.; Zhao, C.Y.; Gao, Y.F.; Gao, C.C.; Qiao, Y.; Xie, H.H.; Wang, W.B.; Yuan, L.M.; Liu, J.J.; Ma, W.Y.; et al. Effects of Abietinella abietina extracts on the germination and seedling emergence of Picea crassifolia: Results of greenhouse experiments. Pol. J. Ecol. 2016, 64, 357–368. [Google Scholar] [CrossRef]
- Basile, A.; Sorbo, S.; López-Sáez, J.A.; Castaldo Cobianchi, R. Effects of seven pure flavonoids from mosses on germination and growth of Tortula muralis HEDW. (Bryophyta) and Raphanus sativus L. (Magnoliophyta). Phytochemistry 2003, 62, 1145–1151. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Seki, T. Allelopathy of the moss Rhynchostegium pallidifolium and 3-hydroxy-beta-ionone. Plant Signal. Behav. 2010, 5, 702–704. [Google Scholar] [CrossRef]
- Pace, M.; Pare, D.; Fenton, N.J.; Bergeron, Y. Effects of lichen, Sphagnum spp. and feather moss leachates on jack pine and black spruce seedling growth. Plant Soil 2020, 452, 441–455. [Google Scholar] [CrossRef]
- Soriano, G.; Del-Castillo-Alonso, M.A.; Monforte, L.; Nunez-Olivera, E.; Martinez-Abaigar, J. Phenolic compounds from different bryophyte species and cell compartments respond specifically to ultraviolet radiation, but not particularly quickly. Plant Physiol. Biochem. 2019, 134, 137–144. [Google Scholar] [CrossRef]
- El-Mergawi, R.A. Suitability of High Doses of Phenolic Acids for Controlling Corchorus Olitorius and Phalaris Minor Weeds. Gesunde Pflanz. 2019, 71, 261–269. [Google Scholar] [CrossRef]
- Lin, K.; Ye, F.; Li, Q.; Guo, Y.; Xu, B.; Zhao, J. Change regularity of phenols content in soil of forest ecosystem of Cunninghamia lanceolata. J. Plant Resour. Environ. 2012, 21, 30–35. [Google Scholar]
- Li, X.; Yu, M.H.; Ding, G.D.; He, Y.Y.; Liu, W.; Wang, C.Y. Soil biocrusts reduce seed germination and contribute to the decline in Artemisia ordosica Krasch. shrub populations in the Mu Us Sandy Land of North China. Glob. Ecol. Conserv. 2021, 26, e01467. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, Y. Influences of petrophytia moss on vegetation development in evergreen broad-leaved forest. J. Appl. Ecol. 2003, 14, 882–886. [Google Scholar]
- Su, Y.; Li, X.; Zhang, J.; Yang, L. Effects of biological soil crusts on seed bank. J. Desert Res. 2006, 26, 997–1001. [Google Scholar]
- Su, Y.G.; Li, X.R.; Cheng, Y.W.; Tan, H.J.; Jia, R.L. Effects of biological soil crusts on emergence of desert vascular plants in North China. Plant Ecol. 2007, 191, 11–19. [Google Scholar] [CrossRef]
- Pace, M.; Fenton, N.J.; Pare, D.; Bergeron, Y. Differential effects of feather and Sphagnum spp. mosses on black spruce germination and growth. For. Ecol. Manag. 2018, 415, 10–18. [Google Scholar] [CrossRef]
- Stuiver, B.M.; Wardle, D.A.; Gundale, M.J.; Nilsson, M.C. The impact of moss species and biomass on the growth of Pinus sylvestris tree seedlings at different precipitation frequencies. Forests 2014, 5, 1931–1951. [Google Scholar] [CrossRef]
- Lett, S.; Teuber, L.M.; Krab, E.J.; Michelsen, A.; Olofsson, J.; Nilsson, M.C.; Wardle, D.A.; Dorrepaal, E. Mosses modify effects of warmer and wetter conditions on tree seedlings at the alpine treeline. Glob. Chang. Biol. 2020, 26, 5754–5766. [Google Scholar] [CrossRef]
Geomorphic Feature | Cryptogam Species | Effects of Cryptogam on Soil Water Content | Annual Precipitation (mm) | References |
---|---|---|---|---|
Desert | Natural moss-dominated crusts | Decreasing | 95 | [46] |
Desert | Natural moss-dominated crusts | Increasing | 191 a | [47] |
Plain | Lichens: Psora decipiens, Diploschistes diacapsis, Collema tenax, Fulgensia bracteata, Squamarina cartilaginea, Toninia sedifolia and Caloplaca tominii. Moss: Tortula revolvens, Aloina bifrons, Aloina aloidas and Barbula trifaria | Increasing | 273 b | [10] |
Alpine steppe | Lichen–moss crusts and moss crusts | Decreasing | 403.8 | [6] |
Wind–Water Erosion Crisscross Region | Cyanobacteria and moss biocrusts | Decreasing | 409 | [7] |
Semiarid watershed on the Loess Plateau | Moss-dominated crust | Decreasing | 409 | [4,11] |
The Loess Plateau | Biocrust with about 90% moss cover | Decreasing | 409 | [44] |
Sandland | Natural moss-dominated crusts | Decreasing | 440.8 | [3,41] |
The Loess Plateau | Moss-dorminate crust | Decreasing | 505 | [50] |
Haleakala’s crater | Grimmia trichophylla and Grimmia torquata | Increasing | More than 600 | [8] |
Sand dune | Green algae crust, lichen–moss mat and moss mat | Increasing or having no effect | 1100 | [9] |
Geomorphic Feature | Cryptogam Species | Cryptogams Covered Soil Fertility Percent Change Compared with Bare Soil (%) | Reference | ||||
---|---|---|---|---|---|---|---|
SOM | TOC | TN | TP | TK | |||
Sandland | Moss-dominated crust | +335.9–+118.3 | — | +300–+200 | +59.1–+17.4 | −17.6–−1.2 | [14] |
The Loess Plateau | Moss crust | +1011–+398 | — | +189 | ns | — | [15] |
Desert | Moss crust | +789.2 | — | +233.3 | +73.7 | +830.8 | [19] |
Karst | Moss crust | +47.1 | +63.9 | +19.0 | — | [20] | |
Desert | Moss crust | +183.5 | — | +47.4 | — | — | [25] |
Greenhouse in desert | Moss crust | +748.4 | — | — | — | — | [26] |
Burned forest and sand mine | Natural moss layer | +375–+281 | — | — | — | — | [28] |
Abandoned pyritic mine tailings | Campylopus schmidii | +46.4 | — | — | — | — | [53] |
Sandland | Moss crust | — | +460 | +364 | +40 | — | [55] |
Karst | Moss crust | — | ns | +102.8 | +83 | — | [61] |
The Loess Plateau | Moss crust | — | +160.8 | +49.7 | +12.3 | — | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, M.; Duan, W.; Chen, L. The Role of Cryptogams in Soil Property Regulation and Vascular Plant Regeneration: A Review. Appl. Sci. 2024, 14, 2. https://doi.org/10.3390/app14010002
Qu M, Duan W, Chen L. The Role of Cryptogams in Soil Property Regulation and Vascular Plant Regeneration: A Review. Applied Sciences. 2024; 14(1):2. https://doi.org/10.3390/app14010002
Chicago/Turabian StyleQu, Meixue, Wenbiao Duan, and Lixin Chen. 2024. "The Role of Cryptogams in Soil Property Regulation and Vascular Plant Regeneration: A Review" Applied Sciences 14, no. 1: 2. https://doi.org/10.3390/app14010002
APA StyleQu, M., Duan, W., & Chen, L. (2024). The Role of Cryptogams in Soil Property Regulation and Vascular Plant Regeneration: A Review. Applied Sciences, 14(1), 2. https://doi.org/10.3390/app14010002