Next Article in Journal
Seismic Vulnerability of Segmental Bridges with Drop-In Span by Pushover Analysis
Previous Article in Journal
An Improved YOLOv5 Algorithm for Drowning Detection in the Indoor Swimming Pool
Previous Article in Special Issue
Optimisation of Buffer Allocations in Manufacturing Systems: A Study on Intra and Outbound Logistics Systems Using Finite Queueing Networks
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Designing Sustainable Flexible Manufacturing Cells with Multi-Objective Optimization Models †

1
Department of Industrial Engineering, Faculty of Engineering and Natural Sciences, İskenderun Technical University, İskenderun, 31200 Hatay, Türkiye
2
Department of Industrial Engineering, Faculty of Engineering, Cukurova University, Sarıçam, 01250 Adana, Türkiye
*
Author to whom correspondence should be addressed.
This study is grounded in, under the supervision of Associate Professor Dr. Ebru YILMAZ, Emine BOZOKLAR’s presently ongoing PhD thesis in the Department of Industrial Engineering, Institute of Natural and Applied Sciences, Cukurova University, Sarıçam, 01250 Adana, Türkiye.
Appl. Sci. 2024, 14(1), 203; https://doi.org/10.3390/app14010203
Submission received: 15 June 2023 / Revised: 10 December 2023 / Accepted: 12 December 2023 / Published: 25 December 2023
(This article belongs to the Special Issue Design and Optimization of Manufacturing Systems)

Abstract

:
Having sustainable and flexible features is crucial for manufacturing companies considering the increasing competition in the globalized world. This study considers three aspects of sustainability, namely economic, social, and environmental factors, in the design of flexible manufacturing cells. Three different multi-objective integer mathematical programming models were developed with the objective of minimizing the costs associated with carbon emissions, inter-cellular movements, machine processing, machine replacement, worker training, and additional salary (bonus). Simultaneously, these models aim to minimize the carbon emission amount of the cells within the environmental dimension scope. The developed models are a goal programming model, an epsilon constraint method, and an augmented epsilon constraint (AUGMECON) method. In these models, alternative routes of parts are considered while assigning parts to machines. The results are obtained using the LINGO 20.0 optimization program with a developed illustrative example. The obtained results are tested and compared by performing sensitivity analyses. The sensitivity analyses include examinations of the effects of changes in part demands, machine capacity values, carbon limit value, and the maximum number of workers in cells.

1. Introduction

Sustainability refers to discussing economic, environmental, and social dimensions simultaneously. While the environmental dimension assesses various factors such as gas emissions, solid/liquid waste management, and energy consumption, the social dimension considers some aspects such as working conditions and work safety. The economic dimension considers providing economic benefits like increasing net present value [1]. Sustainable manufacturing examines products and techniques that have both an economic impact and the ability to minimize the adverse effects of environmental factors, while also protecting energy and natural resources and being reliable for workers [2]. The environmental aspect of sustainability relates to the well-being of people and relies on the responsible use of renewable and non-renewable resources and the Earth’s capacity to breathe waste. The environmental aspect of sustainability points out that natural resources are not abundant and are continually consumed. Environmental indicators provide an early warning system to prohibit damage to the natural environment [3]. While manufacturing companies aim to transform natural resources, financial capital, and information into products that fulfill social needs, the human factor plays a crucial role in every aspect of the manufacturing process. Social sustainability indicators are essential in assessing and measuring the social impacts of manufacturing decisions [4]. Galal and Moneim [5] examine social factors within manufacturing systems, addressing elements such as education budget, overtime rate, security, and labor expenditure. In the context of manufacturing system sustainability, Rajak and Vinodh [6] investigate social sustainability indicators, encompassing aspects like job opportunities, health and safety applications, research and development, healthcare and education, and social cohesion. According to Vimal et al. [7], employee education and training emerge as significant strategies for advanced manufacturing systems. Lin et al. [8] categorize social factors in manufacturing systems into diverse criteria, including work accidents, physical workload, working conditions, employee productivity, knowledge and skills, and employee satisfaction. Mengistu and Panizzolo [9] gather a range of criteria, including employment opportunities, employee satisfaction, occupational health and safety, education, and development, and working conditions to define social factors within manufacturing systems. According to Ahmad et al. [3], the economic dimensions of sustainability encompass various indicators that are traditionally associated with financial accounting and intangible assets. The economic dimension of sustainability is indeed interconnected with the environmental and social pillars. Economic pillars are also associated with costs and profits [3].
Sustainable manufacturing systems development efforts contemplate solving problems at all levels (product, process, and system) [10]. The dynamic cellular manufacturing system is one of the manufacturing systems that has a high degree of flexibility and agility to handle product changes [11]. Flexible manufacturing systems are computer-controlled systems that can simultaneously process various parts, including automated material handling equipment and numerically controlled machine tools [12]. The systems divided into subsystems to produce certain parts are called cellular manufacturing systems [13]. The cell formation problem addressing the design of cellular manufacturing systems aims to group parts into part families and related machines into machine cells. This problem aims to ensure grouping efficiency by minimizing inter-cellular and intra-cellular movement costs. The classification of cellular manufacturing systems is based on the geometry of each part and the similarity in the working process. This classification aims to reduce inventory, improve flow time, optimize space utilization, and enhance system efficiency [11].
The organization of this study is as follows: In the second section, a comprehensive review of the related literature is presented, focusing on the environmental, social, and economic dimensions of sustainable factors in cellular manufacturing systems and cell formation. The primary purpose of this study is to design flexible manufacturing cells considering sustainable factors. To achieve this, three different mathematical programming models are presented in the following sections and discussed in Section 3 in detail. The goal programming model, the ε-constraint model, and the augmented ε-constraint (AUGMECON) model were developed. Section 4, Results and Discussion, includes the solution of the sample problem and the sensitivity analyses. In Section 5, the conclusions and future studies are presented.

2. Literature Review

A selection of studies related to the formation of cellular manufacturing systems with some sustainability criteria is given below. Ghodsi et al. [14] consider three aspects of sustainability simultaneously in their cellular manufacturing model. In terms of the economic aspects of sustainability, the lowest cost, the reduction in pollutant emissions as an environmental sustainability criteria, and the reduction in the negative impact on job satisfaction in terms of social factors are taken into consideration. Aljuneidi and Bulgak [15] develop a mixed integer linear programming model that combines reconfigurable cellular manufacturing systems and hybrid manufacturing–remanufacturing systems. They suggest an integrated strategy encompassing aspects of design optimization, analysis, and process planning, aiming to consider several design issues concerning sustainable manufacturing systems. Within the model aiming to minimize the total cost, cost items related to manufacturing and remanufacturing, as well as costs associated with returned products for remanufacturing, were also considered. Mehdizadeh et al. [16] summarize the cell formation problem and production planning and present a multi-objective model. The required time in terms of the time unit for the training of a worker to operate the machines, and some cost terms, such as training, hiring, firing, and salary costs, are considered in the model. Niakan et al. [11] present a two-objective mathematical model for the dynamic cell formation problem considering economic, environmental, and social criteria. In their study, the authors focused on minimizing total cost including cost terms such as inter-cell movement, intra-cell movement, hiring, firing, salary, and training costs, as well as reducing total manufacturing waste, which includes factors such as raw materials, chemicals, energy consumption, and CO2 emissions. In addition, the maximum daily noise exposure level for worker assignments is added as a constraint to the model as a social criterion. Niakan et al. [17] address minimizing machine-related costs (machine fixed and variable costs, machine procurement and relocation costs, and intra-cell and inter-cell movement costs) and wages, while also considering social issues such as minimizing potential machine hazards and maximizing job opportunities. They state that they tried to establish a balance between economic and social criteria while designing the cells in each period. Imran et al. [18] consider the rated power of machines and the rated power of the material handling devices (AGVs) in the cell formation problem of cellular manufacturing systems. Additionally, the cost per kilowatt hour of electricity is also incorporated into the model. Arghish et al. [19] propose a mathematical model that considers economic and environmental criteria for the type 2 fuzzy cell formation problem. Iqbal and Al-Ghamdi [20] work on saving energy in a machine shop environment by optimizing the assignment of production processes to varied machines and grouping machines in multiple cells to minimize the movement distance. Kumar and Singh [21] propose a bi-objective stochastic mathematical model for sustainable cellular facility layout, along with suggesting an embedded metaheuristic to solve the model. The electricity consumption of AGVs between machines was incorporated into the model. The authors state that the environmental and economic aspects of sustainability in the process of designing a layout is considered in their model. Raoofpanah et al. [22] present a mixed-integer nonlinear programming model that considers environmental issues such as pollution and waste resulting from manufacturing and transportation in the context of cell formation. The cost of the pollution created by the types of vehicles used by the suppliers is considered in the model. Telegraphi and Bulgak [23] present a mixed integer linear programming model for designing optimization of a cellular manufacturing system within the context of a closed-loop supply chain to establish a sustainable manufacturing enterprise. In their study, the minimization of the costs of remanufacturing returned products and related costs such as the disposal, disassembly, and holding of the returned products are also considered. Forghani et al. [24] address an integrated cell formation and group layout model as a mixed-integer program, considering energy consumption, assembly considerations, and process routing. The electric energy consumption generated during processing of parts on machines is incorporated into the model. Jafarzadeh et al. [25] consider the sustainable manufacturing system in the dynamic cellular manufacturing system using fuzzy parameters. They propose a multi-objective sustainable mathematical model that minimizes costs, CO2 emissions, and product shortages while considering customer satisfaction.
In the literature, various cost items have been considered in relation to cell formation problems. Table 1 provides a chronological presentation of some cost items and various studies that have addressed these costs in the context of cell formation problems.
In this study, the design of flexible manufacturing cells is discussed by considering various factors related to economic, social, and environmental dimensions of sustainability. The study aims to design manufacturing cells that quickly adapt to dynamic and competitive market conditions with flexible and sustainable features. A general evaluation of cell formation studies regarding sustainable dimensions is given in Table 2. As seen in Table 2, this study examines the flexible cell formation problem by considering various factors related to sustainability dimensions including economic, environmental, and social dimensions.
In Table 3, a selection of various studies in the relevant literature in terms of some factors are listed. This study considers all factors listed in Table 3 and various sustainability factors in the design process of flexible cells.
This study focuses on the design of flexible manufacturing cells considering the economic, environmental, and social dimensions of sustainability. This study aims to ensure optimum results for the following three developed models: the goal programming method, the epsilon constraint (ε-constraint) method, and the AUGMECON method.

3. Material and Methods

3.1. Problem Formulation

In this article, three different multi-objective mathematical programming models, named the goal programming method, the ε-constraint method, and the AUGMECON method, were developed to address the identified problem. The goal programming model is obtained by minimizing the sum of the deviations from the target values. As mentioned in the study of Felfel et al. [40], in the ε-constraint method, one of the objectives is accepted as the objective function. Thus, while the selected objective function is optimized, other objective functions are considered as constraints and limited by the epsilon value [40]. In the AUGMECON method, unlike the classical ε-constraint method, the slack or surplus variables are included in the model, and the constraints of the objective function are converted into equations [41]. Thus, some constraints that are typical for each multi-objective method were added to the mathematical programming models.
In this study, the developed multi-objective mathematical programming models aim to minimize cost items, including carbon emission, inter-cellular movements, machine processing, machine replacement, worker training, and bonus costs, which are calculated for workers based on their skills. Moreover, this study aims to reduce the amount of carbon emissions by considering the environmental dimension. The optimal route of each part is determined based on alternative routes. In addition, decisions are made to determine the number of machines assigned to cells, added to cells, and removed from cells for each period, the assignment of workers to cells, the number of workers in the cell and system, and the total training time that workers receive. Various assumptions of the developed model are stated below:
  • In the system, the routing flexibility for each part is taken into account. Only one alternative route of each part can be chosen.
  • The system has machine flexibility. Multiple part types can be processed on different machines.
  • The capacities of the cells are limited, and there are upper and lower limits for the number of machines to be taken into account.
  • The part demands are fixed and known values. The processing time of a part on its route is known.
  • The amount of power that machines consume during production is considered. Indirect and energy-related carbon emissions arising from the operation of the machines are considered. Machine idle times are ignored.
  • The movements of parts between cells are considered.
  • The carbon emission conversion factor is a constant coefficient.
  • The time required for the addition of machines to cells and the removal of machines from the cells is ignored.
  • The system has worker flexibility, and different workers may have different skills.
  • In addition, worker skills are assumed constant in each period.

3.2. Developed Goal Programming Model

The developed goal programming model consists of several components, including sets, parameters, decision variables, objective function, and constraint equations. These elements are defined as follows:
Indices:
WSet of part types (w W).
RSet of alternative routes (r R).
QSet of cells (q Q).
SSet of machine types (s S).
ISet of worker types (I I).
LSet of skills (l L).
ESet of periods (e E).
Parameters:
D e w The demand of part w in period e.
K e s The time capacity of machine s in period e.
t w r q s The machining time of part w on machine s in cell q using alternative route r.
p w w r q s The amount of power consumed while machining part w on machine s in cell q using alternative route r.
H A e w The cost of moving part w between cells in a period e.
C E e s The machine s carbon emission cost per period e.
O e s The machine s processing/operation cost per period e.
N A C e s The cost of adding machine s to cells per period e.
N R C e s The cost of removing machine s from cells per period e.
E M e q i The training cost of worker i in cell q in period e.
E S i l The time that worker i spends on an operation of skill l.
H Y e q l The limit value of skill l in cell q in period e.
T E S e q l The limit time that workers with skill l in cell q in period e can spend.
I K e q The maximum number of workers of cell q in period e.
H A L e q The lower bound for the number of machines in cell q in period e.
H U L e q The upper limit for the number of machines in cell q in period e.
F The carbon emission conversion factor.
L B e q The carbon emission limit value of cell q in period e.
B l The bonus wage to be received by l skilled worker.
E S T e i l The training time received by worker i in the skill l in period e.
z e w r q 1 , if   part   w   is   produced   at   least   one   time   in   cell   q   with   alternative   route   r   in   the   period   e 0 , o t h e r w i s e
I Y i l 1 , if   the   worker   i   has   skill   l 0 , o t h e r w i s e
G H w r q s 1 , if   part   w   has   alternative   route   r   with   machine   s   in   cell   q 0 , o t h e r w i s e
HD1, HD2, HD3, HD4, HD5, HD6, HD7, and HD8, respectively, represent the target values for the objective items.
Decision Variables
x e w r 1 , if   alternative   route   r   is   selected   for   part   w   in   period   e , 0 , o t h e r w i s e
V e q i 1 , if   worker   i   is   assigned   to   cell   q   in   period   e , 0 , o t h e r w i s e
N e q s The number of machine s assigned to cell q in period e.
N A e q s The number of machine s added to cell q in period e.
N R e q s The number of machine s removed from cell q in period e.
I S e q The number of workers in cell q in period e.
E I S e The total number of workers in the system in period e.
T A i The total training time that worker i will receive during all periods according to the worker’s abilities.
The parameters K e s , t w r q s , E S i l , T E S e q l , and E S T e i l have the same time unit in the model. Additionally, the parameters H A e w , C E e s , O e s , N A C e s , N R C e s , E M e q i , and B l have the same currency unit.
Objective Function
Min   =   d 1 + + d 2 + + d 3 + + d 4 + + d 5 + + d 6 + + d 7 + + d 8 +
The objective function of the goal programming model is given by Equation (1). Using Equation (1), the minimization of the sum of deviations from the handled targets is ensured. In the objective function (1), d 1 + , d 2 + , d 3 + , d 4 + , d 5 + , d 6 + , d 7 + , d 8 + ,respectively, are the decision variables that represent positive deviations from the targets. In Equations (2)–(9), d 1 , d 2 , d 3 , d 4 , d 5 , d 6 , d 7 , d 8 , respectively, are negative deviations from the targets.
Constraints
e = 1 E w = 1 W r = 1 R q = 1 Q s = 1 S t w r q s x e w r G H w r q s D e w p w w r q s F + d 1 d 1 + = H D 1
e = 1 E w = 1 W r = 1 R q = 1 Q s = 1 S t w r q s x e w r G H w r q s D e w p w w r q s C E e s F + d 2 d 2 + = H D 2
The first goal constraint, Equation (2), aims to not exceed the carbon emission target value, as shown by H D 1 . Conversion factors can vary according to factors such as fuel types and materials used. In this study, the carbon emissions released from the machines are calculated based on the energy consumption values of the machines. In Equation (3), the second goal constraint of the model, aims to not exceed the target value of the total carbon emission cost. This cost item varies depending on factors such as the power values of the machines, processing times, and part demands.
e = 1 E w = 1 W r = 1 R q = 1 Q s = 1 S t w r q s x e w r N e q s G H w r q s D e w O e s + d 3 d 3 + = H D 3
Equation (4) aims to not exceed the target value of the total operation cost. The total operation cost is calculated according to factors such as part demands, part processing times, and the number of machines in the cell.
e = 1 E w = 1 W r = 1 R q = 1 Q z e w r q 1 D e w H A e w x e w r + d 4 d 4 + = H D 4
e = 1 E q = 1 Q i = 1 I V e q i E M e q i + d 5 d 5 + = H D 5
Equation (5), the fourth goal constraint, aims to not pass over the target value of the total cost of movement between cells. The goal constraint indicated by Equation (6) aims to not pass over the target value of the total training cost of workers assigned to cells in each period.
e = 1 E q = 1 Q s = 1 S N A e q s N A C e s + d 6 d 6 + = H D 6
e = 1 E q = 1 Q s = 1 S N R e q s N R C e s + d 7 d 7 + = H D 7
Equations (7) and (8) are the goal constraints related to the total cost items generated during cell design. Equation (7) aims to not exceed the target value of total cost of the number of machines added to cells. Equation (8) aims to not exceed the target value of the total cost of the item associated with removing machines from cells.
e = 1 E q = 1 Q i = 1 I l = 1 L V e q i I Y i l B l + d 8 d 8 + = H D 8
Equation (9) aims to not exceed the target value of the total bonus wage that workers assigned to cells receive according to their abilities. In this study, the economic dimension of sustainability is also considered when designing the cells.
r = 1 R x e w r = 1 e , w
In this study, it is assumed that the model has routing flexibility and each part has alternative routes. Equation (10) shows that the parts can choose only one of their alternative routes in each period.
w = 1 W r = 1 R z e w r q x e w r 1 e , q
w = 1 W r = 1 R t w r q s x e w r G H w r q s D e w K e s N e q s e , q , s
Equation (11) shows that at least one part is processed in the selected route in each cell in each period. Equation (12) ensures that the machines cannot exceed their time capacity for each period and each cell.
w = 1 W r = 1 R s = 1 S t w r q s x e w r G H w r q s D e w p w w r q s F L B e q e , q  
Equation (13) shows that the total amount of carbon emissions for each cell in each period cannot exceed a limit value. With this constraint, the environmental dimension of sustainability for the cells is also regarded when designing the cells.
N e 1 , q s + N A e q s N R e q s = N e q s e , q , s , e > 1
s = 1 S N e q s H U L e q e , q
s = 1 S N e q s H A L e q e , q
In Equation (14), regarding cell design, the numbers of machine types in each cell in each period are calculated. The numbers of machine types in each cell are calculated considering that machines may be added to and removed from the cells in each period. Thus, the machine numbers and types change dynamically in each period. Equation (15) shows the upper limit value for the total number of machine types in each cell in each period. In Equation (16), the lower limit value of the total number of machine types for each cell is given.
i = 1 I I Y i l E S i l V e q i T E S e q l   e , q ,   l
Equation (17) shows that in each period, in each cell and according to each skill, the total time spent by workers cannot exceed a certain limit value. With this constraint, workers are assigned to cells according to their abilities.
i = 1 I V e q i = I S e q e , q
i = 1 I V e q i I K e q e , q
Equation (18) calculates the total number of workers assigned to each cell in each period. Equation (19) provides that the number of workers assigned to each cell in each period cannot exceed a particular limit value.
q = 1 Q I S e q = E I S e e
Equation (20) shows the total number of workers assigned to the cells in each period.
q = 1 Q V e q i 1 e , i
i = 1 I I Y i l V e q i H Y e q l e , q ,   l
e = 1 E q = 1 Q l = 1 L V e q i E S T e i l = T A i i
x e w r G H w r q s N e q s e , w , r , q , s
Equation (21) provides for the assignment of each worker to at least one cell in each period. Equation (22) shows that the total number of workers for each skill type in each cell for each period cannot exceed the limit value. The total training time received by each worker in all periods is calculated by Equation (23). With Equation (23), the social dimension of sustainability is also regarded when designing the cells. In Equation (24), if the part is produced on its alternative route in a period and the machine type and cell are available with the alternative route of the part, then there is at least one machine assignment to the cell in that period.
x e w r , V e q i 0,1 e , w , r ,   q , i
N e q s , N A e q s , N R e q s , E I S e , I S e q 0   a n d   i n t e g e r e , q , s
T A i 0 i
  d 1 + , d 2 + , d 3 + , d 4 + , d 5 + , d 6 + , d 7 + , d 8 + ,   d 1 , d 2 , d 3 , d 4 , d 5 , d 6 , d 7 , d 8 0
0–1 binary decision variables are shown in Equation (25). Decision variables that are positive integers are represented by Equation (26). Equations (27) and (28) indicate that the total training time and the goal deviation values must be positive, respectively.

Linearization of the Model

The goal constraint, indicated by Equation (4), is non-linear due to the multiplication of the two decision variables. For this reason, the constraint in this article is made linear by using the binary-in-integer linearization technique mentioned by Mahdavi et al. [42].
The following new constraint expressions and a decision variable are considered to linearize the model:
x n e w r q s = x e w r N e q s
x n e w r q s N e q s e , w , r , q , s
x n e w r q s x e w r M   e , w , r , q , s
x n e w r q s N e q s ( x e w r 1 ) M e , w , r , q , s
x n e w r q s 0   a n d   i n t e g e r e , w , r , q , s
e = 1 E w = 1 W r = 1 R q = 1 Q s = 1 S t w r q s x n e w r q s G H w r q s   D e w O e s + d 3 d 3 + = H D 3
M is a big enough number coefficient than the decision variables x e w r and N e q s . The model was made linear with the addition of new Equations (30)–(33), and thus Equation (34) is the edited version of Equation (4). That is, the new Equations (30)–(33) are added to the goal programming model and Equation (34) is added to the model instead of Equation (4).

3.3. Developed ε-Constraint Model

In the ε-constraint method, one of the multi-objective functions is considered as the primary objective function and the other objectives are converted into constraints by applying a limitation with an upper bound. Then, the εj level is changed to generate all Pareto solutions [40].
The ε-constraint problem formulation stated in Felfel et al. [40] is taken into account. The below equations are considered for the ɛ-constraint model in this study. The minimization of total cost items was assigned a relatively higher priority and is considered as a single objective function item in Equation (35).
M i n S N C 2 = e = 1 E w = 1 W r = 1 R q = 1 Q s = 1 S t w r q s x e w r G H w r q s D e w p w w r q s C E e s F + e = 1 E w = 1 W r = 1 R q = 1 Q s = 1 S t w r q s x n e w r q s G H w r q s D e w O e s + e = 1 E w = 1 W r = 1 R q = 1 Q z e w r q 1 D e w H A e w x e w r + e = 1 E q = 1 Q i = 1 I V e q i E M e q i + e = 1 E q = 1 Q s = 1 S N A e q s N A C e s + e = 1 E q = 1 Q s = 1 S N R e q s N R C e s + e = 1 E q = 1 Q i = 1 I l = 1 L V e q i I Y i l B l
The minimization of the total amount of carbon emissions is represented with SNC1 and is shown in Equation (36). It was changed to an ɛ-constraint and thus, Equation (37) is subject to this constraint:
e = 1 E w = 1 W r = 1 R q = 1 Q s = 1 S t w r q s x e w r G H w r q s D e w p w w r q s F = S N C 1
  e = 1 E w = 1 W r = 1 R q = 1 Q s = 1 S t w r q s x e w r G H w r q s D e w p w w r q s F ε 1
Equations (10)–(27), Equations (30)–(33), and Equations (35)–(37) are included in the ε-constraint model in this study.

3.4. Developed Augmented ε-Constraint Model (AUGMECON)

The AUGMECON method is a novel version of the classical ε-constraint method. This method suggests transforming the objective function constraints into equations by including the slack or surplus variables of the classical method [41].
The AUGMECON method improves the classical epsilon constraint method by employing lexicographic optimization to structure the payoff table in alignment with the desired priorities, subsequently optimizing the objective functions in accordance with these priorities. The lexicographic optimization initially focuses on optimizing the first objective function f1, resulting in the optimal value z1*. To maintain this optimality for the first objective function, a constraint is introduced, setting f₁ = z1*, in a model dedicated to optimizing the second objective function. This process is iterated until each individual objective function has been separately optimized. To address another weakness of the epsilon constraint method, the objective function constraints are converted into equalities by introducing slack or surplus variables. The value of δ is a small number [43]. r i is the range of the i-th objective function, which is determined based on the data in the payoff table [41].
The AUGMECON model formulation stated in Yadollahi et al. [43] was considered. In this study, the below equations are presented. As in the ε-constraint method, minimization of the total cost is considered as relatively important and modeled as a single objective function as shown in Equation (35). The expression SNC2 represents the total cost and is shown in Equation (35). The minimization of the total amount of carbon emissions is represented with SNC1. The expression indicated by SLV1 is a slack or surplus variable in the model.
M i n ( S N C 2 δ S L V 1 / r 1 )
s . t :   S N C 1 + S L V 1 = ε 1
S L V 1 R +
In this study, the value of δ is assumed to be 0.0001 as shown in Equation (38). In addition, Equations (10)–(27) and Equations (30)–(33) are included in the AUGMECON model. Additionally, Equations (36) and (38)–(40) are included in the AUGMECON model in this study.
The following Section 4 consists of the results and discussion, where the solution of the sample problem, obtained results, and corresponding sensitivity analyses are presented.

4. Results and Discussion

In this study, a sample problem was created to test the developed mathematical programming model and analyze its sensitivity. The processing time and power consumption of the machines in the cells according to the alternative routes are presented in Table A1 in Appendix A. Table A2 in Appendix A indicates part demands and part movement costs between cells of the sample problem in each planning period.
Figure 1 shows a schematic presentation of the flexible manufacturing cells created using Table A1. In this figure, for example, the flow in the system according to the alternate route 1 of part 1 can be seen.
Table 4 shows the time capacities of all machines in each period of the sample problem.
Table 5 presents the process/operation costs of all machines and carbon emission costs in each period of the sample problem. Table 6 indicates the costs associated with adding machines to the cells and removing machines from the cells in each period.
In Table 7, the minimum and maximum number of machines, the maximum number of workers, and the carbon emission upper limit values of each cell for each period are indicated. In Table 8, the skill types of the workers and the time data pertaining to the amount of time workers spend according to these skill types are shown.
The limit times that workers can spend in each cell in each period according to their skill types and training costs are shown in Table 9. Training times received by workers according to their skills are shown in Table 10.
The carbon emission conversion factor denoted by F is assumed as 0.426 kg/kWh. The bonus wages to be received by the workers according to each skill type are assumed as 900, 700, and 800 currency units, respectively. HD1, HD2, HD3, HD4, HD5, HD6, HD7, and HD8 are assumed as 600,000, 610,000, 535,000, 450,000, 8000, 5000, 5000, and 7000, respectively. Additionally, the M value is assumed to be 1000. The G H w r q s parameter is derived based on the t w r q s parameter found in Table A1 in Appendix A. It takes a value of 1 if there is an available machine process time for the alternative route r with machine s in cell q for part w; otherwise, it assumes a value of 0. z e w r q is a parameter that is created according to periods and considers the machine processes in the cells according to the routes of the parts in Table A1 in Appendix A.
In this study, the LINGO 20.0 optimization program was employed to solve the multi-objective integer mathematical programming models, which addresses the design of sustainable and flexible manufacturing cells. The developed goal programming, ε-constraint, and AUGMECON mathematical programming models were solved separately using the LINGO 20.0 optimization program using a MacBook Air (M1, 2020) with 8 GB of RAM. The global optimal results were obtained in 12 min and 38 s, 18 min and 31 s, and 19 min and 51 s for the goal programming method, the ε-constraint method, and the AUGMECON method, respectively. In the results obtained in the goal programming model, the positive and negative deviation values from the related targets are obtained as d 1 + = 5,330,653, d 2 + = 52,162,290, d 3 + = 14,190,360, d 4 + = 3,317,127, d 5 + = 0, d 6 + = 0, d 7 + = 0, d 8 + = 25,000, d 1 = 0, d 2 = 0, d 3 = 0, d 4 = 0, d 5 = 6413, d 6 = 4506, d 7 = 4613, d 8 = 0. Additionally, the objective function value of the goal programming model is obtained as 75,025,430. In Table A3 seen in Appendix B, the results related to optimal routes obtained from these three methods are presented separately. The optimal machine assignments results for the goal programming, ε-constraint, and AUGMECON methods are shown in Table 11, Table 12 and Table 13, respectively.
The optimal worker assignments for multi-objective approaches are shown in Table 14. In Table 15, the number of workers in cell q in the period e is shown for each multi-objective approach. Moreover, for each multi-objective approach it was determined that EIS1 = 6, EIS2 = 6, EIS3 = 6, EIS4 = 6, EIS5 = 6, TA1 = 111, TA2 = 80, TA3 = 159, TA4 = 60, TA5 = 82, and TA6 = 93.
When calculating ε values, the minimum objective function values were obtained for each objective function; hence, the calculated pay-off table for the ε-constraint method is shown in Table 16. The epsilon values for the ε-constraint method are taken between these ε 1 = 5,958,372, …, 5,910,828 ranges. The calculated lexicographic optimization pay-off table for the AUGMECON method is shown in Table 17. In the AUGMECON model, the value of r 1 is 45,157. The epsilon values for the AUGMECON method are taken between these ε 1 = 5,966,694, …, 5,929,064 ranges.
The Pareto optimal front graph obtained by using epsilon values in the ε-constraint method is presented in Figure 2.
The following section presents the obtained results from the analyses.

Sensitivity Analyses

Sensitivity analyses were conducted to evaluate the impact of some parameters on the objective function value in the sample problem. The analyses were performed for the three developed multi-objective models: the goal programming, the ε-constraint, and the AUGMECON methods. Firstly, a sensitivity analysis is conducted using the goal programming method to examine the impact of changes in part demands. The results of the analysis are depicted in Figure 3, which illustrates the effect of a 10% decrease in demand for each period individually. For instance, in the first period, the demand value for part 1 is 150, and thus, for the purpose of this analysis, the demand for part 1 is considered as 135. Similarly, the analysis considers a 10% decrease in demand for each part in every period. The impact of percentage changes in part demand values on the cost items of the objective function was evaluated using the goal programming method, and the results are presented in Figure 4. When there is an increase in demand for parts, the costs related to carbon emission, operation, inter-cellular movement, and adding and removing machines are higher than in their current situations. It can be observed in Figure 4 that an increase in part demand does not cause any change in worker training cost and bonus wage items. Raoofpanah et al. [22] examine the effect of changes in demand on costs related to cell formation, inventory, and environmental issues. They state that cell formation costs are more sensitive to changes in demand compared with the other two costs.
Changes in the capacity values of the machines may affect the objective function values of the model. For example, Figure 5 illustrates the analysis of the impact of a 10% increase in capacity value of machine 1 in period 5 on both the carbon emission amount and total cost, which are objective functions, using the ε-constraint method and hence epsilon values. The 10% increase mentioned here is applied for only period 5. In the fifth period, the capacity of machine 1, whose capacity value is 35,400, is analyzed as 38,940 by considering a 10% increase in its capacity. Table 18 shows the status numbers corresponding to the epsilon values for the analysis of change in machine 1 capacity in period 5. The analysis shows that the change in the machine capacity first increases and then decreases the amount of carbon emissions.
Objective function values of the model may be affected by alterations in carbon limit values. For instance, Figure 6 shows the impact of a 10% increase in the carbon limit value for cell 6 in the fifth period on both the amount of carbon emission and the total cost. The analysis examines the influence of increasing the carbon limit value on emission amount and total cost using the ε-constraint method and hence epsilon values. In the fifth period of cell number 6, the carbon emission limit value of 357,800 is investigated as 393,580 due to a 10% increment. Table 19 indicates the status numbers regarding the epsilon values for the analysis of change in the carbon limit value for cell 6 in the period 5. As can be seen in the figure, with the increase in carbon emission limit value, the objective functions related to the cost and carbon emission amounts initially show an increase. Then, it is seen that the cost and carbon emission amounts decrease.
Figure 7 shows the effect on objective functions by changing the maximum number of workers that can be assigned to cells in each period. In the current situation, the maximum number of workers that can be assigned to each cell in each period is taken as four. For this analysis the maximum number of workers for six cells are assumed as 6, 5, 5, 5, 6, and 6 in the first period, 5, 6, 5, 5, 6, and 4 in the second period, 5, 5, 6, 5, 6, and 5 in the third period, 6, 6, 5, 6, 5, and 6 in the fourth period, and 5, 5, 4, 6, 6, and 6 in the fifth period, respectively. The status numbers corresponding to the epsilon values for the analysis of change in the maximum number of workers that can be assigned to cells in each period are shown in Table 20. As seen in Figure 7, the analysis shows that the change in the maximum number of workers leads to a gradual decrease in the amount of carbon emissions.
Alterations in carbon limit values can affect the objective function values of the model. For example, Figure 8 illustrates a 10% increase in carbon limit value for cell 6 in period 5 using the AUGMECON method. Table 21 shows the status numbers regarding the epsilon values using the AUGMECON method for the analysis of change in carbon limit value for cell 6 in the fifth period. As seen in Figure 8, the analysis shows that the change in carbon limit value for cell 6 in period 5 causes a decrease in the amount of carbon emissions.
The objective functions of the model can be affected by changes in machine capacity values. For instance, Figure 9 displays the impact of a 10% increase in the capacity values of machine 3 in period 3. The status numbers regarding the epsilon values using the AUGMECON method for the analysis of change in machine 3 capacity in period 3 are indicated in Table 22. As seen in Figure 9, in the analysis, as the machine capacity changes, the carbon emission amount value, which is the objective function, first increases and then decreases.

5. Conclusions and Future Studies

In this study, three multi-objective mathematical programming models were presented that focus on the design of flexible manufacturing cells while incorporating sustainable factors. The study considers economic, environmental, and social dimensions, which are the three key dimensions of sustainability, by including various parameters. By considering these dimensions, this study aimed to develop the design of flexible manufacturing cells within a sustainable framework. In addition to minimizing the number of carbon emissions within the scope of the environmental dimension, this study aimed to minimize various cost items considering carbon emissions, inter-cellular movement, machine replacement, machine operation, worker training, and bonus wages for workers as the economic dimension. The total training time received by each worker in all periods is shown as a constraint in the model within the scope of the social dimension. Since the study involves multi-objectives, the identified problem is modeled using multi-objective optimization techniques. Firstly, the goal programming model related to the problem was developed. Then, the ε-constraint and AUGMECON models for the examined problem were presented. In all developed multi-objective models, various decision variables were considered to optimize the flexible manufacturing cells. They cover the decision variables such as determining the optimal routes between the alternative routes of parts, the number of machines to be added to or removed from cells, the number of workers assigned to cells, and the total training time of workers. In this study, all the developed multi-objective mathematical programming models were solved using the LINGO 20.0 optimization program on the developed sample problem. These global optimal solutions were reached in 12 min and 38 s, 18 min and 31 s, and 19 min and 51 s for the goal programming method, the ε-constraint method, and the AUGMECON method, respectively. When the results obtained from each of the developed multi-objective optimization models were examined, it was observed that the decision variables regarding determining optimal routes of parts, assigning optimal machines to cells, adding them to cells, and removing them from cells provide different results. While the ε-constraint and AUGMECON models provided the same results in the optimal worker assignments and the optimal number of workers in cells for each period, the goal programming model provided different results. The decision variables of the total number of workers in the system in each period and the total training times received by workers provided the same results for all developed models. The results were tested by performing sensitivity analyzes for each developed multi-objective optimization model.
In future studies, metaheuristic algorithms can be proposed to solve larger-scale problems in the context of sustainable manufacturing systems. Additionally, the consideration of parameters such as machining times and demands such as fuzzy variables can enhance modeling capabilities and address uncertainties in real-world scenarios. Furthermore, the development of a decision support system specifically designed for modeling sustainable manufacturing systems holds the potential to yield valuable insights for making informed decisions.

Author Contributions

Conceptualization, E.B. and E.Y.; methodology, E.B. and E.Y.; software, E.B.; validation, E.B.; visualization, E.B. and E.Y.; writing—original draft preparation, E.B. and E.Y.; and writing—review and editing, E.B. and E.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available in this article.

Acknowledgments

Thanks to LINDO Systems Inc. for ensuring a free educational license of LINGO 20.0 software package.

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A

Table A1. Alternative routes of parts, machine process time, and power consumption.
Table A1. Alternative routes of parts, machine process time, and power consumption.
PartRouteCell–Machine (Operating Time)/(Machine Power Amount)
11Q1-S1(9)/PW(14)  Q2-S4(4)/PW(15)  Q3-S7(6)/PW(13)  Q4-S11(3)/PW(14)-S12(7)/PW(17)  
Q5-S14(7)/PW(18)-S15(5)/PW(14)  Q6-S20(8)/PW(18)
2Q1-S2(6)/PW(13)-S3(5)/PW(15)  Q2-S5(7)/PW(17)  Q4-S11(7)/PW(19)-S12(8)/PW(17)-S13(4)/PW(15)  
Q5-S14(9)/PW(18)-S15(4)/PW(14)  Q6-S18(5)/PW(14)  Q6-S20(7)/PW(18)
3Q1-S1(6)/PW(16)-S2(9)/PW(19)-S3(4)/PW(14)  Q3-S8(2)/PW(22)  Q4-S12(9)/PW(19)-S13(6)/PW(26)  
Q5-S14(8)/PW(18)-S15(4)/PW(24)  Q6-S18(9)/PW(19)-S20(8)/PW(18)
4Q1-S1(11)/PW(19)-S2(6)/PW(18)-S3(5)PW(25)  Q2-S5(5)/PW(25)  
Q4-S11(8)/PW(19)-S12(5)/PW(24)-S13(5)/PW(15)  Q5-S14(5)/PW(23)  Q5-S15(4)/PW(24)  
Q6-S20(8)/PW(18)
5Q1-S1(8)/PW(16)-S2(5)/PW(19)-S3(4)/PW(24)  Q3-S8(8)/PW(16)  Q4-S12(9)/PW(19)-S13(6)/PW(16)  
Q5-S14(7)/PW(18)-S15(4)/PW(24)  Q6-S18(8)/PW(19)-S20(5)/PW(18)
21Q1-S3(8)/PW(18)  Q2-S6(5)/PW(15)  Q3-S7(4)/PW(14)  Q4-S9(8)PW(14)-S10(6)/PW(15)  
Q5-S13(7)/PW(18)-S14(9)/PW(19)  Q6-S19(4)/PW(24)
2Q1-S1(6)/PW(20)  Q2-S6(7)/PW(18)  Q4-S11(8)/PW(18)-S13(5)/PW(23)  Q5-S14(6)/PW(27)  
Q6-S18(8)/PW(18)-S19(3)/PW(22)
3Q1-S2(5)/PW(25)-S3(3)/PW(23)  Q2-S6(6)/PW(16)  Q3-S7(4)/PW(24)-S8(7)/PW(17)  
Q4-S8(8)/PW(8)  Q5-S16(4)/PW(14)  Q6-S20(7)/PW(17)
4Q1-S1(8)/PW(18)-S2(9)/PW(17)-S3(3)/PW(23)  Q2-S6(8)/PW(8)  Q4-S11(8)/PW(8)-S13(3)/PW(23)  
Q5-S14(7)/PW(17)  Q6-S18(8)/PW(18)-S19(3)/PW(22)
5Q1-S2(5)/PW(15)-S3(3)/PW(23)  Q3-S7(5)/PW(24)-S8(7)/PW(17) Q4-S8(7)/PW(18)  
Q5-S15(5)/PW(25)-S16(4)/PW(24)  Q6-S20(9)/PW(17)  
31Q1-S1(9)/PW(12)-S3(4)/PW(14)  Q2-S6(6)/PW(17)  Q4-S10(5)/PW(17)-S12(4)/PW(22)
Q5-S15(5)/PW(18)  Q6-S19(7)/PW(14)-S20(6)/PW(15)
2Q1-S1(2)/PW(23)  Q2-S4(5)/PW(15)-S5(7)/PW(18)  Q3-S8(6)/PW(26)  Q5-S16(4)/PW(24)  
Q6-S19(3)/PW(23)-S20(4)/PW(24)
3Q1-S1(7)/PW(17)-S2(5)/PW(21)-S3(3)/PW(13)  Q2-S5(5)/PW(15)  Q3-S7(6)/PW(16)  
Q4-S15(7)/PW(17)
4Q1-S1(5)/PW(23)-S2(7)/PW(17)  Q2-S4(1)/PW(19)-S5(6)/PW(18)  Q3-S8(5)/PW(16)-S9(6)/PW(16)  
Q6-S20(7)/PW(27)
5Q1-S1(8)/PW(11)-S2(1)/PW(17)  Q2-S5(8)/PW(18)  Q3-S8(2)/PW(14)-S9(6)/PW(16)  Q6-S20(7)/PW(17)
41Q1-S1(5)/PW(21)-S2(7)/PW(22)-S3(3)/PW(14)  Q2-S4(5)/PW(15)-S6(8)/PW(17)  
Q4-S10(7)/PW(17)-S12(4)/PW(12)  Q5-S15(6)/PW(18)  Q6-S19(4)/PW(14)-S20(5)/PW(15)
2Q1-S1(3)/PW(23)  Q2-S4(5)/PW(15)-S5(8)/PW(18)  Q3-S8(6)/PW(16)  Q5-S16(4)/PW(14)
Q6-S19(3)/PW(23)-S20(4)/PW(24)
3Q1-S1(6)/PW(17)-S2(9)/PW(22)-S3(3)/PW(23)  Q2-S5(5)/PW(15)  Q3-S7(6)/PW(16)  Q4-S15(7)/PW(17)
4Q1-S1(3)/PW(23)-S2(4)/PW(17)  Q2-S4(6)/PW(21)-S5(1)7PW(18)  Q3-S8(5)/PW(16)-S9(6)/PW(26)  
Q6-S20(7)/PW(17)
5Q1-S1(4)/PW(21)-S2(6)/PW(17)  Q2-S5(7)/PW(18)  Q3-S8(8)/PW(24)-S9(6)/PW(26)  Q6-S20(3)/PW(27)
51Q1-S1(2)/PW(14)-S2(5)/PW(15)-S3(4)/PW(19)  Q2-S6(8)/PW(18)-S7(10)/PW(19)
Q4-S10(5)/PW(15)-S12(2)/PW(12)  Q5-S15(6)/PW(16)-S16(5)/PW(15)  Q6-S20(5)/PW(15)
2Q1-S1(3)/PW(23)-S2(11)/PW(17)  Q2-S4(9)/PW(19)-S5(8)/PW(18)-S6(6)/PW(16)
Q3-S8(6)/PW(16)-S9(7)/PW(7)  Q5-S16(4)/PW(24)-S17(5)/PW(25)  
Q6-S18(5)/PW(15)-S19(3)/PW(23)-S20(4)/PW(14)
3Q1-S1(8)/PW(18)-S3(3)/PW(23)  Q2-S5(9)/PW(19)  Q3-S7(7)/PW(17)  Q4-S15(9)/PW(19)-S16(8)/PW(18)
4Q1-S1(6)/PW(16)-S2(8)/PW(18)-S3(5)/PW(25)  Q2-S4(4)/PW(24)-S5(7)/PW(17)-S6(6)/PW(26)  
Q3-S8(6)/PW(16)-S9(5)/PW(25)  Q6-S19(4)/PW(24)-S20(7)/PW(17)
5Q1-S1(5)/PW(15)-S2(6)/PW(16)  Q2-S5(8)/PW(18)  Q3-S8(8)/PW(18)-S9(6)/PW(16)  
Q6-S19(6)/PW(19)
61Q1-S1(9)/PW(17)-S2(6)/PW(15)-S3(8)/PW(18)  Q2-S6(7)/PW(17)-S7(6)/PW(26)  
Q4-S10(7)/PW(17)-S12(2)/PW(22)  Q5-S15(8)/PW(28)  Q6-S19(4)/PW(24)-S20(5)/PW(15)
2Q1-S1(3)/PW(23)  Q2-S4(9)/PW(15)-S5(8)/PW(8)  Q3-S8(6)/PW(16)  Q5-S16(4)/PW(14)  
Q6-S19(3)/PW(23)-S20(4)/PW(24)
3Q1-S1(8)/PW(17)-S2(2)/PW(22)-S3(1)/PW(23)  Q2-S5(5)/PW(15)  Q3-S7(6)/PW(16)  
Q4-S15(7)/PW(17)
4Q1-S1(5)/PW(13)-S2(7)/PW(17)  Q2-S4(2)/PW(19)-S5(4)/PW(18)  Q3-S8(5)/PW(16)-S9(6)/PW(16)
Q6-S20(3)/PW(17)
5Q1-S1(6)/PW(18)-S2(3)/PW(17)  Q2-S5(8)/PW(8)  Q3-S8(2)/PW(4)-S9(6)/PW(6)  Q6-S20(6)/PW(7)
71Q1-S3(8)/PW(24)  Q2-S5(5)/PW(8)-S6(7)/PW(17)  Q4-S10(7)/PW(17)-S12(8)/PW(12)  
Q5-S15(8)/PW(8)  Q6-S19(4)/PW(4)-S20(5)/PW(5)
2Q1-S1(3)/PW(23)  Q2-S4(7)/PW(5)-S5(8)/PW(8)  Q3-S8(6)/PW(6)  Q5-S16(5)/PW(14)  
Q6-S19(3)/PW(13)-S20(4)/PW(4)
3Q1-S1(7)/PW(7)-S2(1)/PW(18)-S3(3)/PW(13)  Q2-S5(5)/PW(5)  Q3-S7(6)/PW(6)  Q4-S15(6)/PW(7)
4Q1-S1(4)/PW(3)-S2(7)/PW(7)  Q2-S4(3)/PW(11)-S5(8)/PW(8)  Q3-S8(9)/PW(6)-S9(6)/PW(6)  
Q6-S20(7)/PW(7)
5Q1-S1(5)/PW(12)-S2(6)/PW(17)  Q2-S5(8)/PW(18)  Q3-S8(4)/PW(14)-S9(5)/PW(16)  Q6-S20(6)/PW(7)
81Q1-S1(9)/PW(9)-S3(8)/PW(8)  Q2-S6(8)/PW(7)  Q4-S10(5)/PW(7)-S12(3)/PW(12)  Q5-S15(6)/PW(8)  
Q6-S19(5)/PW(14)-S20(5)/PW(15)
2Q1-S1(9)/PW(9)  Q2-S4(6)/PW(16)-S5(8)/PW(8)  Q3-S8(6)/PW(6)  Q5-S16(4)/PW(14)  
Q6-S19(3)/PW(13)-S20(4)/PW(14)
3Q1-S1(7)/PW(17)-S2(5)/PW(15)-S3(3)/PW(13)  Q2-S5(5)/PW(5)  Q3-S7(6)/PW(16)  Q4-S15(7)/PW(7)
4Q1-S1(7)PW(13)-S2(7)/PW(7)  Q2-S4(9)/PW(11)-S5(8)/PW(8)  Q3-S8(10)/PW(16)-S9(6)/PW(16)  
Q6-S20(7)/PW(7)
5Q1-S1(4)/PW(14)-S2(7)/PW(7)  Q2-S5(8)/PW(8)  Q3-S8(5)/PW(14)-S9(6)/PW(16)  Q6-S20(2)/PW(7)
91Q1-S3(8)/PW(8)  Q2-S5(8)/PW(18)-S6(3)/PW(17)-S7(12)/PW(19)  Q4-S11(7)/PW(9)-S12(2)/PW(12)  
Q5-S15(8)/PW(18)  Q6-S19(4)/PW(4)-S20(5)/PW(5)
2Q1-S1(5)/PW(8)-S2(9/PW(9)  Q2-S4(6)/PW(15)-S5(8)/PW(8)  Q3-S7(7)/PW(7)-S8(6)/PW(6)  
Q5-S16(4)/PW(14)-S17(6)/PW(6)  Q6-S20(4)/PW(4)
3Q1-S1(9)/PW(7)-S3(7)/PW(13)  Q2-S5(6)/PW(5)-S6(8)/PW(8)  Q3-S7(6)/PW(6)-S8(8)/PW(8)  
Q4-S15(7)/PW(17)-S16(9)/PW(9)
4Q1-S1(3)/PW(13)-S2(7)/PW(7)-S3(4)/PW(14)  Q2-S4(6)/PW(11)-S5(8)/PW(18)  
Q3-S8(6)/PW(16)-S9(6)/PW(6)  Q6-S20(2)/PW(7)
5Q1-S1(3)/PW(15)-S2(5)/PW(7)-S3(7)/PW(7)  Q2-S5(8)/PW(8)  Q3-S8(4)/PW(14)-S9(6)/PW(16)  
Q6-S19(3)/PW(18)-S20(6)/PW(17)
101Q2-S5(4)/PW(14)-S6(4)/PW(15)  Q4-S10(7)/PW(17)-S11(8)/PW(18)-S12(5)/PW(22)  
Q5-S15(8)/PW(8)-S17(9)/PW(9)  Q6-S19(1)/PW(14)-S20(5)/PW(15)
2Q1-S1(3)/PW(23)-S2(5)/PW(25)  Q2-S4(5)/PW(25)-S5(8)/PW(28)-S6(4)/PW(24)  Q3-S8(6)/PW(6)  
Q5-S16(4)/PW(14)-S17(5)/PW(15)  Q6-S19(3)/PW(13)-S20(4)/PW(14)
3Q1-S1(9)/PW(16)-S2(8)/PW(18)-S3(3)/PW(13)  Q2-S5(5)/PW(15)-S6(6)/PW(17)  
Q3-S7(6)/PW(16)-S8(8)/PW(18)  Q4-S15(7)/PW(17)
4Q1-S1(5)/PW(15)-S2(7)/PW(17)  Q2-S4(4)/PW(14)-S5(8)/PW(8)  Q3-S8(6)/PW(16)-S9(6)/PW(16)  
Q6-S18(8)/PW(18)-S20(7)/PW(17)
5Q1-S1(3)/PW(14)-S2(7)/PW(17)-S3(8)/PW(18)  Q2-S5(8)/PW(18)  Q3-S8(4)/PW(14)-S9(6)/PW(26)  
Q6-S19(4)/PW(17)
111Q1-S2(8)/PW(18)  Q2-S5(4)/PW(14)-S6(7)7PW(17)  Q4-S10(4)/PW(14)-S11(8)/PW(18)-S12(5)/PW(15)  
Q5-S15(8)/PW(8)-S16(7)/PW(7)  Q6-S18(6)/PW(16)-S19(6)/PW(18)-S20(9)/PW(9)
2Q1-S1(8)/PW(18)-S2(6)/PW(8)  Q2-S4(5)/PW(15)-S5(4)/PW(8)-S6(9)/PW(9)  Q3-S8(6)/PW(16)  
Q5-S16(4)/PW(14)  Q6-S19(3)/PW(11)-S20(4)/PW(14)
3Q1-S2(5)/PW(15)  Q2-S6(7)/PW(17)-S7(6)/PW(16)  Q4-S15(7)/PW(17)
4Q1-S1(10)/PW(19)-S2(7)/PW(17)-S3(9)/PW(9)  Q2-S4(3)/PW(8)-S5(8)/PW(8)  
Q3-S8(5)/PW(15)-S9(6)/PW(16)  Q6-S18(4)/PW(14)-S19(8)/PW(18)-S20(7)/PW(17)
5Q1-S1(9)/PW(16)-S2(7)/PW(17)  Q2-S4(7)/PW(17)-S5(8)/PW(8)
Q3-S7(5)/PW(15)-S8(4)/PW(24)-S9(6)/PW(16)  Q6-S19(4)/PW(18)-S20(6)/PW(16)
121Q1-S3(8)/PW(13)  Q2-S6(6)/PW(16)-S7(5)/PW(15)  Q4-S10(4)/PW(14)-S11(3)/PW(13)-S12(2)/PW(12)  
Q5-S15(8)/PW(18)  Q6-S20(5)/PW(15)
2Q1-S1(3)/PW(13)-S2(7)/PW(17)  Q2-S4(7)/PW(26)-S5(7)/PW(17)  Q3-S8(7)/PW(14)  
Q5-S16(5)/PW(15)-S17(4)/PW(14)  Q6-S19(7)/PW(17)-S20(8)/PW(18)
3Q1-S1(2)/PW(22)-S2(8)/PW(18)  Q2-S5(7)/PW(17)-S6(4)/PW(24)  Q3-S7(6)/PW(6)-S8(5)/PW(5)  
Q4-S15(7)/PW(19)-S16(8)/PW(18)
4Q1-S1(6)/PW(7)-S2(6)/PW(16)  Q2-S4(5)/PW(15)-S5(4)/PW(24)  Q3-S8(4)/PW(24)  Q6-S20(7)/PW(17)
5Q1-S2(1)/PW(8)  Q2-S5(11)/PW(18)  Q3-S8(2)/PW(24)-S9(6)/PW(16)  Q6-S19(8)/PW(18)
131Q1-S2(7)/PW(18)-S3(5)/PW(12)  Q2-S4(3)/PW(16)-S6(7)/PW(17)  
Q4-S10(6)/PW(17)-S11(3)/PW(18)-S12(2)/PW(22)  Q5-S15(8)/PW(18)-S16(9)/PW(9)  
Q6-S18(7)/PW(17)-S19(6)/PW(16)-S20(5)/PW(25)
2Q1-S1(5)/PW(15)-S2(7)/PW(26)  Q2-S4(5)/PW(15)-S5(4)/PW(18)-S6(7)/PW(17)
Q3-S8(6)/PW(6)-S9(7)/PW(7)  Q5-S16(4)/PW(24)-S17(5)/PW(15)  Q6-S19(6)/PW(16)
3Q1-S3(3)/PW(13)  Q2-S5(3)/PW(15)-S6(7)/PW(17)  Q3-S7(6)/PW(16)-S8(7)/PW(17)  
Q4-S15(7)/PW(17)-S16(6)/PW(16)
4Q1-S2(10)/PW(17)  Q2-S5(8)/PW(18)  Q3-S8(9)/PW(15)-S9(6)/PW(16)-S10(4)/PW(24)  Q6-S19(8)/PW(18)
5Q1-S1(6)/PW(24)-S2(7)/PW(17)  Q2-S5(1)/PW(21)  Q3-S8(4)/PW(24)-S9(6)/PW(16)  
Q6-S18(9)/PW(9)-S19(8)/PW(18)
141Q2-S6(9)/PW(17)  Q4-S10(5)/PW(21)-S12(2)/PW(22)  Q5-S15(8)/PW(18) Q6-S19(4)/PW(14)-S20(5)/PW(15)
2Q1-S1(3)/PW(23)  Q2-S4(5)/PW(15)-S5(8)/PW(18)  Q3-S8(6)/PW(16)  Q5-S16(4)/PW(24)  
Q6-S19(3)/PW(23)-S20(4)/PW(24)
3Q1-S1(8)/PW(17)-S2(1)/PW(22)-S3(3)/PW(13)  Q2-S5(5)/PW(15)  Q3-S7(6)/PW(16)  Q4-S15(7)/PW(17)
4Q1-S1(4)/PW(13)-S2(7)(PW(17)  Q2-S4(1)/PW(21)-S5(5)/PW(28)  Q3-S8(6)/PW(26)-S9(6)/PW(16)  
Q6-S20(7)/PW(17)
5Q1-S1(11)/PW(21)-S2(3)/PW(17)  Q2-S5(8)/PW(18)  Q3-S8(4)/PW(14)-S9(6)/PW(16)  Q6-S20(4)/PW(17)
151Q1-S1(11)/PW(18)  Q2-S6(7)/PW(17)-S7(5)/PW(15)  Q3-S15(8)/PW(8)  
Q4-S10(3)/PW(17)-S11(5)/PW(15)-S12(2)/PW(23)  Q5-S15(8)/PW(8)  
Q6-S18(9)/PW(19)-S19(4)/PW(24)-S20(5)/PW(15)
2Q1-S1(3)/PW(23)-S2(7)/PW(17)  Q3-S8(6)/PW(16)  Q5-S16(4)/PW(14)  Q6-S19(3)/PW(13)-S20(4)/PW(14)
3Q1-S1(10)/PW(19)-S3(3)/PW(23)  Q2-S5(5)/PW(25)  Q3-S7(6)/PW(16)  Q4-S15(7)/PW(17)
4Q1-S1(3)/PW(23)-S2(7)/PW(17)-S3(8)/PW(18)  Q2-S4(9)/PW(19)-S5(8)/PW(18)  
Q3-S8(6)/PW(16)-S9(3)/PW(16)-S10(7)/PW(17)  Q6-S19(6)/PW(16) S20(9)/PW(19)
5Q1-S2(7)/PW(17)  Q2-S5(8)/PW(8)  Q3-S9(6)/PW(16)  Q6-S19(3)/PW(18)-S20(7)/PW(17)
161Q4-S10(7)/PW(17)-S12(5)/PW(20)  Q5-S15(8)/PW(18)  
2Q2-S4(12)/PW(15)-S5(8)/PW(18)  Q3-S8(6)/PW(16)  Q5-S16(2)/PW(24)  
Q6-S19(3)/PW(23)-S20(4)/PW(24)
3Q1-S1(4)/PW(17)-S2(8)/PW(22)-S3(3)/PW(23)  Q2-S5(5)/PW(15)  Q3-S7(6)/PW(16)  Q4-S15(7)/PW(17)
4Q1-S1(3)/PW(13)-S2(7)/PW(17)  Q2-S4(6)/PW(18)-S5(3)/PW(18)  Q3-S8(7)/PW(16)-S9(6)/PW(16)  
Q6-S20(7)/PW(17)
5Q1-S1(7)/PW(17)-S2(3)/PW(19)-S3(5)/PW(15)  Q2-S5(8)/PW(18)  
Q3-S6(4)/PW(14)-S8(4)/PW(14)-S9(6)/PW(16)  Q6-S19(5)/PW(15)-S20(2)/PW(17)
171Q1-S2(6)/PW(17)-S3(5)/PW(15)  Q2-S6(7)/PW(17)  Q4-S10(1)/PW(17)-S12(2)/PW(22)  
Q5-S15(6)/PW(18)-S16(5)/PW(25)  Q6-S18(6)/PW(26)-S20(5)/PW(25)
2Q1-S1(3)/PW(23)-S2(8)/PW(18)  Q2-S4(5)/PW(15)  Q3-S7(4)/PW(14)-S8(6)/PW(16)  
Q5-S16(11)/PW(24)-S17(7)/PW(17)  Q6-S20(9)/PW(19)
3Q1-S1(8)/PW(19)-S3(7)/PW(14)  Q2-S5(5)/PW(15)-S6(7)/PW(17)  Q3-S7(6)/PW(26)-S8(5)/PW(15)  
Q4-S15(7)/PW(17)-S16(8)/PW(18)  Q5-S18(9)/PW(19)
4Q1-S1(6)/PW(23)-S2(7)/PW(27)  Q2-S4(1)/PW(21)-S5(8)/PW(18)  Q3-S8(4)/PW(16)-S9(6)/PW(16)  
Q6-S20(7)/PW(17)
5Q1-S2(4)/PW(17)  Q2-S5(8)/PW(18)  Q3-S8(4)/PW(14)-S9(6)/PW(16)
181Q1-S2(9)/PW(19)-S3(4)/PW(24)  Q2-S6(7)/PW(17)  Q4-S10(7)/PW(27)-S12(9)/PW(19)
Q5-S15(8)/PW(18)-S19(4)/PW(24)-S20(5)/PW(25)  Q6-S18(5)PW(15)
2Q1-S1(9)/PW(19)-S2(5)/PW(25)  Q2-S4(4)/PW(24)  Q3-S8(6)/PW(16)-S9(6)/PW(16)  
Q5-S16(6)/PW(16)-S17(7)/PW(17)  Q6-S19(8)/PW(18)-S20(4)/PW(24)
3Q1-S1(9)/PW(19)-S3(7)/PW(17)  Q2-S5(5)PW(15)  Q3-S7(6)/PW(16)-S8(5)/PW(15)  
Q4-S15(9)/PW(19)-S16(4)/PW(24)
4Q1-S2(9)/PW(9)-S3(4)/PW(14)  Q2-S5(3)/PW(13)-S6(5)/PW(15)  Q3-S8(6)/PW(16)  
Q6-S18(3)/PW(13)-S19(8)/PW(8)-S20(4)/PW(14)
5Q1-S1(6)/PW(16)-S2(7)/PW(17)-S3(5)/PW(25)  Q2-S5(8)/PW(8)-S8(4)/PW(14)                            
Q3-S8(4)/PW(14)-S9(6)/PW(16)-S10(5)/PW(15)  Q6-S19(5)/PW(15)-S20(7)/PW(17)
191Q2-S6(4)/PW(14)-S7(8)/PW(18)  Q4-S10(7)/PW(17)-S11(5)/PW(25)-S12(2)/PW(22)  Q5-S15(8)/PW(18)  
Q6-S19(4)/PW(24)-S20(5)/PW(15)
2Q1-S1(6)/PW(16)  Q2-S4(5)/PW(15)-S5(8)/PW(18)  Q3-S8(6)/PW(26)  Q5-S16(6)/PW(26)  
Q6-S19(13)/PW(13)-S20(4)/PW(14)
3Q1-S2(9)/PW(9)-S3(8)/PW(18)  Q2-S5(5)/PW(15)  Q3-S7(11)/PW(16)  Q4-S15(7)/PW(17)
4Q1-S2(9)/PW(19)  Q2-S4(7)/PW(11)-S5(8)/PW(18)  Q3-S8(7)/PW(7)-S9(6)/PW(16)  
Q6-S19(2)/PW(22)-S20(3)/PW(3)
5Q2-S5(8)/PW(8)  Q3-S8(4)/PW(24)-S9(6)/PW(16)  Q6-S19(9)/PW(15)-S20(6)/PW(16)
201Q2-S6(11)/PW(9)-S7(9)/PW(9)  Q3-S9(5)PW(15)  Q4-S10(6)/PW(16)-S11(8)/PW(18)-S12(2)/PW(22)  
Q5-S15(9)/PW(9)  Q6-S18(6)/PW(16)-S19(4)/PW(24)-S20(5)/PW(25)
2Q1-S1(3)/PW(13)-S2(8)/PW(18)  Q2-S4(9)/PW(9)-S5(6)/PW(16)  Q3-S7(7)/PW(17)-S8(6)/PW(16)  
Q6-S20(4)/PW(14)
3Q1-S2(12)/PW(12)  Q2-S5(9)/PW(9)  Q3-S7(6)/PW(16)-S8(7)/PW(17)  Q4-S15(8)/PW(8)-S16(9)/PW(9)  
Q6-S19(8)/PW(8)
4Q1-S2(7)/PW(17)-S3(8)/PW(18)  Q3-S8(3)/PW(16)-S9(6)/PW(16)-S10(5)/PW(25)  Q5-S17(9)/PW(9)  
Q6-S19(5)/PW(25)-S20(8)/PW(18)
5Q2-S5(8)/PW(8)  Q3-S8(7)/PW(9)-S9(10)/PW(6)
211Q1-S1(9)/PW(8)-S2(5)/PW(9)-S3(4)/PW(14)  Q4-S10(8)/PW(15)-S11(6)/PW(16)-S12(2)/PW(22)  
Q6-S19(4)/PW(24)-S20(5)/PW(25)
2Q2-S4(9)/PW(15)-S5(8)/PW(18)  Q3-S8(8)/PW(16)-S9(7)/PW(17)  Q6-S19(9)/PW(9)
3Q1-S3(9)/PW(9)  Q2-S5(5)/PW(25)-S6(7)/PW(17)  Q3-S7(6)/PW(26)  Q4-S15(7)/PW(17)  
Q6-S18(8)/PW(18)-S19(9)/PW(19)
4Q1-S2(7)/PW(17)  Q2-S4(13)/PW(11)-S5(4)/PW(18)  Q3-S8(6)/PW(16)-S9(6)/PW(16)  Q6-S20(7)/PW(17)
5Q1-S1(4)/PW(24)-S2(6)/PW(16)  Q2-S5(5)/PW(17)  Q3-S8(4)/PW(14)-S9(6)/PW(16)  Q4-S11(7)/PW(17)
221Q1-S1(5)/PW(16)-S3(2)/PW(24)  Q2-S5(5)/PW(18)  Q4-S10(7)/PW(17)-S11(9)/PW(9)-S12(7)/PW(17)  
Q5-S15(8)/PW(8)-S16(5)/PW(15)  Q6-S20(9)/PW(9)
2Q1-S1(5)/PW(3)-S2(9)/PW(9)  Q3-S8(6)/PW(16)-S9(8)/PW(8)  Q5-S16(4)/PW(14)-S17(5)/PW(15)  
Q6-S19(9)/PW(9)
3Q1-S1(8)/PW(18)-S2(2)/PW(12)  Q2-S5(9)/PW(9)  Q3-S7(7)/PW(16)-S8(7)/PW(17)  
Q4-S15(7)/PW(17)-S16(8)/PW(18)    
4Q2-S5(8)/PW(8)-S6(7)/PW(7)  Q3-S8(6)/PW(6)-S9(8)/PW(9)  Q6-S18(3)/PW(3)-S20(9)/PW(9)
5Q1-S1(7)/PW(17)-S2(9)/PW(9)  Q2-S4(2)/PW(20)-S5(8)/PW(18)  
Q3-S8(4)/PW(14)-S9(6)/PW(16)-S10(3)/PW(23)  Q4-S16(4)/PW(14)  Q5-S17(6)/PW(16)-S18(5)/PW(15)  Q6-S20(7)/PW(17)
231Q1-S3(3)/PW(14)  Q2-S6(7)/PW(14)  Q5-S15(8)/PW(18)-S16(9)/PW(9)
2Q1-S1(3)/PW(23)-S2(8)/PW(18)  Q2-S4(5)/PW(15)-S5(6)/PW(18)-S6(7)/PW(17)  Q3-S8(6)/PW(16)  
Q4-S15(6)/PW(16)  Q6-S20(9)/PW(9)
3Q1-S1(9)/PW(9)-S2(8)/PW(8)  Q2-S4(4)/PW(24)-S5(5)/PW(25)  Q3-S7(6)/PW(26)-S8(7)/PW(17)
4Q2-S4(2)/PW(21)-S5(5)/PW(17)-S6(8)/PW(18)  Q6-S19(3)/PW(23)-S20(9)/PW(9)
5Q2-S5(6)/PW(16)  Q3-S9(6)/PW(6)  Q6-S18(11)/PW(9)-S20(3)/PW(15)
241Q1-S1(9)/PW(8)-S2(2)/PW(13)-S3(1)/PW(14)  Q2-S5(6)/PW(16)-S6(7)/PW(17)  
Q4-S10(6)/PW(14)-S11(8)/PW(18)  Q5-S14(6)/PW(16)-S15(8)/PW(18)  Q6-S19(6)/PW(16)-S20(3)/PW(13)
2Q2-S5(7)/PW(16)-S6(7)/PW(17)  Q3-S8(9)/PW(19)-S9(5)/PW(15)  Q5-S16(3)/PW(23)-S17(2)/PW(22)
Q6-S20(4)/PW(12)
3Q1-S1(6)/PW(16)-S3(8)/PW(9)  Q4-S15(4)/PW(4)-S16(5)/PW(5)  Q6-S19(8)/PW(8)  
4Q1-S1(3)/PW(23)-S2(7)/PW(17)-S3(6)/PW(16)  Q2-S5(8)/PW(8)-S6(5)/PW(15)  
Q6-S19(8)/PW(18)-S20(9)/PW(9)
5Q1-S2(7)/PW(17)  Q2-S5(8)/PW(18)-S6(5)/PW(15)  Q3-S8(4)/PW(14)
251Q1-S1(5)/PW(15)-S2(6)/PW(16)-S3(5)/PW(14)  Q2-S5(8)PW(18)-S6(7)/PW(17)-S7(5)/PW(15)  
Q3-S8(5)/PW(23)  Q4-S12(9)/PW(9)  Q5-S15(8)/PW(18)
2Q1-S1(3)/PW(3)-S2(1)/PW(5)  Q2-S4(4)/PW(24)-S5(7)/PW(17)  Q3-S8(5)/PW(15)-S9(4)PW(24)  
Q5-S16(3)/PW(8)  Q6-S19(9)/PW(9)-S20(6)/PW(6)
3Q1-S2(8)/PW(18)-S3(9)/PW(9)  Q2-S5(5)/PW(15)  Q3-S6(4)/PW(10)-S7(6)/PW(16)
4Q1-S1(6)/PW(16)-S2(7)/PW(17)-S3(8)/PW(18)  Q2-S4(2)/PW(12)-S5(8)/PW(18)-S6(3)/PW(11)  
Q3-S8(6)/PW(16)-S9(6)/PW(16)  Q6-S19(8)/PW(18)-S20(7)/PW(17)
5Q1-S2(9)/PW(17)  Q2-S4(4)/PW(14)-S5(8)/PW(8)  Q3-S8(4)/PW(14)-S9(6)/PW(16)  
Q6-S19(9)/PW(16)-S20(7)/PW(17)
261Q1-S3(4)/PW(14)  Q2-S6(10)/PW(17)-S7(8)/PW(18)  Q4-S10(7)/PW(17)  Q5-S15(8)/PW(8)-S16(8)/PW(8)  
Q6-S18(4)/PW(14)-S20(5)/PW(15)
2Q1-S1(7)/PW(17)-S2(8)/PW(18)  Q2-S4(2)/PW(21)-S5(3)/PW(13)-S6(4)/PW(24)  
Q3-S7(5)/PW(15)-S8(6)/PW(16)-S9(7)/PW(17)  Q5-S16(4)/PW(14)-S17(5)/PW(15)  
Q6-S18(7)/PW(17)S20(4)/PW(24)
3Q1-S1(10)/PW(18)-S2(9)/PW(19)  Q2-S5(5)/PW(15)-S6(6)/PW(16)  Q3-S7(6)/PW(16)-S8(7)/PW(17)  
Q4-S14(7)/PW(17)-S15(8)/PW(18)    
4Q2-S4(8)/PW(18)-S5(8)/PW(18)  Q3-S8(9)/PW(19)
5Q1-S2(4)/PW(14)  Q2-S5(6)/PW(16)-S6(7)/PW(17)  Q3-S8(5)/PW(15)-S9(7)/PW(17)  
Q5-S16(6)/PW(16)-S17(3)/PW(23)  Q6-S18(2)/PW(14)-S19(8)/PW(18)
271Q1-S1(7)/PW(9)-S2(1)/PW(21)-S3(4)/PW(14)  Q2-S4(3)/PW(23)-S6(5)/PW(15)  
Q4-S10(5)/PW(15)-S11(6)/PW(16)-S12(2)/PW(12)  Q6-S19(7)/PW(17)
2Q1-S1(15)/PW(13)-S2(5)/PW(15)-S3(1)/PW(16)  Q2-S5(5)/PW(15)-S6(2)/PW(2)  
Q3-S7(3)/PW(17)-S8(6)/PW(16)  Q5-S6(4)/PW(4)-S17(5)PW(5)
3Q1-S1(6)/PW(16)-S3(3)/PW(23)  Q2-S5(8)/PW(18)-S6(9)/PW(9)  Q3-S7(7)/PW(17)-S8(5)/PW(15)  
Q4-S14(6)/PW(26)-S15(7)/PW(7)  Q6-S19(8)/PW(18)-S20(4)/PW(14)
4Q1-S1(3)/PW(3)-S2(8)/PW(6)-S3(4)/PW(4)  Q4-S5(7)/PW(8)  Q6-S20(7)/PW(7)
5Q1-S1(4)/PW(24)-S2(7)/PW(17)-S3(8)/PW(18)  Q2-S4(5)/PW(25)-S5(8)/PW(18)  
Q3-S8(4)/PW(24)-S9(6)/PW(16)  Q5-S17(6)/PW(16)  Q6-S19(5)/PW(17)-S20(7)/PW(17)
281Q1-S1(4)/PW(15)-S3(6)/PW(16)  Q2-S6(9)/PW(9)  Q4-S10(6)/PW(16)-S12(3)/PW(13)  
Q5-S15(8)/PW(18)  Q6-S19(6)/PW(16)-S20(8)/PW(18)
2Q1-S1(3)/PW(16)  Q2-S4(12)/PW(22)-S5(8)/PW(18)  Q3-S8(7)/PW(17)  Q5-S16(6)/PW(6)  
Q6-S19(5)/PW(15)-S20(1)/PW(23)
3Q1-S1(9)/PW(19)-S3(6)/PW(26)  Q2-S5(5)/PW(5)  Q3-S7(7)/PW(7)  Q4-S15(8)/PW(8)
4Q1-S1(4)/PW(14)-S2(8)/PW(18)  Q2-S4(3)/PW(13)-S5(7)/PW(11)  Q3-S8(9)PW(19)-S9(6)/PW(26)  
Q6-S19(4)/PW(14)-S20(8)/PW(18)
5Q1-S1(6)/PW(16)-S2(8)/PW(18)  Q2-S5(8)(PW(18)  Q3-S8(9)/PW(19)-S9(5)/PW(15)  
Q6-S19(3)/PW(23)-S20(6)/PW(16)
291Q1-S1(3)/PW(15)-S3(3)/PW(13)  Q2-S6(8)/PW(8)  Q4-S12(9)/PW(9)  Q6-S20(6)/PW(16)
2Q2-S4(5)/PW(9)-S5(6)/PW(16)-S6(5)/PW(15)  Q3-S7(7)/PW(17)-S8(8)/PW(8)  Q4-S9(9)/PW(9)  
Q5-S16(3)/PW(23)-S17(2)/PW(20)  Q6-S20(4)/PW(14)
3Q1-S2(6)/PW(9)-S3(3)/PW(13)  Q3-S7(7)/PW(17)-S8(8)/PW(18)  Q6-S18(9)/PW(9)
4Q1-S2(7)/PW(17)  Q2-S5(8)/PW(18)-S6(4)/PW(14)  Q3-S7(5)/PW(15)-S8(4)/PW(16)-S9(6)/PW(16)  
Q6-S19(5)/PW(15)-S20(6)/PW(16)
5Q1-S2(7)/PW(17)  Q2-S5(8)/PW(18)  Q3-S8(4)/PW(14)-S9(6)/PW(16)  Q5-S16(4)/PW(14)-S17(5)PW(15)
Q6-S19(3)/PW(13)-S20(6)/PW(9)
301Q1-S1(9)/PW(9)-S2(1)/PW(13)-S3(5)/PW(15)  Q2-S5(6)/PW(16)-S7(7)/PW(17)  
Q3-S8(5)/PW(15)-S9(4)/PW(24)  Q5-S15(6)/PW(16)  Q6-S20(9)/PW(19)
2Q1-S1(9)/PW(13)-S2(5)/PW(15)-S3(8)/PW(18)  Q2-S4(7)/PW(14)-S5(3)/PW(13)  
Q3-S7(9)/PW(13)-S8(9)/PW(9)  Q5-S16(6)/PW(6)-S17(7)/PW(7)
3Q1-S2(7)/PW(17)-S3(3)PW(13)  Q2-S5(6)/PW(16)-S6(7)/PW(17) Q3-S7(11)/PW(11)  
Q4-S15(3)/PW(23)-S16(4)/PW(14)  Q6-S18(5)/PW(15)-S19(6)/PW(16)
4Q1-S1(9)/PW(9)-S2(7)/PW(17)  Q2-S5(8)/PW(8)  Q3-S8(5)/PW(15)-S9(4)/PW(14)  
Q6-S19(8)/PW(8)-S20(9)/PW(9)
5Q1-S2(9)/PW(9)-S3(7)/PW(17)  Q2-S4(6)/PW(16)-S5(5)/PW(15)  Q3-S8(4)/PW(14)-S9(6)/PW(16)  
Q4-S11(6)/PW(16)-S12(8)/PW(8)  Q5-S16(9)/PW(9)-S17(8)/PW(8)
311Q1-S1(5)/PW(18)-S3(5)PW(15)  Q2-S6(6)/PW(16)  Q4-S10(6)/PW(16)-S12(3)/PW(23)  
Q5-S15(9)/PW(19)  Q6-S19(7)-S20(3)
2Q1-S1(6)/PW(16)  Q2-S4(7)/PW(17)-S5(8)/PW(18)  Q3-S8(9)/PW(19)  Q5-S16(5)/PW(25)  
Q6-S19(4)/PW(24)-S20(5)/PW(15)
3Q1-S1(6)/PW(16)-S2(3)/PW(13)-S3(5)/PW(15)  Q2-S5(9)/PW(19)  Q3-S7(7)/PW(17)  Q4-S15(9)/PW(19)
4Q1-S1(9)/PW(17)-S2(3)/PW(23)  Q2-S4(2)/PW(20)-S5(4)/PW(14)  Q3-S8(9)/PW(19)-S9(3)/PW(23)  
Q6-S20(8)/PW(18)
5Q1-S1(3)/PW(25)-S2(9)/PW(19)  Q2-S5(4)/PW(24)  Q3-S8(6)/PW(23)-S9(2)/PW(17)  Q6-S20(8)/PW(18)
321Q3-S7(6)/PW(16)  Q4-S10(8)/PW(18)-S11(7)/PW(17)-S12(1)/PW(23)  Q5-S15(4)/PW(14)  
Q6-S20(5)/PW(15)
2Q1-S1(13)/PW(13)-S2(8)/PW(18)-S3(4)/PW(24)  Q2-S5(3)/PW(13)  Q3-S7(5)/PW(13)-S8(7)/PW(18)  
Q5-S16(6)/PW(16)-S17(7)/PW(17)  Q6-S19(8)/PW(18)
3Q1-S1(9)/PW(9)  Q3-S7(6)/PW(16)-S8(9)/PW(9)  Q4-S14(6)/PW(16)-S15(7)/PW(17)  
Q5-S16(9)/PW(9)-S17(3)/PW(13)  Q6-S18(8)/PW(8)-S19(9)/PW(9)
4Q1-S1(6)/PW(16)-S2(10)/PW(17)-S3(5)/PW(10)  Q2-S4(2)/PW(5)  Q3-S8(3)/PW(13)-S9(7)/PW(7)  
Q5-S16(5)/PW(15)  Q6-S18(5)/PW(15)-S19(9)/PW(9)
5Q1-S2(9)/PW(9)  Q3-S8(6)/PW(13)-S9(2)/PW(21)  Q6-S19(3)/PW(16)-S20(7)/PW(7)
331Q1-S1(3)/PW(9)-S2(3)/PW(12)-S3(9)/PW(23)  Q2-S5(9)/PW(15)-S6(7)/PW(17)  
Q3-S7(6)/PW(16)-S8(5)/PW(20)  Q4-S10(7)/PW(17)-S11(3)/PW(13)-S12(2)/PW(21)  
Q5-S15(8)/PW(18)-S16(4)/PW(18)  Q6-S18(6)/PW(16)-S19(4)/PW(24)-S20(5)/PW(15)
2Q1-S1(3)/PW(13)-S2(8)/PW(18)  Q2-S4(5)/PW(13)-S5(8)/PW(18)  Q3-S8(6)/PW(16)-S9(7)/PW(17)  
Q5-S16(4)/PW(14)-S17(5)/PW(23)  Q6-S18(5)/PW(15)-S20(4)/PW(14)
3Q1-S1(7)/PW(16)-S3(10)/PW(23)  Q2-S5(6)/PW(16)  Q3-S7(3)/PW(19)  Q4-S15(8)/PW(18)-S16(9)/PW(19)
4Q1-S2(9)/PW(19)-S3(5)/PW(15)  Q2-S4(3)/PW(11)-S5(3)/PW(9)  Q3-S7(4)/PW(14)  
Q4-S10(5)/PW(15)-S11(3)/PW(16)
5Q1-S2(8)/PW(18)-S3(9)/PW(19)  Q2-S4(4)/PW(24)-S5(5)/PW(12)  
Q3-S8(3)PW(13)-S9(6)/PW(16)-S10(2)/PW(14)  Q5-S16(2)/PW(20)-S17(3)/PW(13)  
Q6-S18(4)/PW(15)-S19(3)/PW(16)-S20(7)/PW(17)
341Q4-S10(6)/PW(16)-S11(5)/PW(18)-S12(2)PW(22)  Q5-S15(6)/PW(18)-S16(8)/PW(18)  Q6-S19(5)/PW(15)
2Q1-S1(3)/PW(23)-S2(8)/PW(18)  Q2-S5(6)/PW(18)-S6(7)/PW(21)  
Q3-S8(5)/PW(22)-S9(4)/PW(18)-S10(3)/PW(13)  Q5-S16(4)/PW(14)-S17(5)  
Q6-S18(7)/PW(17)-S20(4)/PW(20)
3Q1-S1(8)/PW(9)-S3(5)/PW(15)  Q2-S5(5)/PW(15)-S6(6)/PW(16)  Q3-S7(6)/PW(16)-S8(8)/PW(18)  
Q4-S15(7)/PW(17)-S16(8)/PW(18)
4Q1-S1(3)/PW(23)-S2(7)/PW(17)-S3(4)/PW(24)  Q2-S5(8)/PW(18)  Q3-S8(6)/PW(16)-S9(5)/PW(15)  
Q6-S19(8)/PW(8)
5Q1-S1(6)/PW(16)-S2(3)/PW(23)-S3(5)/PW(15)  Q2-S5(8)/PW(18)-S6(4)/PW(24)  
Q3-S8(9)/PW(14)-S9(6)/PW(15)-S10(3)/PW(23)  Q6-S18(6)/PW(14)-S19(5)/PW(15)-S20(7)/PW(17)
351Q2-S6(8)/PW(18)-S7(9)/PW(19)  Q4-S10(7)/PW(17)-S12(2)/PW(22)  Q5-S15(8)/PW(18)
2Q1-S1(3)/PW(23)  Q2-S4(6)/PW(15)-S5(8)/PW(18)  Q3-S8(6)/PW(16)  Q5-S16(4)/PW(14)  
Q6-S19(3)/PW(23)-S20(4)/PW(14)
3Q1-S1(7)/PW(17)-S2(2)/PW(20)-S3(3)/PW(15)  Q2-S5(5)/PW(5)  Q3-S7(6)/PW(6)  Q4-S15(7)/PW(7)
4Q1-S1(10)/PW(23)-S2(7)/PW(17)  Q2-S4(3)/PW(21)-S5(9)/PW(18)  Q3-S8(6)/PW(6)-S9(6)/PW(6)  
Q6-S20(7)/PW(17)
5Q1-S1(6)/PW(11)-S2(7)/PW(17)  Q2-S5(8)/PW(8)  Q3-S8(1)/PW(15)-S9(6)/PW(16)  Q6-S20(2)/PW(17)
361Q1-S1(3)/PW(12)  Q2-S4(5)/PW(17)  Q3-S7(3)/PW(13)  Q4-S11(3)/PW(14)-S12(7)/PW(17)  
Q5-S14(8)/PW(18)-S15(4)/PW(14)  Q6-S20(8)/PW(18)
2Q1-S2(3)/PW(23)-S3(5)/PW(18)  Q2-S5(7)/PW(17)  Q4-S11(9)/PW(19)-S12(6)/PW(17)-S13(5)/PW(15)  
Q5-S14(8)/PW(18)-S15(4)/PW(14)  Q6-S18(4)/PW(14)-S20(8)/PW(18)
3Q1-S1(6)/PW(16)-S2(9)/PW(19)-S3(1)/PW(14)  Q3-S8(2)/PW(22)  Q4-S12(9)/PW(19)-S13(6)/PW(26)  
Q5-S14(8)/PW(18)-S15(4)/PW(24)  Q6-S18(9)/PW(19)-S20(8)/PW(18)
4Q1-S1(9)/PW(21)-S2(7)/PW(18)-S3(5)/PW(25)  Q2-S5(5)/PW(25)  
Q4-S11(9)/PW(19)-S12(4)/PW(24)-S13(5)/PW(15)  Q5-S14(3)/PW(23)-S15(4)/PW(24)  Q6-S20(8)/PW(18)
5Q1-S1(9)/PW(20)-S2(9)/PW(23)-S3(4)/PW(24)  Q3-S8(6)/PW(14)  Q4-S12(9)/PW(15)-S13(6)/PW(16)  
Q5-S14(4)/PW(11)-S15(4)/PW(24)  Q6-S18(3)/PW(17)-S20(8)/PW(16)    
371Q1-S3(8)/PW(15)  Q2-S6(5)/PW(24)  Q3-S7(4)/PW(14)  Q4-S9(4)PW(20)-S10(5)/PW(18)  
Q5-S13(8)/PW(18)-S14(9)/PW(19)  Q6-S19(4)/PW(24)
2Q1-S1(2)/PW(20)  Q2-S6(8)/PW(28)  Q4-S11(8)/PW(18)-S13(3)/PW(23)  Q5-S14(7)/PW(27)  
Q6-S18(8)/PW(18)-S19(2)/PW(22)
3Q1-S2(9)/PW(25)-S3(3)/PW(23)  Q2-S6(6)/PW(16)  Q3-S7(4)/PW(24)-S8(7)/PW(17)  Q4-S8(3)/PW(8)  
Q5-S16(4)/PW(14)  Q6-S20(7)/PW(17)
4Q1-S1(5)/PW(18)-S2(7)/PW(17)-S3(3)/PW(23)  Q2-S6(8)/PW(8)  Q4-S11(8)/PW(8)-S13(3)/PW(23)  
Q5-S14(7)/PW(17)  Q6-S18(8)/PW(18)-S19(2)/PW(22)
5Q1-S2(5)/PW(25)-S3(3)/PW(23)  Q3-S7(4)/PW(24)-S8(7)/PW(17)  Q4-S8(8)/PW(20)  
Q5-S15(5)/PW(22)-S16(4)/PW(24)  Q6-S20(7)/PW(27)
381Q1-S1(2)/PW(19)-S3(14)/PW(17)  Q2-S6(7)/PW(19)  Q4-S10(7)/PW(20)-S12(2)/PW(22) Q5-S15(8)/PW(18)
Q6-S19(4)/PW(14)-S20(5)/PW(15)
2Q1-S1(3)/PW(23)  Q2-S4(5)/PW(25)-S5(8)/PW(18)  Q3-S8(6)/PW(16)  Q5-S16(4)/PW(24)  
Q6-S19(3)/PW(13)-S20(4)/PW(24)
3Q1-S1(3)/PW(19)-S2(2)/PW(11)-S3(13)/PW(13)  Q2-S5(5)/PW(15)  Q3-S7(6)/PW(17)  Q4-S15(7)/PW(19)
4Q1-S1(3)/PW(23)-S2(7)/PW(17)  Q2-S4(1)/PW(19)-S5(8)/PW(18)  Q3-S8(6)/PW(16)-S9(6)/PW(19)  
Q6-S20(7)/PW(24)
5Q1-S1(3)/PW(10)-S2(7)/PW(17)  Q2-S5(8)/PW(18)  Q3-S8(4)/PW(19)-S9(6)/PW(16)  Q6-S20(10)/PW(21)
391Q1-S1(1)/PW(24)-S2(8)/PW(26)-S3(4)/PW(14)  Q2-S4(5)/PW(18)-S6(7)/PW(17)  
Q4-S10(7)/PW(17)-S12(2)/PW(18)  Q5-S15(8)/PW(18)  Q6-S19(4)/PW(19)-S20(5)/PW(15)
2Q1-S1(3)/PW(23)  Q2-S4(5)/PW(22)-S5(8)/PW(18)  Q3-S8(6)/PW(16)  Q5-S16(4)/PW(14)  
Q6-S19(3)/PW(23)-S20(4)/PW(24)
3Q1-S1(3)/PW(17)-S2(2)/PW(22)-S3(3)/PW(23)  Q2-S5(5)/PW(15)  Q3-S7(6)/PW(16)  Q4-S15(7)/PW(17)
4Q1-S1(3)/PW(23)-S2(7)/PW(17)  Q2-S4(3)/PW(21)-S5(5)7PW(18)  Q3-S8(6)/PW(16)-S9(6)/PW(26)  
Q6-S20(7)/PW(17)
5Q1-S1(4)/PW(21)-S2(9)/PW(27)  Q2-S5(8)/PW(18)  Q3-S8(4)/PW(24)-S9(6)/PW(26)  Q6-S20(5)/PW(27)
401Q1-S1(2)/PW(14)-S2(5)/PW(15)-S3(4)/PW(19)  Q2-S6(8)/PW(18)-S7(9)/PW(19)  
Q4-S10(5)/PW(15)-S12(2)/PW(12)  Q5-S15(6)/PW(16)-S16(5)/PW(15)  Q6-S20(5)/PW(15)
2Q1-S1(13)/PW(23)-S2(7)/PW(27) Q2-S4(9)/PW(19)-S5(8)/PW(18)-S6(6)/PW(16)  
Q3-S8(6)/PW(26)-S9(7)/PW(7)  Q5-S16(4)/PW(24)-S17(5)/PW(25)  
Q6-S18(5)/PW(15)-S19(3)/PW(23) S20(4)/PW(14)
3Q1-S1(8)/PW(18)-S3(3)/PW(28)  Q2-S5(9)/PW(19)  Q3-S7(7)/PW(17)  Q4-S15(9)/PW(19)-S16(8)/PW(18)
4Q1-S1(3)/PW(19)-S2(8)/PW(18)-S3(5)/PW(25)  Q2-S4(4)/PW(21)-S5(7)/PW(17)-S6(6)/PW(26)  
Q3-S8(4)/PW(16)-S9(5)/PW(25)  Q6-S19(4)/PW(24)-S20(7)/PW(17)
5Q1-S1(5)/PW(15)-S2(6)/PW(16)  Q2-S5(8)/PW(28)  Q3-S8(8)/PW(18)-S9(6)/PW(16)  Q6-S19(9)/PW(17)
411Q1-S1(8)/PW(16)  Q2-S4(5)/PW(18)  Q3-S7(3)/PW(13)  Q4-S11(4)/PW(14)-S12(7)/PW(17)  
Q5-S14(8)/PW(18)-S15(4)/PW(14)  Q6-S20(8)/PW(18)
2Q1-S2(3)/PW(23)-S3(5)/PW(15)  Q2-S5(7)/PW(17)  Q4-S11(9)/PW(19)-S12(7)/PW(19)-S13(5)/PW(15)  
Q5-S14(8)/PW(18)-S15(4)/PW(14)  Q6-S18(4)/PW(24) Q6-S20(8)/PW(18)
3Q1-S1(6)/PW(16)-S2(5)/PW(19)-S3(4)/PW(14)  Q3-S8(2)/PW(22)  Q4-S12(9)/PW(17)-S13(6)/PW(26)  
Q5-S14(8)/PW(18)-S15(4)/PW(21)  Q6-S18(9)/PW(19)-S20(8)/PW(18)
4Q1-S1(9)/PW(19)-S2(8)/PW(18)-S3(5)PW(25)  Q2-S5(5)/PW(25)  
Q4-S11(9)/PW(18)-S12(4)/PW(24)-S13(5)/PW(15)  Q5-S14(13)/PW(23)-S15(4)/PW(24)  Q6-S20(8)/PW(18)
5Q1-S1(6)/PW(19)-S2(9)/PW(19)-S3(4)/PW(24)  Q3-S8(6)/PW(26)  Q4-S12(11)/PW(19)-S13(6)/PW(16)  
Q5-S14(8)/PW(18)-S15(4)/PW(24)  Q6-S18(3)/PW(14)-S20(8)/PW(18)
421Q1-S3(8)/PW(19)  Q2-S6(5)/PW(25)  Q3-S7(4)/PW(14)  Q4-S9(4)PW(14)-S10(5)/PW(15)  
Q5-S13(8)/PW(18)-S14(7)/PW(19)  Q6-S19(4)/PW(24)
2Q1-S1(8)/PW(20)  Q2-S6(8)/PW(18)  Q4-S11(8)/PW(18)-S13(3)/PW(23) Q5-S14(7)/PW(27)  
Q6-S18(8)/PW(18)-S19(2)/PW(22
3Q1-S2(7)/PW(25)-S3(3)/PW(23)  Q2-S6(3)/PW(16) Q3-S7(4)/PW(24)-S8(7)/PW(17)  Q4-S8(8)/PW(8)  
Q5-S16(4)/PW(14)  Q6-S20(7)/PW(17)
4Q1-S1(6)/PW(18)-S2(7)/PW(17)-S3(3)/PW(23)  Q2-S6(8)/PW(8)  Q4-S11(8)/PW(8)-S13(3)/PW(23)  
Q5-S14(7)/PW(17)  Q6-S18(8)/PW(18)-S19(2)/PW(22)
5Q1-S2(5)/PW(15)-S3(3)/PW(23)  Q3-S7(4)/PW(24)-S8(7)/PW(17)  Q4-S8(8)/PW(18)  
Q5-S15(5)/PW(25)-S16(4)/PW(24)  Q6-S20(5)/PW(17)
431Q1-S1(8)/PW(19)-S3(4)/PW(14)  Q2-S6(7)/PW(17)  Q4-S10(7)/PW(17)-S12(1)/PW(22)  Q5-S15(8)/PW(18)
Q6-S19(4)/PW(14)-S20(5)/PW(15)
2Q1-S1(3)/PW(13)  Q2-S4(5)/PW(15)-S5(8)/PW(18)  Q3-S8(6)/PW(26)  Q5-S16(4)/PW(14)  
Q6-S19(3)/PW(23)-S20(4)/PW(24)
3Q1-S1(2)/PW(17)-S2(2)/PW(21)-S3(3)/PW(15)  Q2-S5(5)/PW(15)  Q3-S7(6)/PW(16)  Q4-S15(7)/PW(17)
4Q1-S1(3)/PW(23)-S2(7)/PW(17)  Q2-S4(5)/PW(19)-S5(3)/PW(18)  Q3-S8(3)/PW(19)-S9(6)/PW(16)  
Q6-S20(7)/PW(27)
5Q1-S1(4)/PW(21)-S2(2)/PW(17)  Q2-S5(8)/PW(18)  Q3-S8(3)/PW(15)-S9(9)/PW(16)  Q6-S20(2)/PW(27)
441Q1-S1(1)/PW(20)-S2(5)/PW(22)-S3(4)/PW(14)  Q2-S4(5)/PW(15)-S6(7)/PW(27)  
Q4-S10(7)/PW(17)-S12(2)/PW(12)  Q5-S15(8)/PW(18)  Q6-S19(4)/PW(14)-S20(5)/PW(15)
2Q1-S1(3)/PW(23)  Q2-S4(5)/PW(15)-S5(8)/PW(18)  Q3-S8(6)/PW(16)  Q5-S16(4)/PW(14)  
Q6-S19(3)/PW(13)-S20(4)/PW(24)
3Q1-S1(4)/PW(17)-S2(2)/PW(12)-S3(3)/PW(23)  Q2-S5(5)/PW(15)  Q3-S7(6)/PW(16)  Q4-S15(7)/PW(17)
4Q1-S1(3)/PW(25)-S2(5)/PW(17)  Q2-S4(1)/PW(21)-S5(3)PW(18)  Q3-S8(6)/PW(16)-S9(6)/PW(26)  
Q6-S20(7)/PW(17)
5Q1-S1(3)/PW(16)-S2(5)/PW(17)  Q2-S5(8)/PW(18)  Q3-S8(3)/PW(24)-S9(6)/PW(26)  Q6-S20(3)/PW(17)
451Q1-S1(9)/PW(14)-S2(5)/PW(15)-S3(4)/PW(13)  Q2-S6(8)/PW(18)-S7(6)/PW(12)  
Q4-S10(5)/PW(15)-S12(2)/PW(12)  Q5-S15(6)/PW(16)-S16(5)/PW(15)  Q6-S20(5)/PW(15)
2Q1-S1(3)/PW(23)-S2(7)/PW(17)  Q2-S4(6)/PW(19)-S5(8)/PW(18)-S6(6)/PW(16)  
Q3-S8(6)/PW(16)-S9(9)/PW(7)  Q5-S16(4)/PW(24)-S17(5)/PW(25)  
Q6-S18(5)/PW(15)-S19(3)/PW(23)-S20(4)/PW(14)
3Q1-S1(8)/PW(18)-S3(3)/PW(23)  Q2-S5(6)/PW(19)  Q3-S7(7)/PW(17)  Q4-S15(9)/PW(19)-S16(8)/PW(18)  
4Q1-S1(6)/PW(16)-S2(8)/PW(18)-S3(5)/PW(25)  Q2-S4(4)/PW(24)-S5(3)/PW(17)-S6(6)/PW(26)  
Q3-S8(6)/PW(16)-S9(5)/PW(25)  Q6-S19(4)/PW(24)-S20(5)/PW(17)
5Q1-S1(5)/PW(15)-S2(6)/PW(16)  Q2-S5(8)/PW(18)  Q3-S8(8)/PW(21)-S9(6)/PW(16)  Q6-S19(9)/PW(20)
461Q1-S1(4)/PW(17)-S2(2)/PW(15)-S3(8)/PW(18)  Q2-S6(7)/PW(17)-S7(5)/PW(26)  
Q4-S10(7)/PW(17)-S12(2)/PW(22)  Q5-S15(8)/PW(28)  Q6-S19(4)/PW(24)-S20(5)/PW(15)
2Q1-S1(3)/PW(23)  Q2-S4(5)/PW(15)-S5(8)/PW(18)  Q3-S8(6)/PW(16)  Q5-S16(4)/PW(14)  
Q6-S19(3)/PW(23)-S20(4)/PW(24)
3Q1-S1(5)/PW(19)-S2(2)/PW(22)-S3(3)/PW(23)  Q2-S5(5)/PW(15)  Q3-S7(6)/PW(16)  Q4-S15(7)/PW(14)
4Q1-S1(4)/PW(19)-S2(7)/PW(17)  Q2-S4(2)/PW(19)-S5(8)/PW(18)  Q3-S8(3)/PW(16)-S9(6)/PW(16)  
Q6-S20(7)/PW(17)
5Q1-S1(3)/PW(18)-S2(7)/PW(17)  Q2-S5(8)/PW(8)  Q3-S8(12)/PW(4)-S9(6)/PW(6)  Q6-S20(3)/PW(16)
471Q1-S3(4)/PW(24)  Q2-S5(8)/PW(8)-S6(7)/PW(17)  Q4-S10(7)/PW(17)-S12(2)/PW(12)  Q5-S15(8)/PW(18)  
Q6-S19(14)/PW(4)-S20(5)/PW(15)
2Q1-S1(3)/PW(23)  Q2-S4(5)/PW(5)-S5(8)/PW(8)  Q3-S8(6)/PW(6)  Q5-S16(4)/PW(14)  
Q6-S19(3)/PW(13)-S20(4)/PW(14)
3Q1-S1(7)/PW(17)-S2(9)/PW(18)-S3(3)/PW(13)  Q2-S5(5)/PW(5)  Q3-S7(6)/PW(6)  Q4-S15(7)/PW(17)
4Q1-S1(6)/PW(13)-S2(7)/PW(17)  Q2-S4(1)/PW(11)-S5(5)/PW(8)  Q3-S8(3)/PW(16)-S9(6)/PW(21)  
Q6-S20(7)/PW(22)
5Q1-S1(3)/PW(12)-S2(7)/PW(17)  Q2-S5(9)/PW(18)  Q3-S8(4)/PW(14)-S9(6)/PW(16)  Q6-S20(4)/PW(11)
481Q1-S1(6)/PW(19)-S3(8)/PW(18)  Q2-S6(4)/PW(14)  Q4-S10(7)/PW(17)-S12(2)/PW(12)  
Q5-S15(8)/PW(8)  Q6-S19(4)/PW(14)-S20(5)/PW(15)
2Q1-S1(6)/PW(21)  Q2-S4(6)/PW(16)-S5(8)/PW(18)  Q3-S8(6)/PW(19)  Q5-S16(4)/PW(14)  
Q6-S19(3)/PW(13)-S20(4)/PW(14)
3Q1-S1(7)/PW(17)-S2(5)/PW(15)-S3(3)/PW(23)  Q2-S5(5)/PW(15)  Q3-S7(6)/PW(16)  Q4-S15(7)/PW(17)
4Q1-S1(3)PW(13)-S2(7)/PW(17)  Q2-S4(10)/PW(11)-S5(8)/PW(19)  Q3-S8(4)/PW(16)-S9(6)/PW(16)  
Q6-S20(11)/PW(16)
5Q1-S1(4)/PW(14)-S2(7)/PW(17)  Q2-S5(8)/PW(22)  Q3-S8(6)/PW(14)-S9(3)/PW(16)  Q6-S20(8)/PW(21)
491Q1-S3(6)/PW(11)  Q2-S5(8)/PW(18)-S6(7)/PW(17)-S7(9)/PW(19)  Q4-S11(6)/PW(9)-S12(4)/PW(12)  
Q5-S15(8)/PW(18)  Q6-S19(5)/PW(13)-S20(5)/PW(11)
2Q1-S1(6)/PW(8)-S2(9)/PW(9)  Q2-S4(5)/PW(15)-S5(8)/PW(8)  Q3-S7(7)/PW(7)-S8(6)/PW(6)  
Q5-S16(4)/PW(14)-S17(6)/PW(6)  Q6-S20(4)/PW(14)
3Q1-S1(6)/PW(17)-S3(3)/PW(13)  Q2-S5(5)/PW(15)-S6(8)/PW(18)  Q3-S7(6)/PW(22)-S8(8)/PW(8)  
Q4-S15(7)/PW(17)-S16(9)/PW(9)
4Q1-S1(3)/PW(21)-S2(7)/PW(17)-S3(4)/PW(18)  Q2-S4(3)/PW(11)-S5(6)/PW(18)  
Q3-S8(6)/PW(14)-S9(6)/PW(13)  Q6-S20(7)/PW(17)
5Q1-S1(1)/PW(15)-S2(7)/PW(11)-S3(7)/PW(17)  Q2-S5(8)/PW(8)  Q3-S8(4)/PW(22)-S9(6)/PW(16)  
Q6-S19(8)/PW(18)-S20(7)/PW(21)
501Q2-S5(4)/PW(14)-S6(5)/PW(15)  Q4-S10(7)/PW(17)-S11(8)/PW(18)-S12(2)/PW(22)  
Q5-S15(8)/PW(21)-S17(9)/PW(19) Q6-S19(4)/PW(14)-S20(5)/PW(15)
2Q1-S1(7)/PW(23)-S2(5)/PW(25)  Q2-S4(5)/PW(25)-S5(7)/PW(28)-S6(4)/PW(24)  
Q3-S8(4)/PW(14)  Q5-S16(2)/PW(14)-S17(5)/PW(15)  Q6-S19(3)/PW(13)-S20(4)/PW(14)
3Q1-S1(6)/PW(16)-S2(8)/PW(18)-S3(3)/PW(13)  Q2-S5(5)/PW(15)-S6(7)/PW(17)  
Q3-S7(6)/PW(16)-S8(8)/PW(18)  Q4-S15(7)/PW(17)
4Q1-S1(4)/PW(15)-S2(7)/PW(17)  Q2-S4(4)/PW(14)-S5(8)/PW(21)  Q3-S8(5)/PW(16)-S9(6)/PW(16)  
Q6-S18(5)/PW(18)-S20(7)/PW(17)
5Q1-S1(4)/PW(14)-S2(6)/PW(17)-S3(8)/PW(18)  Q2-S5(8)/PW(18)  Q3-S8(5)/PW(14)-S9(6)/PW(26)  
Q6-S19(7)/PW(17)
511Q1-S2(9)/PW(18)  Q2-S5(4)/PW(14)-S6(7)7PW(17)  Q4-S10(4)/PW(14)-S11(8)/PW(18)-S12(5)/PW(15)  
Q5-S15(8)/PW(8)-S16(7)/PW(7)  Q6-S18(6)/PW(16)-S19(8)/PW(18)-S20(9)/PW(21)
2Q1-S1(8)/PW(10)-S2(8)/PW(12)  Q2-S4(5)/PW(17)-S5(8)/PW(20)-S6(9)/PW(19)  Q3-S8(6)/PW(16)  
Q5-S16(3)/PW(14)  Q6-S19(3)/PW(11)-S20(4)/PW(14)
3Q1-S2(5)/PW(15)  Q2-S6(6)/PW(15)-S7(7)/PW(17)  Q4-S15(7)/PW(16)
4Q1-S1(8)/PW(17)-S2(4)/PW(19)-S3(9)/PW(9)  Q2-S4(8)/PW(21)-S5(5)/PW(10)  
Q3-S8(5)/PW(15)-S9(6)/PW(16)  Q5-S18(4)/PW(14)  Q6-S19(8)/PW(18)-S20(7)/PW(17)
5Q1-S1(5)/PW(16)-S2(7)/PW(17)  Q2-S4(7)/PW(17)-S5(8)/PW(12)  
Q3-S7(5)/PW(15)-S8(4)/PW(24)-S9(6)/PW(16)  Q6-S19(8)/PW(20)-S20(6)/PW(16)
521Q1-S3(8)/PW(23)  Q2-S6(6)/PW(16)-S7(5)/PW(15)  Q4-S10(3)/PW(14)-S11(3)/PW(13)-S12(2)/PW(12)  
Q5-S15(8)/PW(18)  Q6-S20(5)/PW(15)
2Q1-S1(5)/PW(21)-S2(6)/PW(18)  Q2-S4(6)/PW(24)-S5(7)/PW(17)  Q3-S8(7)/PW(14)  
Q5-S16(5)/PW(15)-S17(4)/PW(14)  Q6-S19(7)/PW(17)-S20(8)/PW(18)
3Q1-S1(4)/PW(22)-S2(6)/PW(18)  Q2-S5(7)/PW(17)-S6(5)/PW(24)  Q3-S7(6)/PW(11)-S8(5)/PW(15)  
Q4-S15(7)/PW(19)-S16(8)/PW(18)
4Q1-S1(4)/PW(18)-S2(6)/PW(16)  Q2-S4(5)/PW(15)-S5(4)/PW(24)  Q3-S8(7)/PW(24)  Q6-S20(7)/PW(21)
5Q1-S2(8)/PW(8)  Q2-S5(7)/PW(18)  Q3-S8(4)/PW(24)-S9(6)/PW(16)  Q6-S19(9)/PW(19)
531Q1-S2(9)/PW(18)-S3(3)/PW(12)  Q2-S4(6)/PW(16)-S6(7)/PW(17)  
Q4-S10(6)/PW(20)-S11(8)/PW(18)-S12(2)/PW(12)  Q5-S15(7)/PW(18)-S16(9)/PW(9)  
Q6-S18(7)/PW(17)-S19(6)/PW(16)-S20(5)/PW(20)
2Q1-S1(8)/PW(15)-S2(6)/PW(26)  Q2-S4(5)/PW(15)-S5(8)/PW(18)-S6(7)/PW(17)  
Q3-S8(6)/PW(24)-S9(7)/PW(17)  Q5-S16(4)/PW(24)-S17(5)/PW(15)  Q6-S19(6)/PW(16)
3Q1-S3(3)/PW(13)  Q2-S5(5)/PW(15)-S6(7)/PW(17)  Q3-S7(6)/PW(16)-S8(7)/PW(17)  
Q4-S15(7)/PW(17)-S16(6)/PW(16)
4Q1-S2(7)/PW(17)  Q2-S5(8)/PW(18)  Q3-S8(5)/PW(15)-S9(6)/PW(16)-S10(4)/PW(24)  Q6-S19(8)/PW(18)
5Q1-S1(1)/PW(24)-S2(7)/PW(17)  Q2-S5(3)/PW(21)  Q3-S8(4)/PW(24)-S9(6)/PW(16)  
Q6-S18(4)/PW(22)-S19(8)/PW(19)
541Q2-S6(9)/PW(17)  Q4-S10(7)/PW(21)-S12(1)/PW(22)  Q5-S15(10)/PW(18)  
Q6-S19(11)/PW(14)-S20(5)/PW(15)
2Q1-S1(3)/PW(23)  Q2-S4(5)/PW(15)-S5(8)/PW(18)  Q3-S8(6)/PW(16)  Q5-S16(4)/PW(24)  
Q6-S19(3)/PW(23)-S20(4)/PW(24)
3Q1-S1(4)/PW(17)-S2(2)/PW(22)-S3(3)/PW(13)  Q2-S5(5)/PW(15)  Q3-S7(6)/PW(16)  Q4-S15(7)/PW(17)
4Q1-S1(3)/PW(12)-S2(6)(PW(14)  Q2-S4(2)/PW(11)-S5(8)/PW(18)  Q3-S8(6)/PW(23)-S9(6)/PW(16)  
Q6-S20(7)/PW(17)
5Q1-S1(1)/PW(21)-S2(5)/PW(17)  Q2-S5(3)/PW(18)  Q3-S8(4)/PW(14)-S9(6)/PW(16)  Q6-S20(7)/PW(22)
551Q1-S1(5)/PW(18)  Q2-S6(7)/PW(17)-S7(5)/PW(15)  Q3-S15(8)/PW(8)  
Q4-S10(4)/PW(17)-S11(5)/PW(15)-S12(2)/PW(23)  Q5-S15(8)/PW(8)  
Q6-S18(9)/PW(19)-S19(4)/PW(14)-S20(5)/PW(15)
2Q1-S1(3)/PW(23)-S2(7)/PW(17)  Q3-S8(6)/PW(16)  Q5-S16(4)/PW(14)  Q6-S19(3)/PW(13)-S20(4)/PW(14)
3Q1-S1(11)/PW(19)-S3(3)/PW(23)  Q2-S5(5)/PW(25)  Q3-S7(6)/PW(16)  Q4-S15(7)/PW(17)
4Q1-S1(6)/PW(26)-S2(7)/PW(11)-S3(8)/PW(18)  Q2-S4(9)/PW(15)-S5(8)/PW(18)  
Q3-S8(8)/PW(16)-S9(6)/PW(19)-S10(7)/PW(17)  Q6-S19(6)/PW(16)-S20(9)/PW(16)
5Q1-S2(7)/PW(17)  Q2-S5(8)/PW(8)  Q3-S9(6)/PW(16)  Q6-S19(9)/PW(24)-S20(7)/PW(17)
561Q4-S10(7)/PW(15)-S12(9)/PW(20)  Q5-S15(8)/PW(18)
2Q2-S4(5)/PW(15)-S5(8)/PW(18)  Q3-S8(6)/PW(16)  Q5-S16(5)/PW(24)  Q6-S19(3)/PW(13)-S20(4)/PW(24)
3Q1-S1(9)/PW(18)-S2(2)/PW(24)-S3(3)/PW(23)  Q2-S5(5)/PW(15)  Q3-S7(6)/PW(16)  Q4-S15(7)/PW(17)
4Q1-S1(3)/PW(18)-S2(7)/PW(17)  Q2-S4(3)/PW(19)-S5(8)/PW(21)  Q3-S8(10)/PW(21)-S9(6)/PW(15)  
Q6-S20(7)/PW(18)
5Q1-S1(4)/PW(13)-S2(9)/PW(20)-S3(9)/PW(15)  Q2-S5(8)/PW(19)  
Q3-S6(4)/PW(16)-S8(7)/PW(18)-S9(6)/PW(16)  Q6-S19(5)/PW(17)-S20(4)/PW(21)
571Q1-S2(9)/PW(21)-S3(5)/PW(15)  Q2-S6(4)/PW(17)  Q4-S10(7)/PW(17)-S12(5)/PW(22)  
Q5-S15(8)/PW(18)-S16(5)/PW(25)  Q6-S18(6)/PW(26)-S20(5)/PW(25)
2Q1-S1(3)/PW(23)-S2(8)/PW(18)  Q2-S4(5)/PW(15)  Q3-S7(4)/PW(14)-S8(6)/PW(16)  
Q5-S16(4)/PW(24)-S17(3)/PW(17)  Q6-S20(9)/PW(19)
3Q1-S1(8)/PW(19)-S3(4)/PW(14)  Q2-S5(5)/PW(15)-S6(7)/PW(17)  
Q3-S7(6)/PW(26)-S8(5)/PW(15)  Q4-S15(7)/PW(17)-S16(8)/PW(18)  Q5-S18(9)/PW(19)
4Q1-S1(3)/PW(23)-S2(7)/PW(17)  Q2-S4(1)/PW(21)-S5(4)/PW(8)  Q3-S8(6)/PW(13)-S9(6)/PW(19)  
Q6-S20(7)/PW(22)
5Q1-S2(9)/PW(21)  Q2-S5(8)/PW(18)  Q3-S8(4)/PW(14)-S9(6)/PW(16)
581Q1-S2(9)/PW(18)-S3(4)/PW(14)  Q2-S6(7)/PW(17)  Q4-S10(7)/PW(27)-S12(9)/PW(19)  Q5-S15(8)/PW(18)  
Q6-S18(5)PW(15)-S19(4)/PW(24)-S20(5)/PW(25)
2Q1-S1(8)/PW(19)-S2(5)/PW(25)  Q2-S4(9)/PW(24)  Q3-S8(6)/PW(26)-S9(6)/PW(16)
Q5-S16(6)/PW(16)-S17(7)/PW(17)  Q6-S19(8)/PW(18)-S20(4)/PW(24)
3Q1-S1(9)/PW(19)-S3(7)/PW(17)  Q2-S5(5)PW(15)  Q3-S7(6)/PW(16)-S8(5)/PW(15)  
Q4-S15(9)/PW(19)-S16(4)/PW(24)
4Q1-S2(9)/PW(9)-S3(4)/PW(14)  Q2-S5(3)/PW(13)-S6(5)/PW(15)  Q3-S8(6)/PW(16)  
Q6-S18(3)/PW(13)-S19(8)/PW(18)-S20(4)/PW(14)
5Q1-S1(6)/PW(19)-S2(7)/PW(16)-S3(5)/PW(15)  Q2-S5(8)/PW(8)-S8(4)/PW(14)  
Q3-S8(4)/PW(14)-S9(6)/PW(26)-S10(5)/PW(15)  Q6-S19(9)/PW(18)-S20(7)/PW(13)
591Q2-S6(3)/PW(14)-S7(8)/PW(18)  Q4-S10(7)/PW(17)-S11(5)/PW(25)-S12(2)/PW(22)  Q5-S15(8)/PW(18)  
Q6-S19(4)/PW(24)-S20(5)/PW(15)
2Q1-S1(6)/PW(16)  Q2-S4(5)/PW(15)-S5(8)/PW(18)  Q3-S8(6)/PW(26)  Q5-S16(5)/PW(26)  
Q6-S19(13)/PW(13)-S20(4)/PW(14)
3Q1-S2(9)/PW(9)-S3(7)/PW(18)  Q2-S5(5)/PW(15)  Q3-S7(6)/PW(16)  Q4-S15(7)/PW(17)
4Q1-S2(9)/PW(19)  Q2-S4(11)/PW(11)-S5(8)/PW(18)  Q3-S8(4)/PW(7)-S9(6)/PW(16)  
Q6-S19(2)/PW(22)-S20(3)/PW(14)
5Q2-S5(8)/PW(8)  Q3-S8(4)/PW(24)-S9(6)/PW(16)  Q6-S19(5)/PW(15)-S20(6)/PW(19)
601Q2-S6(7)/PW(11)-S7(9)/PW(9)  Q3-S9(8)PW(15)  Q4-S10(3)/PW(19)-S11(8)/PW(18)-S12(2)/PW(22)  
Q5-S15(9)/PW(9)  Q6-S18(6)/PW(16)-S19(4)/PW(14)-S20(5)/PW(25)
2Q1-S1(3)/PW(23)-S2(8)/PW(18)  Q2-S4(9)/PW(9)-S5(6)/PW(16)  Q3-S7(7)/PW(17)-S8(6)/PW(16)  
Q6-S20(4)/PW(14)
3Q1-S2(12)/PW(12)  Q2-S5(8)/PW(9)  Q3-S7(6)/PW(16)-S8(7)/PW(17)  Q4-S15(8)/PW(19)-S16(9)/PW(9)  
Q6-S19(8)/PW(18)
4Q1-S2(7)/PW(17)-S3(8)/PW(18)  Q3-S8(6)/PW(16)-S9(6)/PW(16)-S10(5)/PW(25)  Q5-S17(9)/PW(19)  
Q6-S19(5)/PW(25)-S20(8)/PW(18)
5Q2-S5(3)/PW(18)  Q3-S8(5)/PW(21)-S9(6)/PW(16)
611Q1-S1(6)/PW(21)-S2(5)/PW(19)-S3(4)/PW(14)  Q4-S10(5)/PW(15)-S11(7)/PW(16)-S12(8)/PW(22)  
Q6-S19(4)/PW(24)-S20(5)/PW(15)
2Q2-S4(5)/PW(25)-S5(8)/PW(18)  Q3-S8(6)/PW(26)-S9(7)/PW(17)  Q6-S19(9)/PW(9)
3Q1-S3(5)/PW(9)  Q2-S5(5)/PW(25)-S6(7)/PW(17)  Q3-S7(6)/PW(26)  Q4-S15(7)/PW(17)  
Q6-S18(8)/PW(18)-S19(9)/PW(19)
4Q1-S2(7)/PW(17)  Q2-S4(11)/PW(11)-S5(8)/PW(18)  Q3-S8(6)/PW(19)-S9(6)/PW(18)  Q6-S20(7)/PW(20)
5Q1-S1(4)/PW(24)-S2(5)/PW(16)  Q2-S5(8)/PW(27)  Q3-S8(4)/PW(22)-S9(6)/PW(16)  Q4-S11(4)/PW(17)
621Q1-S1(8)/PW(18)-S3(7)/PW(24)  Q2-S5(6)/PW(18)  Q4-S10(7)/PW(17)-S11(8)/PW(9)-S12(5)/PW(17)  
Q5-S15(9)/PW(8)-S16(3)/PW(15)  Q6-S20(7)/PW(9)
2Q1-S1(6)/PW(3)-S2(8)/PW(9)  Q3-S8(4)/PW(16)-S9(5)/PW(8)  Q5-S16(8)/PW(14)-S17(5)/PW(15)  
Q6-S19(7)/PW(9)
3Q1-S1(6)/PW(18)-S2(7)/PW(12)  Q2-S5(7)/PW(9)  Q3-S7(8)/PW(16)-S8(4)/PW(19)  
Q4-S15(7)/PW(27)-S16(6)/PW(18)
4Q2-S5(9)/PW(8)-S6(3)/PW(7)  Q3-S8(9)/PW(6)-S9(5)/PW(9)  Q6-S18(3)/PW(3)-S20(9)/PW(9)
5Q1-S2(5)/PW(17)-S3(9)/PW(9)  Q2-S4(2)/PW(20)-S5(8)/PW(18)  
Q3-S8(5)/PW(21)-S9(6)/PW(16)-S10(3)/PW(13)  Q4-S16(4)/PW(14)  Q5-S17(3)/PW(18)-S18(5)/PW(15)  Q6-S20(9)/PW(21)
631Q1-S3(9)/PW(24)  Q2-S6(7)/PW(17)  Q5-S15(8)/PW(18)-S16(9)/PW(9)
2Q1-S1(7)/PW(23)-S2(3)/PW(18)  Q2-S4(5)/PW(15)-S5(8)/PW(18)-S6(7)/PW(17)  Q3-S8(6)/PW(16)  
Q4-S15(6)/PW(16)  Q6-S20(9)/PW(19)
3Q1-S1(7)/PW(9)-S2(8)/PW(8)  Q2-S4(4)/PW(24)-S5(5)/PW(25)  Q3-S7(6)/PW(26)-S8(9)/PW(17)
4Q2-S4(3)/PW(23)-S5(7)/PW(17)-S6(3)/PW(18)  Q6-S19(9)/PW(23)-S20(7)/PW(11)
5Q2-S5(7)/PW(19)  Q3-S9(6)/PW(6)  Q6-S18(8)/PW(9)-S20(5)/PW(15)
641Q1-S1(9)/PW(14)-S2(3)/PW(20)-S3(2)/PW(14)  Q2-S5(9)/PW(16)-S6(7)/PW(17)  
Q4-S10(2)/PW(19)-S11(8)/PW(18)  Q5-S14(6)/PW(16)-S15(8)/PW(18)  Q6-S19(6)/PW(16)-S20(3)/PW(13)
2Q2-S5(6)/PW(16)-S6(7)/PW(17)  Q3-S8(9)/PW(19)-S9(5)/PW(15)  Q5-S16(7)/PW(23)-S17(2)/PW(22)  
Q6-S20(4)/PW(12)
3Q1-S1(6)/PW(16)-S3(9)/PW(9)  Q4-S15(7)/PW(21)-S16(5)/PW(15)  Q6-S19(8)/PW(18)
4Q1-S1(3)/PW(13)-S2(7)/PW(17)-S3(6)/PW(16)  Q2-S5(8)/PW(8)-S6(5)/PW(15)  
Q6-S19(8)/PW(18)-S20(9)/PW(9)
5Q1-S2(3)/PW(17)  Q2-S5(9)/PW(14)-S6(5)/PW(15)  Q3-S8(7)/PW(21)
651Q1-S1(7)/PW(15)-S2(4)/PW(16)-S3(5)/PW(14)  Q2-S5(8)PW(18)-S6(7)/PW(17)-S7(5)/PW(15)  
Q3-S8(3)/PW(23)  Q4-S12(9)/PW(9)  Q5-S15(8)/PW(18)
2Q1-S1(9)/PW(9)-S2(5)/PW(15)  Q2-S4(4)/PW(24)-S5(7)/PW(17)  Q3-S8(5)/PW(15)-S9(4)PW(24)  
Q5-S16(8)/PW(8)  Q6-S19(9)/PW(9)-S20(6)/PW(6)
3Q1-S2(7)/PW(18)-S3(9)/PW(9)  Q2-S5(5)/PW(15)  Q3-S6(4)/PW(10)-S7(6)/PW(16)
4Q1-S1(5)/PW(16)-S2(7)/PW(17)-S3(8)/PW(18)  Q2-S4(9)/PW(12)-S5(8)/PW(18)-S6(3)/PW(11)  
Q3-S8(6)/PW(16)-S9(6)/PW(16)  Q6-S19(8)/PW(18)-S20(7)/PW(17)
5Q1-S2(8)/PW(17)   Q2-S4(5)/PW(14)-S5(3)/PW(8)  Q3-S8(7)/PW(14)-S9(6)/PW(16)  
Q6-S19(6)/PW(16)-S20(7)/PW(17)
661Q1-S3(4)/PW(14)  Q2-S6(7)/PW(17)-S7(8)/PW(18)  Q4-S10(7)/PW(17)  Q5-S15(8)/PW(8)-S16(8)/PW(8)  
Q6-S18(4)/PW(14)-S20(5)/PW(15)
2Q1-S1(7)/PW(17)-S2(8)/PW(18)  Q2-S4(2)/PW(21)-S5(3)/PW(13)-S6(4)/PW(24)  
Q3-S7(5)/PW(15)-S8(6)/PW(16)-S9(7)/PW(17)  Q5-S16(4)/PW(14)-S17(5)/PW(15)  
Q6-S18(7)/PW(17)-S20(4)/PW(24)
3Q1-S1(8)/PW(18)-S2(9)/PW(19)  Q2-S5(5)/PW(15)-S6(6)/PW(16)  Q3-S7(6)/PW(16)-S8(7)/PW(17)  
Q4-S14(7)/PW(17)-S15(8)/PW(18)
4Q2-S4(7)/PW(18)-S5(8)/PW(18)  Q3-S8(9)/PW(19)
5Q1-S2(5)/PW(14)  Q2-S5(8)/PW(16)-S6(7)/PW(17)  Q3-S8(5)/PW(15)-S9(7)/PW(17)  
Q5-S16(6)/PW(16)-S17(3)/PW(23)  Q6-S18(4)/PW(14)-S19(8)/PW(18)
671Q1-S1(7)/PW(19)-S2(1)/PW(21)-S3(4)/PW(14)  Q2-S4(3)/PW(23)-S6(5)/PW(15)  
Q4-S10(7)/PW(15)-S11(6)/PW(16)-S12(2)/PW(12)  Q6-S19(7)/PW(17)
2Q1-S1(11)/PW(13)-S2(5)/PW(15)-S3(5)/PW(16)  Q2-S5(9)/PW(15)-S6(7)/PW(8)  
Q3-S7(4)/PW(17)-S8(5)/PW(16)  Q5-S6(6)/PW(4)-S17(8)PW(5)
3Q1-S1(6)/PW(16)-S3(8)/PW(23)  Q2-S5(8)/PW(18)-S6(9)/PW(9)  Q3-S7(7)/PW(17)-S8(8)/PW(19)  
Q4-S14(6)/PW(26)-S15(7)/PW(7)  Q6-S19(8)/PW(18)-S20(6)/PW(14)
4Q1-S1(3)/PW(3)-S2(6)/PW(6)-S3(4)/PW(4)  Q4-S5(8)/PW(8)  Q6-S20(7)/PW(7)
5Q1-S1(6)/PW(24)-S2(7)/PW(17)-S3(8)/PW(18)  Q2-S4(5)/PW(25)-S5(8)/PW(18)  
Q3-S8(3)/PW(24)-S9(6)/PW(16)  Q5-S17(6)/PW(16)  Q6-S19(4)/PW(21)-S20(7)/PW(17)
681Q1-S1(7)/PW(22)-S3(6)/PW(14)  Q2-S6(9)/PW(9)  Q4-S10(6)/PW(16)-S12(3)/PW(13)  Q5-S15(8)/PW(18)
Q6-S19(6)/PW(16)-S20(8)/PW(18)
2Q1-S1(6)/PW(16)  Q2-S4(6)/PW(22)-S5(8)/PW(18)  Q3-S8(9)/PW(17)  Q5-S16(6)/PW(6)  
Q6-S19(7)/PW(15)-S20(3)/PW(23)
3Q1-S1(9)/PW(19)-S3(6)/PW(26)  Q2-S5(5)/PW(5)  Q3-S7(7)/PW(7)  Q4-S15(8)/PW(8)
4Q1-S1(4)/PW(14)-S2(8)/PW(18)  Q2-S4(3)/PW(16)-S5(11)/PW(11)  Q3-S8(9)PW(19)-S9(6)/PW(26)  
Q6-S19(4)/PW(14)-S20(8)/PW(18)
5Q1-S1(6)/PW(16)-S2(8)/PW(18)  Q2-S5(8)(PW(18)  Q3-S8(9)/PW(11)-S9(5)/PW(15)  
Q6-S19(3)/PW(23)-S20(6)/PW(16)
691Q1-S1(7)/PW(17)-S3(5)/PW(13)  Q2-S6(9)/PW(8)  Q4-S12(9)/PW(9)  Q6-S20(6)/PW(16)
2Q2-S4(9)/PW(11)-S5(6)/PW(16)-S6(5)/PW(15)  Q3-S7(7)/PW(17)-S8(8)/PW(8)  Q4-S9(9)/PW(9)  
Q5-S16(3)/PW(23)-S17(2)/PW(20)  Q6-S20(4)/PW(9)
3Q1-S2(6)/PW(9)-S3(3)/PW(13)  Q3-S7(7)/PW(17)-S8(8)/PW(18)  Q6-S18(9)/PW(9)
4Q1-S2(9)/PW(17)  Q2-S5(7)/PW(18)-S6(4)/PW(14)  Q3-S7(6)/PW(15)-S8(6)/PW(16)-S9(6)/PW(16)  
Q6-S19(5)/PW(15)-S20(6)/PW(16)
5Q1-S2(7)/PW(17)  Q2-S5(8)/PW(18)  Q3-S8(4)/PW(14)-S9(6)/PW(16)  Q5-S16(4)/PW(14)-S17(5)PW(15)
Q6-S19(3)/PW(13)-S20(8)/PW(19)
701Q1-S1(10)/PW(17)-S2(2)/PW(11)-S3(4)/PW(15)  Q2-S5(6)/PW(16)-S7(7)/PW(17)  
Q3-S8(5)/PW(15)-S9(4)/PW(24)  Q5-S15(6)/PW(16)  Q6-S20(9)/PW(19)
2Q1-S1(3)/PW(14)-S2(5)/PW(15)-S3(8)/PW(18)  Q2-S4(4)/PW(19)-S5(3)/PW(13)  
Q3-S7(3)/PW(23)-S8(9)/PW(9)  Q5-S16(6)/PW(16)-S17(7)/PW(17)
3Q1-S2(13)/PW(17)-S3(3)PW(13)  Q2-S5(6)/PW(16)-S6(7)/PW(17) Q3-S7(11)/PW(11)  
Q4-S15(3)/PW(23)-S16(4)/PW(14)  Q6-S18(5)/PW(15)-S19(6)/PW(16)
4Q1-S1(9)/PW(9)-S2(7)/PW(17)  Q2-S5(8)/PW(8)  Q3-S8(5)/PW(15)-S9(4)/PW(14)  
Q6-S19(8)/PW(8)-S20(9)/PW(9)
5Q1-S2(8)/PW(9)-S3(7)/PW(17)  Q2-S4(6)/PW(16)-S5(5)/PW(15)  Q3-S8(4)/PW(24)-S9(3)/PW(16)  
Q4-S11(7)/PW(16)-S12(8)/PW(8)  Q5-S16(10)/PW(19)-S17(8)/PW(18)
711Q1-S1(7)/PW(18)-S3(5)PW(25)  Q2-S6(6)/PW(16)  Q4-S10(6)/PW(16)-S12(3)/PW(23)  Q5-S15(9)/PW(19)
Q6-S19/PW(17)-S20(3)/PW(13)
2Q1-S1(6)/PW(16)  Q2-S4(9)/PW(17)-S5(8)/PW(18)  Q3-S8(5)/PW(19)  Q5-S16(5)/PW(25)  
Q6-S19(4)/PW(24)-S20(5)/PW(15)
3Q1-S1(6)/PW(16)-S2(3)/PW(13)-S3(5)/PW(15)  Q2-S5(8)/PW(19)  Q3-S7(3)/PW(17)  Q4-S15(9)/PW(19)
4Q1-S1(7)/PW(17)-S2(3)/PW(23)  Q2-S4(2)/PW(20)-S5(4)/PW(14)  Q3-S8(7)/PW(22)-S9(3)/PW(23)  
Q6-S20(10)/PW(18)
5Q1-S1(3)/PW(25)-S2(3)/PW(19)  Q2-S5(5)/PW(24)  Q3-S8(6)/PW(23)-S9(8)/PW(17)  Q6-S20(8)/PW(26)
721Q3-S7(9)/PW(16)  Q4-S10(8)/PW(18)-S11(6)/PW(17)-S12(3)/PW(23)  Q5-S15(5)/PW(14) Q6-S20(5)/PW(15)
2Q1-S1(8)/PW(19)-S2(8)/PW(18)-S3(4)/PW(24)  Q2-S5(3)/PW(13)  Q3-S7(5)/PW(23)-S8(7)/PW(18)  
Q5-S16(6)/PW(16)-S17(7)/PW(17)  Q6-S19(8)/PW(18)
3Q1-S1(7)/PW(9)  Q3-S7(6)/PW(16)-S8(9)/PW(19)  Q4-S14(6)/PW(26)-S15(7)/PW(17)  
Q5-S16(9)/PW(9)-S17(3)/PW(13)  Q6-S18(8)/PW(8)-S19(9)/PW(9)
4Q1-S1(10)/PW(16)-S2(3)/PW(17)-S3(5)/PW(10)  Q2-S4(2)/PW(5)  Q3-S8(3)/PW(13)-S9(7)/PW(7)  
Q5-S16(5)/PW(15)  Q6-S18(5)/PW(15)-S19(9)/PW(9)
5Q1-S2(9)/PW(9)  Q3-S8(3)/PW(13)-S9(2)/PW(21)  Q6-S19(5)/PW(16)-S20(3)/PW(27)
731Q1-S1(6)/PW(23)-S2(2)/PW(19)-S3(4)/PW(13)  Q2-S5(5)/PW(15)-S6(7)/PW(17)  
Q3-S7(3)/PW(16)-S8(5)/PW(20)  Q4-S10(4)/PW(17)-S11(3)/PW(13)-S12(2)/PW(21)  
Q5-S15(8)/PW(18)-S16(4)/PW(24)  Q6-S18(6)/PW(16)-S19(4)/PW(24)-S20(5)/PW(15)
2Q1-S1(5)/PW(13)-S2(8)/PW(18)  Q2-S4(5)/PW(15)-S5(8)/PW(18)  Q3-S8(6)/PW(16)-S9(7)/PW(17)  
Q5-S16(4)/PW(14)-S17(5)/PW(23)  Q6-S18(5)/PW(15)-S20(4)/PW(24)
3Q1-S1(7)/PW(16)-S3(13)/PW(23)  Q2-S5(6)/PW(16)  Q3-S7(9)/PW(19)  Q4-S15(8)/PW(18)-S16(9)/PW(19)
4Q1-S2(9)/PW(19)-S3(5)/PW(15)  Q2-S4(3)/PW(11)-S5(9)/PW(9)  Q3-S7(4)/PW(14)  
Q4-S10(5)/PW(15)-S11(6)/PW(16)
5Q1-S2(8)/PW(19)-S3(8)/PW(19)  Q2-S4(4)/PW(22)-S5(8)/PW(12)  
Q3-S8(3)PW(13)-S9(9)/PW(16)-S10(2)/PW(14)  Q5-S16(8)/PW(20)-S17(3)/PW(13)  
Q6-S18(7)/PW(15)-S19(6)/PW(11)-S20(3)/PW(27)
741Q4-S10(8)/PW(16)-S11(8)/PW(18)-S12(2)PW(22)  Q5-S15(9)/PW(18)-S16(3)/PW(18)  Q6-S19(5)/PW(15)
2Q1-S1(3)/PW(23)-S2(8)/PW(18)  Q2-S5(8)/PW(18)-S6(7)/PW(21)  
Q3-S8(5)/PW(22)-S9(4)/PW(18)-S10(3)/PW(13)  Q5-S16(4)/PW(14)-S17(5)  
Q6-S18(5)/PW(17)-S20(4)/PW(20)
3Q1-S1(9)/PW(9)-S3(5)/PW(15)  Q2-S5(5)/PW(15)-S6(6)/PW(16)  Q3-S7(6)/PW(16)-S8(8)/PW(18)  
Q4-S15(7)/PW(17)-S16(8)/PW(18)
4Q1-S1(8)/PW(23)-S2(7)/PW(17)-S3(4)/PW(24)  Q2-S5(8)/PW(18)  Q3-S8(6)/PW(16)-S9(5)/PW(15)  
Q6-S19(9)/PW(8
5Q1-S1(6)/PW(16)-S2(7)/PW(23)-S3(6)/PW(15)  Q2-S5(7)/PW(18)-S6(8)/PW(24)  
Q3-S8(4)/PW(14)-S9(6)/PW(25)-S10(8)/PW(23) Q6-S18(4)/PW(14)-S19(6)/PW(15)-S20(8)/PW(17)
751Q2-S6(4)/PW(18)-S7(9)/PW(19)  Q4-S10(6)/PW(17)-S12(5)/PW(22)  Q5-S15(8)/PW(18)
2Q1-S1(7)/PW(23)  Q2-S4(5)/PW(15)-S5(8)/PW(18)  Q3-S8(6)/PW(16)  Q5-S16(5)/PW(14)  
Q6-S19(6)/PW(23)-S20(4)/PW(14)
3Q1-S1(6)/PW(17)-S2(2)/PW(22)-S3(5)/PW(15)  Q2-S5(4)/PW(5)  Q3-S7(3)/PW(6)  Q4-S15(5)/PW(7)
4Q1-S1(4)/PW(23)-S2(7)/PW(17)  Q2-S4(5)/PW(21)-S5(6)/PW(18)  Q3-S8(8)/PW(6)-S9(6)/PW(6)  
Q6-S20(6)/PW(17)
5Q1-S1(1)/PW(11)-S2(4)/PW(17)  Q2-S5(3)/PW(18)  Q3-S8(5)/PW(15)-S9(6)/PW(16)  Q6-S20(9)/PW(25)
761Q1-S1(7)/PW(24)  Q2-S4(7)/PW(15)  Q3-S7(4)/PW(13)  Q4-S11(6)/PW(14)-S12(7)/PW(17)  
Q5-S14(5)/PW(18)-S15(4)/PW(14)  Q6-S20(8)/PW(18)
2Q1-S2(3)/PW(13)-S3(5)/PW(15)  Q2-S5(7)/PW(17)  Q4-S11(5)/PW(19)-S12(4)/PW(17)-S13(3)/PW(15)  
Q5-S14(8)/PW(18)-S15(4)/PW(14)  Q6-S18(4)/PW(14)-S20(8)/PW(18)
3Q1-S1(5)/PW(16)-S2(7)/PW(19)-S3(4)/PW(14)  Q3-S8(8)/PW(22)  Q4-S12(9)/PW(19)-S13(8)/PW(26)  
Q5-S14(8)/PW(18)-S15(4)/PW(24).  Q6-S18(9)/PW(19)-S20(8)/PW(18)
4Q1-S1(9)/PW(19)-S2(8)/PW(18)-S3(5)/PW(25)  Q2-S5(5)/PW(25)  
Q4-S11(9)/PW(19)-S12(4)/PW(24)-S13(5)/PW(15)  Q5-S14(3)/PW(23)-S15(4)/PW(24)  Q6-S20(8)/PW(28)
5Q1-S1(7)/PW(16)-S2(8)/PW(19)-S3(4)/PW(24)  Q3-S8(6)/PW(16)  Q4-S12(7)/PW(19)-S13(6)/PW(16)  
Q5-S14(8)/PW(18)-S15(4)/PW(24)  Q6-S18(10)/PW(19)-S20(6)/PW(28)
771Q1-S3(7)/PW(18)  Q2-S6(5)/PW(15)  Q3-S7(4)/PW(14)  Q4-S9(6)PW(24)-S10(5)/PW(15)  
Q5-S13(7)/PW(18)-S14(9)/PW(19)  Q6-S19(6)/PW(24)
2Q1-S1(5)/PW(20)  Q2-S6(8)/PW(18)  Q4-S11(8)/PW(18)-S13(3)/PW(23) Q5-S14(7)/PW(27)  
Q6-S18(8)/PW(18)-S19(5)/PW(22)    
3Q1-S2(3)/PW(25)-S3(6)/PW(23)  Q2-S6(4)/PW(19) Q3-S7(7)/PW(24)-S8(8)/PW(17)  
Q4-S8(5)/PW(8) Q5-S16(5)/PW(14)  Q6-S20(7)/PW(17)
4Q1-S1(8)/PW(21)-S2(7)/PW(17)-S3(3)/PW(23)  Q2-S6(8)/PW(8) Q4-S11(9)/PW(8)-S13(2)/PW(23)  
Q5-S14(7)/PW(17)  Q6-S18(8)/PW(28)-S19(2)/PW(22)
5Q1-S2(5)/PW(15)-S3(3)/PW(23)  Q3-S7(7)/PW(24)-S8(7)/PW(17)  Q4-S8(8)/PW(18)  
Q5-S15(3)/PW(25)-S16(6)/PW(24)  Q6-S20(7)/PW(24)
781Q1-S1(8)/PW(22)-S3(4)/PW(14)  Q2-S6(6)/PW(17)  Q4-S10(8)/PW(17)-S12(2)/PW(22) Q5-S15(8)/PW(18)
Q6-S19(4)/PW(14)-S20(5)/PW(15)
2Q1-S1(3)/PW(23)  Q2-S4(5)/PW(15)-S5(8)/PW(18)  Q3-S8(6)/PW(26)  Q5-S16(4)/PW(18)  
Q6-S19(3)/PW(23)-S20(4)/PW(24)
3Q1-S1(6)/PW(17)-S2(2)/PW(21)-S3(3)/PW(13)  Q2-S5(5)/PW(15)  Q3-S7(6)/PW(16)  
Q4-S15(7)/PW(17)
4Q1-S1(8)/PW(23)-S2(7)/PW(17)  Q2-S4(6)/PW(19)-S5(6)/PW(18)  Q3-S8(5)/PW(16)-S9(6)/PW(16)  
Q6-S20(3)/PW(17)
5Q1-S1(3)/PW(11)-S2(7)/PW(17)  Q2-S5(8)/PW(18)  Q3-S8(8)/PW(24)-S9(6)/PW(16)  Q6-S20(5)/PW(26)
791Q1-S1(5)/PW(11)-S2(2)/PW(22)-S3(4)/PW(14)  Q2-S4(1)/PW(25)-S6(7)/PW(17)  
Q4-S10(7)/PW(17)-S12(2)/PW(12)  Q5-S15(8)/PW(18)  Q6-S19(4)/PW(14)-S20(5)/PW(15)
2Q1-S1(3)/PW(23)  Q2-S4(5)/PW(19)-S5(8)/PW(18)  Q3-S8(6)/PW(26)  Q5-S16(5)/PW(14)  
Q6-S19(3)/PW(23)-S20(4)/PW(24)
3Q1-S1(7)/PW(17)-S2(6)/PW(22)-S3(3)/PW(23)  Q2-S5(4)/PW(19)  Q3-S7(6)/PW(16)  Q4-S15(7)/PW(17)
4Q1-S1(3)/PW(23)-S2(7)/PW(17)  Q2-S4(3)/PW(21)-S5(8)7PW(18)  Q3-S8(2)/PW(16)-S9(6)/PW(26)  
Q6-S20(11)/PW(17)
5Q1-S1(4)/PW(21)-S2(6)/PW(17)  Q2-S5(8)/PW(18)  Q3-S8(5)/PW(24)-S9(6)/PW(26)  Q6-S20(8)/PW(27)
801Q1-S1(8)/PW(19)-S2(5)/PW(25)-S3(4)/PW(19)  Q2-S6(8)/PW(18)-S7(9)/PW(19)  
Q4-S10(5)/PW(15)-S12(2)/PW(12)  Q5-S15(6)/PW(16)-S16(5)/PW(15)  Q6-S20(5)/PW(15)
2Q1-S1(7)/PW(23)-S2(4)/PW(17)  Q2-S4(5)/PW(19)-S5(7)/PW(18)-S6(6)/PW(16)  
Q3-S8(5)/PW(16)-S9(7)/PW(7)  Q5-S16(4)/PW(24)-S17(3)/PW(25)  
Q6-S18(5)/PW(25)-S19(6)/PW(23)-S20(4)/PW(14)
3Q1-S1(6)/PW(18)-S3(7)/PW(23)  Q2-S5(7)/PW(19)  Q3-S7(5)/PW(17)  Q4-S15(6)/PW(25)-S16(8)/PW(18)  
4Q1-S1(6)/PW(16)-S2(8)/PW(18)-S3(5)/PW(25)  Q2-S4(4)/PW(24)-S5(7)/PW(17)-S6(6)/PW(26)  
Q3-S8(6)/PW(16)-S9(5)/PW(25)  Q6-S19(5)/PW(24)-S20(7)/PW(19)
5Q1-S1(7)/PW(15)-S2(6)/PW(20)  Q2-S5(7)/PW(21)  Q3-S8(4)/PW(18)-S9(6)/PW(16)  Q6-S19(8)/PW(19)
Table A2. Part demands and movement costs between cells.
Table A2. Part demands and movement costs between cells.
PartPart DemandsMovement Costs between Cells
1.
Period
2.
Period
3.
Period
4.
Period
5.
Period
1.
Period
2.
Period
3.
Period
4.
Period
5.
Period
1150908070654540353040
280757075703550454045
340353050453047403747
475706585803448403848
5807570100955240554045
61201009085805550555055
760555065603745403545
850454055503645353540
985757085753350444045
1090706590854035303035
1190757045405543403338
1260555050453252503642
1350454040353545454045
1455504555503840504855
1570605565604545403949
16110908570654742403245
17100807555504555504548
1850454040384038353238
1965504555503345403942
2080757080755245403545
2170656060554050555055
22100958590754555505055
2360555050454037353338
2455504555504338353035
2570605565604030353238
2650454040354545403640
2790858090805555504855
2845403570654045454353
2955504580753340403845
3090807590854045454045
31120858060554538302945
32908580100954655504852
33100757085803252504555
3485706580703548454045
3580706580705245353040
361501251151051004138504555
3790858080753752403545
3840353065603345454045
3945403540354340403548
4090807560554043403942
4190656060504738353035
4270656065604543403538
4360555075704045403540
4495605565604248454045
4570605065605150555055
4615011510575704335353039
4770655580703740403542
4860554575653342454245
4975706080703546504650
5080705090804843454353
511201159575704335303045
5270656060553753555355
5350454040353045454045
5465605555503440403545
5570605555555245554550
5650454040374548403840
5790706080753448454445
5870656075734045554548
5965605565643840353035
6070656060585245403842
6113010510095904736403640
6280656060553047454345
6380706075703539353335
6470605570653041403135
6585706575705045454045
66130858080754052504248
6780756570653855555055
6870656085803745403842
6985807090854040454045
7090807075704550555055
71110959070654045504548
7290858065603552555255
7370656060553045403842
7485504540353844454045
7580706060555543403842
7660555065604050504555
7770656095903055555055
788075701051004039353640
7965605570653549454245
8070555055454050504555

Appendix B

Table A3. Optimal routes for the goal programming, ε-constraint, and AUGMECON methods.
Table A3. Optimal routes for the goal programming, ε-constraint, and AUGMECON methods.
Parts Optimal Route for
Goal Programming
Optimal Route for
ε-Constraint
Optimal Route for
AUGMECON
1x111, x211, x311, x411, x511x111, x211, x311, x411, x511x111, x211, x311, x411, x511
2x123, x222, x323, x422, x523x122, x222, x323, x422, x523x122, x222, x323, x423, x523
3x135, x235, x335, x435, x535x135, x235, x335, x435, x535x135, x235, x335, x435, x535
4x142, x242, x342, x443, x542x142, x242, x342, x443, x542x142, x242, x342, x443, x542
5x155, x255, x355, x455, x555x155, x255, x355, x455, x555x155, x255, x355, x455, x555
6x165, x265, x365, x465, x565x165, x265, x365, x465, x565x165, x265, x365, x465, x565
7x173, x273, x373, x473, x573x173, x273, x373, x473, x573x173, x273, x373, x473, x573
8x185, x285, x385, x483, x585x185, x285, x385, x483, x585x185, x285, x385, x483, x585
9x192, x295, x395, x492, x592x195, x295, x395, x494, x592x195, x295, x395, x494, x592
10x1,10,4, x2,10,1, x3,10,1, x4,10,1, x5,10,5x1,10,5, x2,10,5, x3,10,1, x4,10,1, x5,10,5x1,10,5, x2,10,5, x3,10,1, x4,10,1, x5,10,5
11x1,11,3, x2,11,3, x3,11,3, x4,11,3, x5,11,3x1,11,3, x2,11,3, x3,11,3, x4,11,3, x5,11,3x1,11,3, x2,11,3, x3,11,3, x4,11,3, x5,11,3
12x1,12,5, x2,12,5, x3,12,5, x4,12,5, x5,12,5x1,12,5, x2,12,5, x3,12,5, x4,12,5, x5,12,5x1,12,5, x2,12,5, x3,12,5, x4,12,5, x5,12,5
13x1,13,5, x2,13,5, x3,13,5, x4,13,5, x5,13,5x1,13,5, x2,13,5, x3,13,5, x4,13,5, x5,13,5x1,13,5, x2,13,5, x3,13,5, x4,13,5, x5,13,5
14x1,14,3, x2,14,3, x3,14,3, x4,14,3, x5,14,3x1,14,3, x2,14,3, x3,14,3, x4,14,3, x5,14,3x1,14,3, x2,14,3, x3,14,3, x4,14,3, x5,14,3
15x1,15,5, x2,15,5, x3,15,2, x4,15,2, x5,15,2x1,15,5, x2,15,5, x3,15,2, x4,15,2, x5,15,2x1,15,5, x2,15,5, x3,15,2, x4,15,2, x5,15,2
16x1,16,2, x2,16,1, x3,16,1, x4,16,1, x5,16,3x1,16,2, x2,16,1, x3,16,1, x4,16,1, x5,16,3x1,16,2, x2,16,1, x3,16,1, x4,16,1, x5,16,3
17x1,17,5, x2,17,5, x3,17,5, x4,17,5, x5,17,5x1,17,5, x2,17,5, x3,17,5, x4,17,5, x5,17,5x1,17,5, x2,17,5, x3,17,5, x4,17,5, x5,17,5
18x1,18,4, x2,18,4, x3,18,4, x4,18,4, x5,18,4x1,18,4, x2,18,4, x3,18,4, x4,18,4, x5,18,4x1,18,4, x2,18,4, x3,18,4, x4,18,4, x5,18,4
19x1,19,5, x2,19,5, x3,19,5, x4,19,5, x5,19,5x1,19,5, x2,19,5, x3,19,5, x4,19,5, x5,19,5x1,19,5, x2,19,5, x3,19,5, x4,19,5, x5,19,5
20x1,20,5, x2,20,5, x3,20,5, x4,20,5, x5,20,5x1,20,5, x2,20,5, x3,20,5, x4,20,5, x5,20,5x1,20,5, x2,20,5, x3,20,5, x4,20,5, x5,20,5
21x1,21,5, x2,21,5, x3,21,5, x4,21,5, x5,21,5x1,21,5, x2,21,5, x3,21,5, x4,21,5, x5,21,5x1,21,5, x2,21,5, x3,21,5, x4,21,5, x5,21,5
22x1,22,4, x2,22,4, x3,22,4, x4,22,4, x5,22,4x1,22,4, x2,22,4, x3,22,4, x4,22,4, x5,22,4x1,22,4, x2,22,4, x3,22,4, x4,22,4, x5,22,4
23x1,23,5, x2,23,5, x3,23,5, x4,23,5, x5,23,5x1,23,5, x2,23,5, x3,23,5, x4,23,5, x5,23,5x1,23,5, x2,23,5, x3,23,5, x4,23,5, x5,23,5
24x1,24,5, x2,24,5, x3,24,5, x4,24,5, x5,24,5x1,24,5, x2,24,5, x3,24,5, x4,24,5, x5,24,5x1,24,5, x2,24,5, x3,24,5, x4,24,5, x5,24,5
25x1,25,3, x2,25,3, x3,25,3, x4,25,3, x5,25,3x1,25,3, x2,25,3, x3,25,3, x4,25,3, x5,25,3x1,25,3, x2,25,3, x3,25,3, x4,25,3, x5,25,3
26x1,26,4, x2,26,4, x3,26,4, x4,26,4, x5,26,4x1,26,4, x2,26,4, x3,26,4, x4,26,4, x5,26,4x1,26,4, x2,26,4, x3,26,4, x4,26,4, x5,26,4
27x1,27,4, x2,27,4, x3,27,4, x4,27,4, x5,27,4x1,27,4, x2,27,4, x3,27,4, x4,27,4, x5,27,4x1,27,4, x2,27,4, x3,27,4, x4,27,4, x5,27,4
28x1,28,3, x2,28,3, x3,28,3, x4,28,3, x5,28,3x1,28,3, x2,28,3, x3,28,3, x4,28,3, x5,28,3x1,28,3, x2,28,3, x3,28,3, x4,28,3, x5,28,3
29x1,29,1, x2,29,1, x3,29,1, x4,29,1, x5,29,1x1,29,1, x2,29,1, x3,29,1, x4,29,1, x5,29,1x1,29,1, x2,29,1, x3,29,1, x4,29,1, x5,29,1
30x1,30,4, x2,30,4, x3,30,4, x4,30,4, x5,30,4x1,30,4, x2,30,4, x3,30,4, x4,30,4, x5,30,4x1,30,4, x2,30,4, x3,30,4, x4,30,4, x5,30,4
31x1,31,5, x2,31,3, x3,31,3, x4,31,3, x5,31,5x1,31,5, x2,31,3, x3,31,3, x4,31,3, x5,31,5x1,31,5, x2,31,3, x3,31,3, x4,31,3, x5,31,5
32x1,32,5, x2,32,5, x3,32,5, x4,32,5, x5,32,5x1,32,5, x2,32,5, x3,32,5, x4,32,5, x5,32,5x1,32,5, x2,32,5, x3,32,5, x4,32,5, x5,32,5
33x1,33,2, x2,33,4, x3,33,4, x4,33,4, x5,33,2x1,33,2, x2,33,4, x3,33,4, x4,33,4, x5,33,2x1,33,2, x2,33,4, x3,33,4, x4,33,4, x5,33,2
34x1,34,4, x2,34,1, x3,34,1, x4,34,1, x5,34,4x1,34,4, x2,34,1, x3,34,1, x4,34,1, x5,34,4x1,34,4, x2,34,1, x3,34,1, x4,34,1, x5,34,4
35x1,35,3, x2,35,3, x3,35,3, x4,35,3, x5,35,3x1,35,3, x2,35,3, x3,35,3, x4,35,3, x5,35,3x1,35,3, x2,35,3, x3,35,3, x4,35,3, x5,35,3
36x1,36,1, x2,36,1, x3,36,1, x4,36,1, x5,36,1x1,36,1, x2,36,1, x3,36,1, x4,36,1, x5,36,1x1,36,1, x2,36,1, x3,36,1, x4,36,1, x5,36,1
37x1,37,2, x2,37,4, x3,37,3, x4,37,4, x5,37,3x1,37,2, x2,37,2, x3,37,3, x4,37,2, x5,37,3x1,37,2, x2,37,2, x3,37,3, x4,37,3, x5,37,3
38x1,38,3, x2,38,3, x3,38,3, x4,38,3, x5,38,3x1,38,3, x2,38,3, x3,38,3, x4,38,3, x5,38,3x1,38,3, x2,38,3, x3,38,3, x4,38,3, x5,38,3
39x1,39,3, x2,39,3, x3,39,3, x4,39,3, x5,39,3x1,39,3, x2,39,3, x3,39,3, x4,39,3, x5,39,3x1,39,3, x2,39,3, x3,39,3, x4,39,3, x5,39,3
40x1,40,5, x2,40,5, x3,40,5, x4,40,1, x5,40,5x1,40,5, x2,40,5, x3,40,5, x4,40,5, x5,40,5x1,40,5, x2,40,5, x3,40,5, x4,40,5, x5,40,5
41x1,41,1, x2,41,1, x3,41,1, x4,41,1, x5,41,1x1,41,1, x2,41,1, x3,41,1, x4,41,1, x5,41,1x1,41,1, x2,41,1, x3,41,1, x4,41,1, x5,41,1
42x1,42,3, x2,42,4, x3,42,3, x4,42,4, x5,42,3x1,42,4, x2,42,4, x3,42,3, x4,42,4, x5,42,3x1,42,4, x2,42,4, x3,42,3, x4,42,3, x5,42,3
43x1,43,3, x2,43,3, x3,43,3, x4,43,3, x5,43,3x1,43,3, x2,43,3, x3,43,3, x4,43,3, x5,43,3x1,43,3, x2,43,3, x3,43,3, x4,43,3, x5,43,3
44x1,44,3, x2,44,3, x3,44,3, x4,44,3, x5,44,3x1,44,3, x2,44,3, x3,44,3, x4,44,3, x5,44,3x1,44,3, x2,44,3, x3,44,3, x4,44,3, x5,44,3
45x1,45,5, x2,45,5, x3,45,5, x4,45,1, x5,45,5x1,45,5, x2,45,5, x3,45,5, x4,45,5, x5,45,5x1,45,5, x2,45,5, x3,45,5, x4,45,5, x5,45,5
46x1,46,5, x2,46,5, x3,46,5, x4,46,5, x5,46,5x1,46,5, x2,46,3, x3,46,5, x4,46,5, x5,46,5x1,46,5, x2,46,3, x3,46,5, x4,46,5, x5,46,5
47x1,47,2, x2,47,2, x3,47,2, x4,47,2, x5,47,2x1,47,2, x2,47,2, x3,47,2, x4,47,2, x5,47,2x1,47,2, x2,47,2, x3,47,2, x4,47,2, x5,47,2
48x1,48,3, x2,48,3, x3,48,3, x4,48,3, x5,48,3x1,48,3, x2,48,3, x3,48,3, x4,48,3, x5,48,3x1,48,3, x2,48,3, x3,48,3, x4,48,3, x5,48,3
49x1,49,2, x2,49,2, x3,49,2, x4,49,2, x5,49,2x1,49,2, x2,49,2, x3,49,2, x4,49,2, x5,49,2x1,49,2, x2,49,2, x3,49,2, x4,49,2, x5,49,2
50x1,50,4, x2,50,4, x3,50,4, x4,50,3, x5,50,4x1,50,4, x2,50,5, x3,50,4, x4,50,3, x5,50,4x1,50,4, x2,50,5, x3,50,4, x4,50,3, x5,50,4
51x1,51,3, x2,51,3, x3,51,3, x4,51,3, x5,51,3x1,51,3, x2,51,3, x3,51,3, x4,51,3, x5,51,3x1,51,3, x2,51,3, x3,51,3, x4,51,3, x5,51,3
52x1,52,5, x2,52,5, x3,52,5, x4,52,5, x5,52,5x1,52,5, x2,52,5, x3,52,5, x4,52,5, x5,52,5x1,52,5, x2,52,5, x3,52,5, x4,52,5, x5,52,5
53x1,53,5, x2,53,5, x3,53,5, x4,53,5, x5,53,5x1,53,5, x2,53,5, x3,53,5, x4,53,5, x5,53,5x1,53,5, x2,53,5, x3,53,5, x4,53,5, x5,53,5
54x1,54,5, x2,54,3, x3,54,3, x4,54,3, x5,54,3x1,54,5, x2,54,3, x3,54,3, x4,54,3, x5,54,3x1,54,5, x2,54,3, x3,54,3, x4,54,3, x5,54,3
55x1,55,2, x2,55,2, x3,55,2, x4,55,2, x5,55,2x1,55,2, x2,55,2, x3,55,2, x4,55,2, x5,55,2x1,55,2, x2,55,2, x3,55,2, x4,55,2, x5,55,2
56x1,56,2, x2,56,1, x3,56,1, x4,56,1, x5,56,2x1,56,2, x2,56,1, x3,56,1, x4,56,1, x5,56,3x1,56,2, x2,56,1, x3,56,1, x4,56,1, x5,56,3
57x1,57,5, x2,57,5, x3,57,5, x4,57,5, x5,57,5x1,57,5, x2,57,5, x3,57,5, x4,57,5, x5,57,5x1,57,5, x2,57,5, x3,57,5, x4,57,5, x5,57,5
58x1,58,4, x2,58,4, x3,58,4, x4,58,4, x5,58,4x1,58,4, x2,58,4, x3,58,4, x4,58,4, x5,58,4x1,58,4, x2,58,4, x3,58,4, x4,58,4, x5,58,4
59x1,59,5, x2,59,5, x3,59,5, x4,59,5, x5,59,5x1,59,5, x2,59,5, x3,59,5, x4,59,5, x5,59,5x1,59,5, x2,59,5, x3,59,5, x4,59,5, x5,59,5
60x1,60,5, x2,60,5, x3,60,5, x4,60,5, x5,60,5x1,60,5, x2,60,5, x3,60,5, x4,60,5, x5,60,5x1,60,5, x2,60,5, x3,60,5, x4,60,5, x5,60,5
61x1,61,2, x2,61,2, x3,61,5, x4,61,5, x5,61,5x1,61,5, x2,61,2, x3,61,5, x4,61,5, x5,61,5x1,61,5, x2,61,2, x3,61,5, x4,61,5, x5,61,5
62x1,62,4, x2,62,4, x3,62,4, x4,62,4, x5,62,4x1,62,4, x2,62,4, x3,62,4, x4,62,4, x5,62,4x1,62,4, x2,62,4, x3,62,4, x4,62,4, x5,62,4
63x1,63,5, x2,63,5, x3,63,5, x4,63,5, x5,63,5x1,63,5, x2,63,5, x3,63,5, x4,63,5, x5,63,5x1,63,5, x2,63,5, x3,63,5, x4,63,5, x5,63,5
64x1,64,5, x2,64,5, x3,64,5, x4,64,5, x5,64,5x1,64,5, x2,64,5, x3,64,5, x4,64,5, x5,64,5x1,64,5, x2,64,5, x3,64,5, x4,64,5, x5,64,5
65x1,65,3, x2,65,3, x3,65,3, x4,65,3, x5,65,3x1,65,3, x2,65,3, x3,65,3, x4,65,3, x5,65,3x1,65,3, x2,65,3, x3,65,3, x4,65,3, x5,65,3
66x1,66,4, x2,66,4, x3,66,4, x4,66,4, x5,66,4x1,66,4, x2,66,4, x3,66,4, x4,66,4, x5,66,4x1,66,4, x2,66,4, x3,66,4, x4,66,4, x5,66,4
67x1,67,4, x2,67,4, x3,67,4, x4,67,4, x5,67,4x1,67,4, x2,67,4, x3,67,4, x4,67,4, x5,67,4x1,67,4, x2,67,4, x3,67,4, x4,67,4, x5,67,4
68x1,68,3, x2,68,3, x3,68,3, x4,68,3, x5,68,3x1,68,3, x2,68,3, x3,68,3, x4,68,3, x5,68,3x1,68,3, x2,68,3, x3,68,3, x4,68,3, x5,68,3
69x1,69,3, x2,69,1, x3,69,3, x4,69,1, x5,69,3x1,69,3, x2,69,1, x3,69,3, x4,69,1, x5,69,3x1,69,3, x2,69,1, x3,69,3, x4,69,1, x5,69,3
70x1,70,4, x2,70,4, x3,70,4, x4,70,4, x5,70,4x1,70,4, x2,70,4, x3,70,4, x4,70,4, x5,70,4x1,70,4, x2,70,4, x3,70,4, x4,70,4, x5,70,4
71x1,71,3, x2,71,3, x3,71,3, x4,71,3, x5,71,3x1,71,3, x2,71,3, x3,71,3, x4,71,3, x5,71,3x1,71,3, x2,71,3, x3,71,3, x4,71,3, x5,71,3
72x1,72,5, x2,72,5, x3,72,5, x4,72,5, x5,72,5x1,72,5, x2,72,5, x3,72,5, x4,72,5, x5,72,5x1,72,5, x2,72,5, x3,72,5, x4,72,5, x5,72,5
73x1,73,2, x2,73,4, x3,73,4, x4,73,4, x5,73,2x1,73,2, x2,73,4, x3,73,4, x4,73,4, x5,73,2x1,73,2, x2,73,4, x3,73,4, x4,73,4, x5,73,2
74x1,74,4, x2,74,1, x3,74,1, x4,74,1, x5,74,4x1,74,4, x2,74,1, x3,74,1, x4,74,1, x5,74,4x1,74,4, x2,74,1, x3,74,1, x4,74,1, x5,74,4
75x1,75,3, x2,75,3, x3,75,3, x4,75,3, x5,75,3x1,75,3, x2,75,3, x3,75,3, x4,75,3, x5,75,3x1,75,3, x2,75,3, x3,75,3, x4,75,3, x5,75,3
76x1,76,1, x2,76,1, x3,76,1, x4,76,1, x5,76,1x1,76,2, x2,76,1, x3,76,1, x4,76,1, x5,76,1x1,76,2, x2,76,1, x3,76,1, x4,76,1, x5,76,1
77x1,77,3, x2,77,2, x3,77,3, x4,77,2, x5,77,3x1,77,2, x2,77,2, x3,77,3, x4,77,2, x5,77,3x1,77,2, x2,77,2, x3,77,3, x4,77,3, x5,77,3
78x1,78,3, x2,78,3, x3,78,3, x4,78,3, x5,78,3x1,78,3, x2,78,3, x3,78,3, x4,78,3, x5,78,3x1,78,3, x2,78,3, x3,78,3, x4,78,3, x5,78,3
79x1,79,3, x2,79,3, x3,79,3, x4,79,3, x5,79,3x1,79,3, x2,79,3, x3,79,3, x4,79,3, x5,79,3x1,79,3, x2,79,3, x3,79,3, x4,79,3, x5,79,3
80x1,80,5, x2,80,5, x3,80,5, x4,80,5, x5,80,5x1,80,5, x2,80,5, x3,80,5, x4,80,5, x5,80,5x1,80,5, x2,80,5, x3,80,5, x4,80,5, x5,80,5

References

  1. Coca, G.; Castrillón, O.D.; Ruiz, S.; Mateo-Sanz, J.M.; Jiménez, L. Sustainable evaluation of environmental and occupational risks scheduling flexible job shop manufacturing systems. J. Clean. Prod. 2019, 209, 146–168. [Google Scholar] [CrossRef]
  2. Singh, S.; Olugu, E.U.; Musa, S.N. Development of sustainable manufacturing performance evaluation expert system for small and medium enterprises. Procedia CIRP 2016, 40, 608–613. [Google Scholar] [CrossRef]
  3. Ahmad, S.; Wong, K.Y.; Rajoo, S. Sustainability indicators for manufacturing sectors A literature survey and maturity analysis from the triple-bottom line perspective. J. Manuf. Technol. Manag. 2019, 30, 312–334. [Google Scholar] [CrossRef]
  4. Sutherland, J.W.; Richter, J.S.; Hutchins, M.J.; Dornfeld, D.; Dzombak, R.; Mangold, J.; Robinson, S.; Hauschild, M.Z.; Bonou, A.; Schönsleben, P.; et al. The role of manufacturing in affecting the social dimension of sustainability. CIRP Ann. Manuf. Technol. 2016, 65, 689–712. [Google Scholar] [CrossRef]
  5. Galal, N.M.; Moneim, A.F.A. A mathematical programming approach to the optimal sustainable product mix for the process industry. Sustainability 2015, 7, 13085–13103. [Google Scholar] [CrossRef]
  6. Rajak, S.; Vinodh, S. Application of fuzzy logic for social sustainability performance evaluation: A case study of an Indian automotive component manufacturing organization. J. Clean. Prod. 2015, 108, 1184–1192. [Google Scholar] [CrossRef]
  7. Vimal, K.E.K.; Vinodh, S.; Raja, A. Modelling, assessment and deployment of strategies for ensuring sustainable shielded metal arc welding process-a case study. J. Clean. Prod. 2015, 93, 364–377. [Google Scholar] [CrossRef]
  8. Lin, C.J.; Belis, T.T.; Kuo, T.C. Ergonomics-based factors or criteria for the evaluation of sustainable product manufacturing. Sustainability 2019, 11, 4955. [Google Scholar] [CrossRef]
  9. Mengistu, A.T.; Panizzolo, R. Tailoring sustainability indicators to small and medium enterprises for measuring industrial sustainability performance. Meas. Bus. Excell. 2023, 27, 54–70. [Google Scholar] [CrossRef]
  10. Giret, A.; Trentesaux, D.; Prabhu, V. Sustainability in manufacturing operations scheduling: A state of the art review. J. Manuf. Syst. 2015, 37, 126–140. [Google Scholar] [CrossRef]
  11. Niakan, F.; Baboli, A.; Moyaux, T.; Botta-Genoulaz, V. A bi-objective model in sustainable dynamic cell formation problem with skill-based worker assignment. J. Manuf. Syst. 2016, 38, 46–62. [Google Scholar] [CrossRef]
  12. Jain, A.K.; Kasilingam, R.G.; Bhole, S.D. Joint consideration of cell formation and tool provisioning problems in flexible manufacturing systems. Comput. Ind. Eng. 1991, 20, 271–277. [Google Scholar] [CrossRef]
  13. Alhourani, F. Cellular manufacturing system design considering machines reliability and parts alternative process routings. Int. J. Prod. Res. 2016, 54, 846–863. [Google Scholar] [CrossRef]
  14. Ghodsi, R.; Mostafayi, S.; Mansouri, Z.; Bakhtiari, M. Designing a bi-objective integrating mathematical model for dynamic sustainable cellular manufacturing systems considering production planning. J. Appl. Mech. Eng. 2015, 4, 184. [Google Scholar]
  15. Aljuneidi, T.; Bulgak, A.A. A mathematical model for designing reconfigurable cellular hybrid manufacturing-remanufacturing systems. Int. J. Adv. Manuf. Technol. 2016, 87, 1585–1596. [Google Scholar] [CrossRef]
  16. Mehdizadeh, E.; Niaki, S.V.D.; Rahimi, V. A vibration damping optimization algorithm for solving a new multi-objective dynamic cell formation problem with workers training. Comput. Ind. Eng. 2016, 101, 35–52. [Google Scholar] [CrossRef]
  17. Niakan, F.; Baboli, A.; Moyaux, T.; Botta-Genoulaz, V. A new multi-objective mathematical model for dynamic cell formation under demand and cost uncertainty considering social criteria. Appl. Math. Model. 2016, 40, 2674–2691. [Google Scholar] [CrossRef]
  18. Imran, M.; Kang, C.; Lee, Y.H.; Jahanzaib, M.; Aziz, H. Cell formation in a cellular manufacturing system using simulation integrated hybrid genetic algorithm. Comput. Ind. Eng. 2017, 105, 123–135. [Google Scholar] [CrossRef]
  19. Arghish, O.; Tavakkoli-Moghaddam, R.; Shahandeh-Nookabadi, A.; Rezaeian, J. Comparison among four calibrated meta-heuristic algorithms for solving a type-2 fuzzy cell formation problem considering economic and environmental criteria. Adv. Prod. Eng. Manag. 2018, 13, 5–17. [Google Scholar] [CrossRef]
  20. Iqbal, A.; Al-Ghamdi, K.A. Energy-efficient cellular manufacturing system: Eco-friendly revamping of machine shop configuration. Energy 2018, 163, 863–872. [Google Scholar] [CrossRef]
  21. Kumar, R.; Singh, S.P. Simulated annealing-based embedded meta-heuristic approach to solve bi-objective robust stochastic sustainable cellular layout. Glob. J. Flex. Syst. Manag. 2018, 19, 69–93. [Google Scholar] [CrossRef]
  22. Raoofpanah, H.; Ghezavati, V.; Tavakkoli-Moghaddam, R. Solving a new robust green cellular manufacturing problem with environmental issues under uncertainty using Benders decomposition. Eng. Optim. 2019, 51, 1229–1250. [Google Scholar] [CrossRef]
  23. Telegraphi, A.H.; Bulgak, A.A. A mathematical model for designing sustainable cellular remanufacturing systems. J. Ind. Syst. Eng. 2021, 13, 98–123. [Google Scholar]
  24. Forghani, K.; Fatemi Ghomi, S.M.T.; Kia, R. Group layout design of manufacturing cells incorporating assembly and energy aspects. Eng. Optim. 2022, 54, 770–785. [Google Scholar] [CrossRef]
  25. Jafarzadeh, J.; Khalili, H.A.; Shoja, N. A multiobjective optimization model for a dynamic and sustainable cellular manufacturing system under uncertainty. Comput. Intell. Neurosci. 2022, 2022, 1334081. [Google Scholar] [CrossRef] [PubMed]
  26. Aryanezhad, M.B.; Deljoo, V.; Mirzapour Al-e-hashem, S.M.J. Dynamic cell formation and the worker assignment problem: A new model. Int. J. Adv. Manuf. Technol. 2009, 41, 329–342. [Google Scholar] [CrossRef]
  27. Fan, J.; Feng, D. Design of cellular manufacturing system with quasi-dynamic dual resource using multi-objective GA. Int. J. Prod. Res. 2013, 51, 4134–4154. [Google Scholar] [CrossRef]
  28. Bagheri, M.; Bashiri, M. A new mathematical model towards the integration of cell formation with operator assignment and inter-cell layout problems in a dynamic environment. Appl. Math. Model. 2014, 38, 1237–1254. [Google Scholar] [CrossRef]
  29. Azadeh, A.; Pashapour, S.; Zadeh, S.A. Designing a cellular manufacturing system considering decision style, skill and job security by NSGA-II and response surface methodology. Int. J. Prod. Res. 2016, 54, 6825–6847. [Google Scholar] [CrossRef]
  30. Mehdizadeh, E.; Rahimi, V. An integrated mathematical model for solving dynamic cell formation problem considering operator assignment and inter/intra cell layouts. Appl. Soft Comput. 2016, 42, 325–341. [Google Scholar] [CrossRef]
  31. Nouri, H. Development of a comprehensive model and BFO algorithm for a dynamic cellular manufacturing system. Appl. Math. Model. 2016, 40, 1514–1531. [Google Scholar] [CrossRef]
  32. Zohrevand, A.M.; Rafiei, H.; Zohrevand, A.H. Multi-objective dynamic cell formation problem: A stochastic programming approach. Comput. Ind. Eng. 2016, 98, 323–332. [Google Scholar] [CrossRef]
  33. Sadeghi, S.; Forghani, M.A.; Seidi, M. Integrated dynamic cell formation with operator assignment and inter-cell layout problems: A mathematical model. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231, 1658–1669. [Google Scholar] [CrossRef]
  34. Zhang, J.; Zhou, B. Design an incremental cell formation problem considering human factor. In Proceedings of the 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 3–5 October 2017; pp. 559–563. [Google Scholar]
  35. Delgoshaei, A.; Mirzazadeh, A.; Ali, A. A hybrid ant colony system and tabu search algorithm for the production planning of dynamic cellular manufacturing systems while confronting uncertain costs. Braz. J. Oper. Prod. Manag. 2018, 15, 499–516. [Google Scholar] [CrossRef]
  36. Fahmy, S.A. MILP model and a genetic algorithm for the integrated cell formation, layout and worker assignment problem. In Proceedings of the 2019 IEEE 10th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), Cape Town, South Africa, 15–17 February 2019; pp. 117–121. [Google Scholar]
  37. Sakhaii, M.; Tavakkoli-Moghaddam, R.; Bagheri, M.; Vatani, B. A robust optimization approach for an integrated dynamic cellular manufacturing system and production planning with unreliable machines. Appl. Math. Model. 2016, 40, 169–191. [Google Scholar] [CrossRef]
  38. Feng, H.; Da, W.; Xi, L.; Pan, E.; Xia, T. Solving the integrated cell formation and worker assignment problem using particle swarm optimization and linear programming. Comput. Ind. Eng. 2017, 110, 126–137. [Google Scholar] [CrossRef]
  39. Shafiee-Gol, S.; Kia, R.; Kazemi, M.; Tavakkoli-Moghaddam, R.; Darmian, S.M. A mathematical model to design dynamic cellular manufacturing systems in multiple plants with production planning and location–allocation decisions. Soft Comput. 2021, 25, 3931–3954. [Google Scholar] [CrossRef]
  40. Felfel, H.; Ayadi, O.; Masmoudi, F. A decision-making approach for a multi-objective multisite supply network planning problem. Int. J. Comput. Integr. Manuf. 2016, 29, 754–767. [Google Scholar] [CrossRef]
  41. Mavrotas, G. Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Appl. Math. Comput. 2009, 213, 455–465. [Google Scholar] [CrossRef]
  42. Mahdavi, I.; Teymourian, E.; Baher, N.T.; Kayvanfar, V. An integrated model for solving cell formation and cell layout problem simultaneously considering new situations. J. Manuf. Syst. 2013, 32, 655–663. [Google Scholar] [CrossRef]
  43. Yadollahi, M.S.; Mahdavi, I.; Paydar, M.M.; Jouzdani, J. Design a bi-objective mathematical model for cellular manufacturing systems considering variable failure rate of machines. Int. J. Prod. Res. 2014, 52, 7401–7415. [Google Scholar] [CrossRef]
Figure 1. The schematic presentation of the flexible manufacturing cells.
Figure 1. The schematic presentation of the flexible manufacturing cells.
Applsci 14 00203 g001
Figure 2. Pareto front for the ε-constraint method.
Figure 2. Pareto front for the ε-constraint method.
Applsci 14 00203 g002
Figure 3. The impact of part demand changes using the goal programming method.
Figure 3. The impact of part demand changes using the goal programming method.
Applsci 14 00203 g003
Figure 4. The effect of the increase in demand for parts on the values of cost items using the goal programming method.
Figure 4. The effect of the increase in demand for parts on the values of cost items using the goal programming method.
Applsci 14 00203 g004
Figure 5. Machine capacity value change for the ε-constraint method.
Figure 5. Machine capacity value change for the ε-constraint method.
Applsci 14 00203 g005
Figure 6. Carbon limit value change for the ε-constraint method.
Figure 6. Carbon limit value change for the ε-constraint method.
Applsci 14 00203 g006
Figure 7. Maximum number of workers in the cell change process for the ε-constraint method.
Figure 7. Maximum number of workers in the cell change process for the ε-constraint method.
Applsci 14 00203 g007
Figure 8. Carbon limit value change for the AUGMECON method.
Figure 8. Carbon limit value change for the AUGMECON method.
Applsci 14 00203 g008
Figure 9. Machine capacity value change for the AUGMECON method.
Figure 9. Machine capacity value change for the AUGMECON method.
Applsci 14 00203 g009
Table 1. A selection of cost items in cell formation studies.
Table 1. A selection of cost items in cell formation studies.
AuthorsMovement CostsMachine Relocation-Related CostWorker Training CostHiring and Firing CostSalary CostEnergy
Cost
Remanufacturing
Cost
Pollution
Cost
Intra-CellularInter-Cellular
Aryanezhad et al. [26]
Fan and Feng [27]
Bagheri and Bashiri [28]
Aljuneidi and Bulgak [15]
Azadeh et al. [29]
Mehdizadeh and Rahimi [30]
Mehdizadeh et al. [16]
Niakan et al. [11]
Nouri [31]
Zohrevand et al. [32]
Sadeghi et al. [33]
Zhang and Zhou [34]
Arghish et al. [19]
Delgoshaei et al. [35]
Fahmy [36]
Raoofpanah et al. [22]
Table 2. A selection of cell formation studies according to sustainability dimensions.
Table 2. A selection of cell formation studies according to sustainability dimensions.
AuthorsEconomicalEnvironmentalSocial
Fan and Feng [27]
Ghodsi et al. [14]
Aljuneidi and Bulgak [15]
Mehdizadeh and Rahimi [30]
Niakan et al. [11]
Niakan et al. [17]
Nouri [31]
Imran et al. [18]
Sadeghi et al. [33]
Zhang and Zhou [34]
Arghish et al. [19]
Delgoshaei et al. [35]
Iqbal and Al-Ghamdi [20]
Kumar and Singh [21]
Raoofpanah et al. [22]
Forghani et al. [24]
Jafarzadeh et al. [25]
This article
Table 3. A selection of cell formation studies in terms of some factors.
Table 3. A selection of cell formation studies in terms of some factors.
AuthorsWorker AssignmentSkillRoute FlexibilityPeriod
Aryanezhad et al. [26]
Fan and Feng [27]
Bagheri and Bashiri [28]
Azadeh et al. [29]
Mehdizadeh and Rahimi [30]
Niakan et al. [11]
Nouri [31]
Sakhaii et al. [37]
Feng et al. [38]
Raoofpanah et al. [22]
Shafiee-Gol et al. [39]
This article
Table 4. Machine time capacities.
Table 4. Machine time capacities.
MachineCapacity
1. Period2. Period3. Period4. Period5. Period
155,20051,90048,80045,40035,400
248,90045,40044,20043,90042,900
350,10046,30044,10043,30042,300
449,20048,10047,10045,10044,100
548,90046,80045,50044,80043,800
646,20045,00044,00043,50041,000
747,50045,90042,00040,90038,900
844,85042,75041,80040,75038,750
947,20046,90045,80043,90037,900
1048,90044,40043,70038,90035,900
1151,10050,30048,80045,30042,900
1258,20055,10053,50050,40048,900
1347,90045,80044,80043,80041,800
1448,20047,00045,80045,00043,900
1554,50052,90050,50048,90046,900
1652,85050,75048,20046,75041,750
1748,90045,80043,22042,80040,800
1848,20045,00043,40042,00041,500
1945,50043,90042,00041,60040,300
2047,85045,75043,50042,75041,750
Table 5. Operation costs of all machines and carbon emission costs.
Table 5. Operation costs of all machines and carbon emission costs.
MachineOperation CostsCarbon Emission Costs
1.
Period
2.
Period
3.
Period
4.
Period
5.
Period
1.
Period
2.
Period
3.
Period
4.
Period
5.
Period
1910121315789812
28101316176910911
31011141519789914
411121618209791013
51313181923777912
61415161622669813
71517121318878912
813151617197991113
9151819202178101214
10912141819698713
111013131319786712
121215192024979811
131213161720777912
14161819171856101014
1513151618228691012
161215161720798910
171418182023679811
181617212326689812
1913151417227691213
2012161518208991011
Table 6. Machine addition and removal costs.
Table 6. Machine addition and removal costs.
MachineMachine Addition CostsMachine Removal Costs
1.
Period
2.
Period
3.
Period
4.
Period
5.
Period
1.
Period
2.
Period
3.
Period
4.
Period
5.
Period
125453040495546404555
255303538487555505558
345353038514555505559
465624549596562657578
548635059654875707579
655555560636555556575
740565055656065606569
850636060664550556570
925454555585546404555
1055303538487555505558
1145354243534555555865
1265624060656562606570
1348634565684875707375
1455555050556555505460
1540565559636065606365
1650636063654550707475
1748636065684875454855
1855555055656555555860
1940565555656065606570
2050636065704550555870
Table 7. Upper and lower limits for cells.
Table 7. Upper and lower limits for cells.
PeriodCell Machine
Upper Limit
Cell Machine
Lower Limit
Cell Worker
Upper Limit
Cell Carbon Emission Upper Limit
CellCellCellCell
123456123456123456123456
1554445111111444444365,100376,400397,500425,100376,400377,500
2554554111111444444375,000388,500387,000395,000438,500377,000
3554554111111444444385,000354,000350,000405,000415,000357,800
4554554111111444444395,000364,000390,000425,000435,000387,800
5445454111111444444355,000334,000370,000405,000405,000357,800
Table 8. Worker–skill matrix and workers’ skill durations.
Table 8. Worker–skill matrix and workers’ skill durations.
SkillWorker
I1I2I3I4I5I6
1101001
2110010
3001100
SkillWorker
I1I2I3I4I5I6
1502003
2480070
3003900
Table 9. The limit values, the limit times of workers with skills, and the training costs.
Table 9. The limit values, the limit times of workers with skills, and the training costs.
The Limit Value of Workers with SkillsThe Limit Time of Workers with Skills Training Cost of Workers
SkillSkillWorkers
1. Period123123123456
Cell 112025200506575453570
Cell 2221153025308055653525
Cell 320335030336578402530
Cell 412025200407545353570
Cell 5221153025308065553525
Cell 620335030386578402530
2. Period123123123456
Cell 132020150506575453570
Cell 213040250308055653525
Cell 3212354025336578402530
Cell 432020150407545353570
Cell 513040250308065553525
Cell 6212354025386578402530
3. Period123123123456
Cell 132020150506575453570
Cell 213040250308055653525
Cell 3 2 12 35 4025336578402530
Cell 4 3 20 20 150407545353570
Cell 513040250308065553525
Cell 6212554535386578402530
4. Period123123123456
Cell 143030350607585554575
Cell 223050350357065755535
Cell 3323454025396575453535
Cell 442030350457848554580
Cell 533045350358575594535
Cell 6423405035407580503040
5. Period123123123456
Cell 111022170405570403065
Cell 2221132020257050603020
Cell 320330025306070352025
Cell 412020200386540303368
Cell 5221132527287060503023
Cell 620230025356075352028
Table 10. Training times received by workers according to skills.
Table 10. Training times received by workers according to skills.
Training Time According to Skill
1. PeriodWorkerSkill 1Skill 2Skill 3
115100
20150
317015
40011
501810
61800
2. PeriodWorkerSkill 1Skill 2Skill 3
11080
20180
317013
40011
50130
61700
3.PeriodWorkerSkill 1Skill 2Skill 3
11080
20130
3 15018
4 0012
50120
62300
4.PeriodWorkerSkill 1Skill 2Skill 3
115170
20180
322013
40016
50160
62000
5.PeriodWorkerSkill 1Skill 2Skill 3
11170
20160
315014
40010
50230
61500
Table 11. Optimal machine assignments for the goal programming.
Table 11. Optimal machine assignments for the goal programming.
PeriodCellOptimal Machine AssignmentsOptimal Machine AdditionOptimal Machine Removal
11N111(1), N112(1), N113(1)
2N124(1), N125(1), N126(1)
3N136(1), N137(1), N138(1), N139(1)
4N148(1), N1,4,11(1), N1,4,12(1), N1,4,15(1)
5N1,5,14(1), N1,5,15(1), N1,5,16(1), N1,5,17(1)
6N1,6,18(1), N1,6,19(1), N1,6,20(1)
21N211(1), N212(1), N213(1)
2N224(1), N225(1), N226(1)
3N236(1), N237(1), N238(1), N239(1)
4N2,4,10(1), N2,4,11(1), N2,4,12(1), N2,4,13(1), N2,4,15(1)NA2,4,10(1) NA2,4,13(1)NR248(1)
5N2,5,14(1), N2,5,15(1), N2,5,16(1), N2,5,17(1)
6N2,6,18(1), N2,6,19(1), N2,6,20(1)
31N311(1), N312(1), N313(1)
2N324(1), N325(1), N326(1)
3N336(1), N337(1), N338(1), N339(1)
4N3,4,8(1), N3,4,10(1), N3,4,11(1), N3,4,12(1), N3,4,15(1)NA348(1)NR3,4,13(1)
5N3,5,14(1), N3,5,15(1), N3,5,16(1), N3,5,17(1)
6N3,6,18(1), N3,6,19(1), N3,6,20(1)NA3,6,13(1)
41N411(1), N412(1), N413(1)
2N424(1), N425(1), N426(1), N427(1)NA427(1)
3N436(1), N437(1), N438(1), N439(1)
4N4,4,10(1), N4,4,11(1), N4,4,12(1), N4,4,13(1), N4,4,15(1)NA4,4,13(1)NR448(1)
5N4,5,14(1), N4,5,15(1), N4,5,16(1), N4,5,17(1), N4,5,18(1)NA4,5,18(1)
6N4,6,18(1), N4,6,19(1), N4,6,20(1)
51N511(1), N512(1), N513(1), N5,1,14(1)NA5,1,14(1)
2N524(1), N525(1), N526(1) NR527(1)
3N536(1), N537(1), N538(1), N539(1)
4N548(1), N5,4,11(1), N5,4,12(1), N5,4,15(1)NA548(1)NR5,4,10(1)
NR5,4,13(1)
5N5,5,14(1), N5,5,15(1), N5,5,16(1), N5,5,17(1), N5,5,18(1)
6N5,6,13(1), N5,6,18(1), N5,6,19(1), N5,6,20(1)
Table 12. Optimal machine assignments for the ε-constraint method.
Table 12. Optimal machine assignments for the ε-constraint method.
PeriodCellOptimal Machine AssignmentsOptimal Machine AdditionOptimal Machine Removal
11N111(1), N112(1), N113(1)
2N124(1), N125(1), N126(1), N127(1)
3N136(1), N137(1), N138(1), N139(1)
4N1,4,11(1), N1,4,12(1), N1,4,13(1), N1,4,15(1)
5N1,5,14(1), N1,5,15(1), N1,5,16(1), N1,5,17(1)
6N1,6,18(1), N1,6,19(1), N1,6,20(1)
21N211(1), N212(1), N213(1)
2N224(1), N225(1), N226(1), N227(1)
3N236(1), N237(1), N238(1), N239(1)
4N2,4,10(1), N2,4,11(1), N2,4,12(1), N2,4,13(1), N2,4,15(1)NA2,4,10(1)
5N2,5,14(1), N2,5,15(1), N2,5,16(1), N2,5,17(1)
6N2,6,18(1), N2,6,19(1), N2,6,20(1)
31N311(1), N312(1), N313(1)
2N324(1), N325(1), N326(1), N327(1)
3N336(1), N337(1), N338(1), N339(1)
4N3,4,8(1), N3,4,10(1), N3,4,11(1), N3,4,12(1), N3,4,15(1)NA3,4,8(1)NR3,4,13(1)
5N3,5,14(1), N3,5,15(1), N3,5,16(1), N3,5,17(1)
6N3,6,18(1), N3,6,19(1), N3,6,20(1)
41N411(1), N412(1), N413(1)
2N424(1), N425(1), N426(1), N427(1)
3N436(1), N437(1), N438(1), N439(1)
4N4,4,10(1), N4,4,11(1), N4,4,12(1), N4,4,13(1), N4,4,15(1)NA4,4,13(1)NR4,4,8(1)
5N4,5,14(1), N4,5,15(1), N4,5,16(1), N4,5,17(1)
6N4,6,18(1), N4,6,19(1), N4,6,20(1)
51N511(1), N512(1), N513(1)
2N524(1), N525(1), N526(1), N527(1)
3N536(1), N537(1), N538(1), N539(1)
4N548(1), N5,4,11(1), N5,4,12(1), N5,4,15(1)NA548(1)NR5,4,10(1)
NR5,4,13(1)
5N5,5,14(1), N5,5,15(1), N5,5,16(1), N5,5,17(1)
6N5,6,18(1), N5,6,19(1), N5,6,20(1)
Table 13. Optimal machine assignments for the AUGMECON method.
Table 13. Optimal machine assignments for the AUGMECON method.
PeriodCellOptimal Machine AssignmentsOptimal Machine AdditionOptimal Machine Removal
11N111(1), N112(1), N113(1)
2N124(1), N125(1), N126(1)
3N136(1), N137(1), N138(1), N139(1)
4N1,4,11(1), N1,4,12(1), N1,4,13(1), N1,4,15(1)
5N1,5,14(1), N1,5,15(1), N1,5,16(1), N1,5,17(1)
6N1,6,18(1), N1,6,19(1), N1,6,20(1)
21N211(1), N212(1), N213(1)
2N224(1), N225(1), N226(1)
3N236(1), N237(1), N238(1), N239(1)
4N2,4,10(1), N2,4,11(1), N2,4,12(1), N2,4,13(1), N2,4,15(1)NA2,4,10(1)
5N2,5,14(1), N2,5,15(1), N2,5,16(1), N2,5,17(1)
6N2,6,18(1), N2,6,19(1), N2,6,20(1)
31N311(1), N312(1), N313(1)
2N324(1), N325(1), N326(1)
3N336(1), N337(1), N338(1), N339(1)
4N3,4,8(1), N3,4,10(1), N3,4,11(1), N3,4,12(1), N3,4,15(1)NA3,4,8(1)NR3,4,13(1)
5N3,5,14(1), N3,5,15(1), N3,5,16(1), N3,5,17(1)
6N3,6,18(1), N3,6,19(1), N3,6,20(1)
41N411(1), N412(1), N413(1)
2N424(1), N425(1), N426(1)
3N436(1), N437(1), N438(1), N439(1)
4N4,4,8(1), N4,4,10(1), N4,4,11(1), N4,4,12(1), N4,4,15(1)
5N4,5,14(1), N4,5,15(1), N4,5,16(1), N4,5,17(1)
6N4,6,18(1), N4,6,19(1), N4,6,20(1)
51N511(1), N512(1), N513(1)
2N524(1), N525(1), N526(1)
3N536(1), N537(1), N538(1), N539(1)
4N5,4,8(1), N5,4,11(1), N5,4,12(1), N5,4,15(1) NR5,4,10(1)
5N5,5,14(1), N5,5,15(1), N5,5,16(1), N5,5,17(1)
6N5,6,18(1), N5,6,19(1), N5,6,20(1)
Table 14. Optimal worker assignments to cells for each period for the multi-objective approaches.
Table 14. Optimal worker assignments to cells for each period for the multi-objective approaches.
PeriodOptimal Worker Assignment for
Goal Programming
Optimal Worker Assignment for
ε-Constraint
Optimal Worker Assignment for
AUGMECON
1V111, V112, V146, V155, V163, V164V112, V121, V123,V155, V156, V164V112, V121, V123,V155, V156, V164
2V241, V233,V234, V246, V252, V255V226, V232, V233, V234, V251, V265V226, V232, V233, V234, V251, V265
3V333, V334, V341, V346, V352, V355V326, V332, V333, V334, V351, V365V326, V332, V333, V334, V351, V365
4V421, V422, V425, V426, V433, V434V421, V426, V432, V433, V434, V465V421, V426, V432, V433, V434, V465
5V512, V521, V525, V563, V564, V566V512, V521, V523, V525, V556, V564V512, V521, V523, V525, V556, V564
Table 15. Optimal number of workers in cells for each period for the multi-objective approaches.
Table 15. Optimal number of workers in cells for each period for the multi-objective approaches.
PeriodOptimal Total Worker
for Goal Programming
Optimal Total Worker
for ε-Constraint
Optimal Total Worker for AUGMECON
1IS11(2), IS12(0), IS13(0), IS14(1),  IS15(1), IS16(2)IS11(1), IS12(2), IS13(0), IS14(0),  IS15(2), IS16(1)IS11(1), IS12(2), IS13(0), IS14(0),  IS15(2), IS16(1)
2IS21(0), IS22(0), IS23(2), IS24(2),  IS25(2), IS26(0)IS21(0), IS22(1), IS23(3), IS24(0),  IS25(1), IS26(1)IS21(0), IS22(1), IS23(3), IS24(0),  IS25(1), IS26(1)
3IS31(0), IS32(0), IS33(2), IS34(2),  IS35(2), IS36(0) IS31(0), IS32(1), IS33(3), IS34(0),  IS35(1), IS36(1)IS31(0), IS32(1), IS33(3), IS34(0),  IS35(1), IS36(1)
4IS41(0), IS42(4), IS43(2), IS44(0),  IS45(0) IS46(0)IS41(0), IS42(2), IS43(3), IS44(0),  IS45(0), IS46(1)IS41(0), IS42(2), IS43(3), IS44(0),  IS45(0), IS46(1)
5IS51(1), IS52(2), IS53(0), IS54(0),  IS55(0) IS56(3)IS51(1), IS52(3), IS53(0), IS54(0),  IS55(1), IS56(1)IS51(1), IS52(3), IS53(0), IS54(0),  IS55(1), IS56(1)
Table 16. Pay-off table for the ε-constraint method.
Table 16. Pay-off table for the ε-constraint method.
SNC1SNC2
Min SNC15,902,90372,492,480
Min SNC25,974,22071,788,790
Table 17. Pay-off table with the lexicographic optimization for the AUGMECON method.
Table 17. Pay-off table with the lexicographic optimization for the AUGMECON method.
SNC1SNC2
Min SNC15,929,06371,788,790
Min SNC25,974,22071,788,790
Table 18. Status numbers regarding epsilon values using the ε-constraint method for the analysis of change in machine 1 capacity in period 5.
Table 18. Status numbers regarding epsilon values using the ε-constraint method for the analysis of change in machine 1 capacity in period 5.
Status Number12345
Epsilon Value5,977,1815,958,6125,940,0435,921,4745,902,905
Table 19. Status number regarding the epsilon value using the ε-constraint method for the analysis of change in the carbon limit value for cell 6 in period 5.
Table 19. Status number regarding the epsilon value using the ε-constraint method for the analysis of change in the carbon limit value for cell 6 in period 5.
Status Number12345
Epsilon Value5,963,1435,951,1035,939,0635,927,0235,914,983
Table 20. Status number regarding the epsilon value using the ε-constraint method for the analysis of change in the maximum number of workers.
Table 20. Status number regarding the epsilon value using the ε-constraint method for the analysis of change in the maximum number of workers.
Status Number123456
Epsilon Value5,959,3675,948,0755,936,7835,925,4915,914,1995,909,193
Table 21. Status number regarding the epsilon value using the AUGMECON method for the analysis of change in the carbon limit value for cell 6 in period 5.
Table 21. Status number regarding the epsilon value using the AUGMECON method for the analysis of change in the carbon limit value for cell 6 in period 5.
Status Number12345
Epsilon Value5,962,3795,953,9255,945,7715,937,4175,929,064
Table 22. Status number regarding epsilon value using the AUGMECON method for the analysis of change in machine 3 capacity in period 3.
Table 22. Status number regarding epsilon value using the AUGMECON method for the analysis of change in machine 3 capacity in period 3.
Status Number12345
Epsilon Value5,965,3595,955,5355,945,7115,935,8875,929,064
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Bozoklar, E.; Yılmaz, E. Designing Sustainable Flexible Manufacturing Cells with Multi-Objective Optimization Models. Appl. Sci. 2024, 14, 203. https://doi.org/10.3390/app14010203

AMA Style

Bozoklar E, Yılmaz E. Designing Sustainable Flexible Manufacturing Cells with Multi-Objective Optimization Models. Applied Sciences. 2024; 14(1):203. https://doi.org/10.3390/app14010203

Chicago/Turabian Style

Bozoklar, Emine, and Ebru Yılmaz. 2024. "Designing Sustainable Flexible Manufacturing Cells with Multi-Objective Optimization Models" Applied Sciences 14, no. 1: 203. https://doi.org/10.3390/app14010203

APA Style

Bozoklar, E., & Yılmaz, E. (2024). Designing Sustainable Flexible Manufacturing Cells with Multi-Objective Optimization Models. Applied Sciences, 14(1), 203. https://doi.org/10.3390/app14010203

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop