Gorilla Glass Cutting Using Femtosecond Laser Pulse Filaments
Abstract
1. Introduction
2. Fundamental Concepts
3. Materials and Methods
3.1. Material Properties
3.2. Experimental Details
4. Results and Discussion
4.1. Characterization of Femtosecond Laser Filaments Fabrication Using a 50× Objective Lens
4.2. Characterization of Femtosecond Laser Filaments Fabrication Using a 100× Objective Lens
4.3. Cutting Gorilla Glass Using Femtosecond Laser Pulse Filament-Assisted High Aspect Ratio Micro-Voids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bukieda, P.; Weller, B. Impact of cutting process parameters on the mechanical quality of processed glass edges. In Proceedings of the Conference on Architectural and Structural Applications of Glass, Ghent, Belgium, 23–24 June 2022. [Google Scholar] [CrossRef]
- Ruzica, F. How to cut glass. Glass Magazine, 10 February 2010. [Google Scholar]
- Fang, F.Z.; Liu, X.D.; Lee, L.C. Micro-machining of optical glasses—A review of diamond-cutting glasses. Sadhana 2003, 28, 945–955. [Google Scholar] [CrossRef]
- Morgan, C.J.; Vallance, R.R.; Marsh, E.R. Micro machining glass with polycrystalline diamond tools shaped by micro electro discharge machining. J. Micromech. Microeng. 2004, 14, 1687–1692. [Google Scholar] [CrossRef]
- Prakash, E.S.; Sadashivappa, K.; Joseph, V.; Singaperumal, M. Nonconventional cutting of plate glass using hot air jet: Experimental studies. Mechatron 2001, 11, 595–615. [Google Scholar] [CrossRef]
- Aich, U.; Banerjee, S.; Bandyopadhyay, A.; Das, P.K. Abrasive water jet cutting of borosilicate glass. Proc. Mater. Sci. 2014, 6, 775–785. [Google Scholar] [CrossRef][Green Version]
- Matsumura, T.; Hiramatsu, T.; Shirakashi, T.; Muramatsu, T. A study on cutting force in the milling process of glass. J. Manuf. Process. 2005, 7, 102–108. [Google Scholar] [CrossRef]
- Cao, P.; Zhu, Z.; Guo, X.; Wang, X.; Fu, C.; Zhang, C. Cutting force and cutting quality during tapered milling of glass magnesium board. Appl. Sci. 2019, 9, 2533. [Google Scholar] [CrossRef]
- Krajcarz, D. Comparison metal water jet cutting with laser and plasma cutting. Proc. Eng. 2014, 69, 838–843. [Google Scholar] [CrossRef]
- Das, S.S.; Patowari, P.K. Fabrication of serpentine micro-channels on glass by ultrasonic machining using developed micro-tool by wire-cut electric discharge machining. Int. J. Adv. Manuf. Technol. 2018, 95, 3013–3028. [Google Scholar] [CrossRef]
- Qiu, J. Fundamental research on machining performance of diamond wire sawing and diamond wire electrical discharge sawing quartz glass. Ceram. Int. 2022, 48, 24332–24345. [Google Scholar] [CrossRef]
- Nisar, S.; Li, L.; Sheikh, M.A. Laser glass cutting techniques—A review. J. Laser Appl. 2013, 25, 042010. [Google Scholar] [CrossRef]
- Flamm, D.; Kaiser, M.; Feil, M.; Kahmann, M.; Lang, M.; Kleiner, J.; Hesse, T. Protecting the edge: Ultrafast laser modified C-shaped glass edges. J. Laser Appl. 2022, 34, 012014. [Google Scholar] [CrossRef]
- Mishra, S.; Sridhara, N.; Mitra, A.; Yougandar, B.; Dash, S.K.; Agarwal, S.; Dey, A. CO2 laser cutting of ultra thin (75 μm) glass based rigid optical solar reflector (OSR) for spacecraft application. Opt. Laser Technol. 2017, 90, 128–138. [Google Scholar] [CrossRef]
- Ito, Y.; Kizaki, T.; Shinomoto, R.; Ueki, M.; Sugita, N.; Mitsuishi, M. High-efficiency and precision cutting of glass by selective laser-assisted milling. Precis. Eng. 2017, 47, 498–507. [Google Scholar] [CrossRef]
- Shin, J.; Nam, K. Groove formation in glass substrate by a UV nanosecond laser. Appl. Sci. 2020, 10, 987. [Google Scholar] [CrossRef]
- Dong, H.; Huang, Y.; Rong, Y.; Chen, C.; Li, W.; Gao, Z. 532 nm nanosecond laser cutting solar float glass: Surface quality evaluation with different laser spot positions in field lens. Optik 2020, 223, 165620. [Google Scholar] [CrossRef]
- Dudutis, J.; Piriras, J.; Stonys, R.; Daknys, E.; Kikikevičius, A.; Kasparaitis, A.; Račiukaitis, G.; Gečys, P. In-depth comparison of conventional glass cutting technologies with laser-based methods by volumetric scribing using Bessel beam and rear-side machining. Opt. Express 2020, 28, 32133–32151. [Google Scholar] [CrossRef]
- Strigin, M.B.; Chudinov, A.N. Cutting of glass by picosecond laser radiation. Opt. Commun. 1994, 106, 223–226. [Google Scholar] [CrossRef]
- Wlodarczyk, K.L.; Brunton, A.; Rumsby, P.; Hand, D.P. Picosecond laser cutting and drilling of thin flex glass. Opt. Laser Eng. 2016, 78, 64–74. [Google Scholar] [CrossRef]
- Luo, Y.; Fan, X.; Wu, C.; Zhang, G.; Huang, Y.; Rong, Y.; Chen, L. Thick Glass High-Quality Cutting by Ultrafast Laser Bessel Beam Perforation-Assisted Separation; SSRN: Rochester, NY, USA, 2023. [Google Scholar] [CrossRef]
- Markauskas, E.; Zubauskas, L.; Voisiat, B.; Gečys, P. Efficient water-assisted glass cutting with 355 nm picosecond laser pulses. Micromachines 2022, 13, 785. [Google Scholar] [CrossRef]
- Dudutis, J.; Zubauskas, L.; Daknys, E.; Markauskas, E.; Gvozdaite, R.; Račiukaitis, G.; Gečys, P. Quality and flexural strength of laser-cut glass: Classical top-down ablation versus water-assisted and bottom-up machining. Opt. Express 2022, 30, 4564–4582. [Google Scholar] [CrossRef]
- Shin, H.; Kim, D. Cutting thin glass by femtosecond laser ablation. Opt. Laser Technol. 2018, 102, 1–11. [Google Scholar] [CrossRef]
- Li, Z.-Q.; Wang, J.-L.; Wang, Z.-F.; Allegre, O.; Guo, W.; Gao, W.-Y.; Xue, Y.; Li, L. Debris-free, zero taper cutting of Borofloat 33 glass using a femtosecond Bessel laser beam. Lasers Eng. 2020, 46, 383–393. [Google Scholar]
- Markauskas, E.; Zubauskas, L.; Račiukaitis, G.; Gečys, P. Femtosecond laser cutting of 110–550 nm thickness Borosilicate glass in ambient air and water. Micromachines 2023, 14, 176. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Stelmaszczyk, K.; Rohwetter, P.; Nakaema, W.M.; Woeste, L. Femtosecond laser filament-fringes in fused silica. Opt. Express 2011, 19, 7799–7806. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Jiang, H.; Luo, L.; Guo, L.; Yang, H.; Gong, Q. Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica. Opt. Lett. 2002, 27, 448–450. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Jiang, H.; Sun, Q.; Yang, H.; Gong, Q. Filamentation and temporal reshaping of a femtosecond pulse in fused silica. Phys. Rev. A 2003, 68, 063820. [Google Scholar] [CrossRef]
- Grow, T.D.; Gaeta, A.L. Dependence of multiple filamentation on beam elipticity. Opt. Express 2005, 13, 4594–4599. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M.S.; Dewanda, F.; Ahmed, F.; Jun, M.B.G.; Lee, M.S. Characterization of femtosecond laser filament-fringes in titanium. In Proceedings of the Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications, San Francisco, CA, USA, 15 March 2013. [Google Scholar] [CrossRef]
- Majus, D.; Jukna, V.; Valiulis, G.; Dubietis, A. Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beam. Phys. Rev. A 2009, 79, 033843. [Google Scholar] [CrossRef]
- Bérubé, J.P.; Vallée, R.; Bernier, M.; Kosareva, O.; Panov, N.; Kandidov, V.; Chin, S.L. Self and focused periodic arrangement of multiple filaments in glass. Opt. Express 2010, 18, 24495–24503. [Google Scholar] [CrossRef]
- Daigle, J.F.; Kosareva, O.; Panov, N.; Begin, M.; Lessard, F.; Marceau, C.; Kamali, Y.; Roy, G.; Kandidov, V.P.; Chin, S.L. A simple method to significantly increase filaments length and ionization density. Appl. Phys. B 2009, 94, 249–257. [Google Scholar] [CrossRef]
- Esser, D.; Rezaei, S.; Li, J.; Herman, P.R.; Gottmann, J. Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses. Opt. Express 2011, 19, 25632–25642. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M.S.; Kwon, Y.-Y.; Sohn, I.-B.; Noh, Y.-C.; Lee, M.S. Formation of periodic micro/nano-holes array in Boro-aluminosilicate glass by single-pulse femtosecond laser machining. J. Laser Micro Nanoeng. 2014, 9, 19–24. [Google Scholar] [CrossRef]
- Ahmed, F.; Lee, M.S.; Sekita, H.; Sumiyoshi, T.; Kamata, M. Display glass cutting by femtosecond laser induced single shot periodic void array. Appl. Phys. A 2008, 93, 189–192. [Google Scholar] [CrossRef]
- Ahmed, F.; Ahsan, M.S.; Lee, M.S.; Jun, M.B.G. Near-field modification of femtosecond laser beam to enhance single-shot pulse filamentation in glass medium. Appl. Phys. A 2014, 114, 1161–1165. [Google Scholar] [CrossRef]
- Ahsan, M.S.; Lee, M.S. Femtosecond Laser Processing of Materials: Fundamentals Technologies, and Applications, 1st ed.; LAP LAMBERT Academic Publishing: Deutschland, Germany, 2013; p. 40. [Google Scholar]
- Dias, A.; Rodríguez, A.; Calderón, M.M.; Aranzadi, M.G. Ultrafast laser inscription of volume phase gratings with low refractive index modulation and self-images of high visibility. Opt. Express 2015, 23, 26683–26688. [Google Scholar] [CrossRef]
Focus Position (f) (μm) | Filament Position (P) (μm) | Filament Length (L) (μm) | ||
---|---|---|---|---|
E = 25 μJ | E = 50 μJ | E = 25 μJ | E = 50 μJ | |
100 | 138 | 150 | 43 ± 2 | 50 ± 3 |
200 | 280 | 300 | 49 ± 2 | 52 ± 3 |
300 | 435 | 450 | 52 ± 3 | 55 ± 3 |
400 | 588 | 600 | 57 ± 3 | 62 ± 4 |
500 | 744 | 755 | 56 ± 3 | 64 ± 4 |
600 | 897 | 910 | 58 ± 4 | 65 ± 4 |
Focus Position (f) (μm) | Filament Position (P) (μm) | Filament Length (L) (μm) | |||
---|---|---|---|---|---|
E = 25 μJ | E = 37 μJ | E = 25 μJ | E = 37 μJ | E = 25 μJ | E = 37 μJ |
50 | 50 | No Filaments | 82 | No Filaments | 45 ± 2 |
100 | 100 | 153 | 154 | 62 ± 4 | 66 ± 3 |
200 | 200 | 319 | 309 | 75 ± 5 | 85 ± 5 |
300 | 300 | 471 | 460 | 95 ± 5 | 105 ± 5 |
400 | 400 | 617 | 615 | 123 ± 6 | 110 ± 6 |
470 | 470 | No Filaments | 720 | No Filaments | 146 ± 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahsan, M.S.; Sohn, I.-B.; Choi, H.-K. Gorilla Glass Cutting Using Femtosecond Laser Pulse Filaments. Appl. Sci. 2024, 14, 312. https://doi.org/10.3390/app14010312
Ahsan MS, Sohn I-B, Choi H-K. Gorilla Glass Cutting Using Femtosecond Laser Pulse Filaments. Applied Sciences. 2024; 14(1):312. https://doi.org/10.3390/app14010312
Chicago/Turabian StyleAhsan, Md. Shamim, Ik-Bu Sohn, and Hun-Kook Choi. 2024. "Gorilla Glass Cutting Using Femtosecond Laser Pulse Filaments" Applied Sciences 14, no. 1: 312. https://doi.org/10.3390/app14010312
APA StyleAhsan, M. S., Sohn, I.-B., & Choi, H.-K. (2024). Gorilla Glass Cutting Using Femtosecond Laser Pulse Filaments. Applied Sciences, 14(1), 312. https://doi.org/10.3390/app14010312