Effect of Thermal Aging and Chemical Disinfection on the Microhardness and Flexural Strength of Flexible Resins
Abstract
:1. Introduction
- (1)
- Does thermal aging affect the microhardness and flexural strength of resins?
- (2)
- Does the resin type influence the microhardness and flexural strength of resins after aging?
- (3)
- Do the chemical disinfection protocols affect the microhardness and flexural strength of resins?
- (4)
- Does the resin type affect the microhardness and flexural strength of resins exposed to disinfection protocols?
2. Materials and Methods
2.1. Material Selection
2.2. Specimen Preparation
2.3. Thermal Aging Process
2.4. Chemical Disinfection Protocol
- A commercial Corega Whitening tablet (alkaline peroxide based) was diluted in 200 mL distilled water once daily for 15 min as recommended by the manufacturer GSK;
- One commercially available Corega Bio-Active Oxygen tablet (alkaline peroxide based) diluted once daily for 5 min in 200 mL distilled water as recommended by the manufacturer GSK;
- 15 mL of 2.5% sodium hypochlorite diluted in 200 mL of distilled water for 10 min once a week;
- 200 mL distilled water for 10 min, once a day (control).
2.5. Microhardness Test
2.6. Flexural Strength Test
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- Flexible resins showed lower values for microhardness when thermally aged, but this effect did not occur with the acrylic resin. In contrast, thermal aging did not change the flexural strength of any of the resins. Overall, thermal aging only affected the microhardness of the flexible resins and had no effect on the flexural strength of any of the resins.
- The type of resin has no influence on the microhardness of the resins after thermal aging. In contrast, the acrylic resin retained a higher flexural strength compared to the flexible resins, which proves that the type of resin influences the flexural strength of the resins after aging.
- Since chemical disinfection with Corega Oxygen Bio-Active significantly reduced the microhardness of Deflex Classic SR and Corega Whitening reduced the flexural strength of Deflex Supra SF, it can be concluded that the chemical disinfection protocols influence the microhardness and flexural strength of the resins.
- It was found that the effects of disinfection methods on microhardness and flexural strength depend on the type of resin.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, V.R.; Shah, D.N.; Chauhan, C.J.; Doshi, P.J.; Kumar, A. Evaluation of Flexural Strength and Color Stability of Different Denture Base Materials Including Flexible Material after Using Different Denture Cleansers. J. Indian Prosthodont. Soc. 2015, 15, 367. [Google Scholar] [CrossRef]
- Petersen, P.E.; Bourgeois, D.; Bratthall, D.; Ogawa, H. Oral Health Information Systems-towards Measuring Progress in Oral Health Promotion and Disease Prevention. Bull. World Health Organ. 2005, 83, 686–693. [Google Scholar]
- Singh, J.P.; Dhiman, R.K.; Bedi, R.P.S.; Girish, S.H. Flexible Denture Base Material: A Viable Alternative to Conventional Acrylic Denture Base Material. Contemp. Clin. Dent. 2011, 2, 313. [Google Scholar] [CrossRef]
- Bohnenkamp, D.M. Removable Partial Dentures: Clinical Concepts. Dent. Clin. 2014, 58, 69–89. [Google Scholar]
- Polychronakis, N.C.; Polyzois, G.L.; Lagouvardos, P.E.; Papadopoulos, T.D. Effects of Cleansing Methods on 3-D Surface Roughness, Gloss and Color of a Polyamide Denture Base Material. Acta Odontol. Scand. 2015, 73, 353–363. [Google Scholar] [CrossRef]
- Hamid, D.M.A. Microhardness of Flexible Denture Base Materials: Effect of Microwave and Chemical Disinfection Methods. Dent. J. 2013, 59, 1392. [Google Scholar]
- Abhay, P.N.; Karishma, S. Comparative Evaluation of Impact and Flexural Strength of Four Commercially Available Flexible Denture Base Materials: An In Vitro Study. J. Indian Prosthodont. Soc. 2013, 13, 499–508. [Google Scholar] [CrossRef]
- Vojdani, M.; Giti, R. Polyamide as a Denture Base Material: A Literature Review. J. Dent. 2015, 16, 1. [Google Scholar]
- Moussa, A.R.; Dehis, W.M.; Elboraey, A.N.; ElGabry, H.S. A Comparative Clinical Study of the Effect of Denture Cleansing on the Surface Roughness and Hardness of Two Denture Base Materials. Open Access Maced. J. Med. Sci. 2016, 4, 476. [Google Scholar] [CrossRef]
- Ucar, Y.; Akova, T.; Aysan, I. Mechanical Properties of Polyamide Versus Different PMMA Denture Base Materials. J. Prosthodont. 2012, 21, 173–176. [Google Scholar] [CrossRef]
- Gokay, G.D.; Durkan, R.; Oyar, P. Evaluation of physical properties of polyamide and methacrylate based denture base resins polymerized by different techniques. Niger. J. Clin. Pract. 2021, 24, 1835–1840. [Google Scholar] [CrossRef]
- Helal, M.A.; Fadl-Alah, A.; Baraka, Y.M.; Gad, M.M.; Emam, A.M. In-vitro Comparative Evaluation for the Surface Properties and Impact Strength of CAD/CAM Milled, 3D Printed, and Polyamide Denture Base Resins. J. Int. Soc. Prev. Community Dent. 2022, 12, 126–131. [Google Scholar] [CrossRef]
- Durkan, R.; Ayaz, E.A.; Bagis, B.; Gurbuz, A.; Ozturk, N.; Korkmaz, F.M. Comparative Effects of Denture Cleansers on Physical Properties of Polyamide and Polymethyl Methacrylate Base Polymers. Dent. Mater. J. 2013, 32, 367–375. [Google Scholar] [CrossRef]
- Costa, J.; Matos, A.; Bettencourt, A.; Portugal, J.; Neves, C.B. Effect of Ethanol Solutions as Post-Polymerization Treatment on the Properties of Acrylic Reline Resins. Rev. Port. Estomatol. Med. Dentária Cir. Maxilofac. 2016, 57, 215–222. [Google Scholar] [CrossRef]
- Rajanikanth, A.; Pandey, V.; Singh, R.; Chawla, P.S.; Shaw, E. Comparison of Flexural Strength and Surface Roughness of Two Different Flexible and Heat Cure Denture Base Material: An in Vitro Study. J. Contemp. Dent. Pract. 2018, 19, 1214–1220. [Google Scholar] [CrossRef]
- Al-Takai, I.F. The Effect of Different Disinfectant Solutions on Shear Bond Strength of Acrylic Teeth to Flexible Denture Base Material. Al-Rafidain Dent. J. 2014, 14, 145–152. [Google Scholar] [CrossRef]
- Takahashi, Y.; Hamanaka, I.; Shimizu, H. Effect of Thermal Shock on Mechanical Properties of Injection-Molded Thermoplastic Denture Base Resins. Acta Odontol. Scand. 2012, 70, 297–302. [Google Scholar] [CrossRef]
- Zeidan, A.A.E.; Sherif, A.F.; Baraka, Y.; Abualsaud, R.; Abdelrahim, R.A.; Gad, M.M.; Helal, M.A. Evaluation of the Effect of Different Construction Techniques of CAD-CAM Milled, 3D-Printed, and Polyamide Denture Base Resins on Flexural Strength: An In Vitro Comparative Study. J. Prosthodont. 2023, 32, 77–82. [Google Scholar] [CrossRef]
- Fathy, S.M.; Abdel-Halim, M.S.; El-Safty, S.; El-Ganiny, A.M. Evaluation of polymethyl-methacrylate and acetal denture base resins processed by two different techniques before and after nano-chlorohexidine surface treatment. BMC Oral Health 2023, 23, 985. [Google Scholar] [CrossRef]
- Richa, G.; Reddy, K.M.; Shastry, Y.M.; Aditya, S.V.; Babu, P.J.K. Effectiveness of denture cleansers on flexible denture base resins in the removal of stains colored by food colorant solution: An in vitro study. J. Indian Prosthodont. Soc. 2022, 22, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Lira, A.F.; Consani, R.L.X.; Mesquita, M.F.; Paula, A.B.D. Surface Hardness of Acrylic Resins Exposed to Toothbrushing, Chemical Disinfection and Thermocycling. J. Res. Pract. Dent. 2014, 2014, 466073. [Google Scholar] [CrossRef]
- Yuzugullu, B.; Acar, O.; Cetinsahin, C.; Celik, C. Effect of Different Denture Cleansers on Surface Roughness and Microhardness of Artificial Denture Teeth. J. Adv. Prosthodont. 2016, 8, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Panariello, B.H.; Izumida, F.E.; Moffa, E.B.; Pavarina, A.C.; Jorge, J.H.; Giampaolo, E.T. Effects of Short-Term Immersion and Brushing with Different Denture Cleansers on the Roughness, Hardness, and Color of Two Types of Acrylic Resin. Am. J. Dent. 2015, 28, 150–156. [Google Scholar] [PubMed]
- Richmond, R.; Macfarlane, T.V.; McCord, J.F. An Evaluation of the Surface Changes in PMMA Biomaterial Formulations as a Result of Toothbrush/Dentifrice Abrasion. Dent. Mater. 2004, 20, 124–132. [Google Scholar] [CrossRef]
- Martins, E.d.G.; Moretti, R.T. Effect of Repeated Cycles of Chemical Disinfection in Microhardness of Acrylic Resins of Complete Denture Base. RGO-Rev. Gaúcha Odontol. 2017, 65, 196–201. [Google Scholar] [CrossRef]
- Sartori, E.A.; Schmidt, C.B.; Mota, E.G.; Hirakata, L.M.; Shinkai, R.S.A. Cumulative Effect of Disinfection Procedures on Microhardness and Tridimensional Stability of a Poly(Methyl Methacrylate) Denture Base Resin. J. Biomed. Mater. Res. 2008, 86, 360–364. [Google Scholar] [CrossRef]
- Sato, S.; Cavalcante, M.R.S.; Orsi, I.A.; Paranhos, H.d.F.O.; Zaniquelli, O. Assessment of Flexural Strength and Color Alteration of Heat-Polymerized Acrylic Resins after Simulated Use of Denture Cleansers. Braz. Dent. J. 2005, 16, 124–128. [Google Scholar] [CrossRef]
- Soygun, K.; Bolayir, G.; Boztug, A. Mechanical and Thermal Properties of Polyamide versus Reinforced PMMA Denture Base Materials. J. Adv. Prosthodont. 2013, 5, 153–160. [Google Scholar] [CrossRef]
- Goiato, M.C.; Dos Santos, D.M.; Baptista, G.T.; Moreno, A.; Andreotti, A.M.; Dekon, S.F.D.C. Effect of Thermal Cycling and Disinfection on Microhardness of Acrylic Resin Denture Base. J. Med. Eng. Technol. 2013, 37, 203–207. [Google Scholar] [CrossRef]
- Rijo, I.; Pedro, D.; Costa, J.; Bettencourt, A.; Portugal, J.; Neves, C.B. Chlorhexidine Loading of Acrylic Reline Resins-Microhardness and Flexural Strength after Thermal Aging. Rev. Port. Estomatol. Med. Dentária Cir. Maxilofac. 2018, 59, 154–161. [Google Scholar] [CrossRef]
- Savabi, O.; Attar, K.; Nejatidanesh, F.; Goroohi, H.; Badrian, H. Effect of Different Chemical Disinfectants on the Flexural Strength of Heat-Polymerized Acrylic Resins. Eur. J. Prosthodont. Restor. Dent. 2013, 21, 105–108. [Google Scholar] [PubMed]
- Orsi, I.A.; Andrade, V.G. Effect of Chemical Disinfectants on the Transverse Strength of Heat-Polymerized Acrylic Resins Submitted to Mechanical and Chemical Polishing. J. Prosthet. Dent. 2004, 92, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Elkholy, S. Comparison of Water Conditioning Effects on Hardness and Dimensional Stability of Methyl Methacrylate and Polyamide Denture Base Materials. Int. J. Prosthodont. Restorat Dentis 2018, 8, 114–119. [Google Scholar] [CrossRef]
- Okoyama, N.; Machi, H.; Hayashi, K.; Uchida, T.; Ono, T.; Nokubi, T. Physical Properties of Polyamide Resin (Nylon Group) as a Polymeric Material for Dentures: Part 2. Surface Hardness and Tensile Strength. J. Nippon. Acad. Dent. Technol. 2004, 28, 87–92. [Google Scholar]
- Neves, C.B.; Costa, J.; Nepomuceno, L.; Madeira, A.; Portugal, J.; Bettencourt, A. Microhardness and Flexural Strength after Chemical Aging of Chlorhexidine Delivery Systems Based on Acrylic Resin. Rev. Port. Estomatol. Med. Dent. Cir. Maxilofac. 2019, 60, 104–110. [Google Scholar] [CrossRef]
- Quassem, M.A.; Mahross, H.Z. Comparative Evaluation of Porosities and Solubility for Different Non-Metallic Denture Base Material. J. Clin. Diagn. Res. 2018, 12, ZC18–ZC22. [Google Scholar] [CrossRef]
- Yokoyama, N.; Machi, H.; Hayashi, K.; Uchida, T.; Ono, T.; Nokubi, T. Physical Properties of Polyamide Resin(Nylon Group) as a Polymeric Material for Dentures. JNADT 2004, 25, 87–92. [Google Scholar]
- Shah, J.; Bulbule, N.; Kulkarni, S.; Shah, R.; Kakade, D. Comparative Evaluation of Sorption, Solubility and Microhardness of Heat Cure Polymethylmethacrylate Denture Base Resin & Flexible Denture Base Resin. J. Clin. Diagn. Res. 2014, 8, ZF01. [Google Scholar]
- De Rezende Pinto, L.; Rodríguez Acosta, E.J.T.; Távora, F.F.F.; Da Silva, P.M.B.; Porto, V.C. Effect of Repeated Cycles of Chemical Disinfection on the Roughness and Hardness of Hard Reline Acrylic Resins. Gerodontology 2010, 27, 147–153. [Google Scholar] [CrossRef]
- Peracini, A.; Davi, L.R.; de Queiroz Ribeiro, N.; de Souza, R.F.; da Silva, C.H.L.; de Freitas Oliveira Paranhos, H. Effect of denture cleansers on physical properties of heat-polymerized acrylic resin. J. Prosthodont. Res. 2010, 54, 78–83. [Google Scholar] [CrossRef]
- Neppelenbroek, K.H.; Pavarina, A.C.; Vergani, C.E.; Giampaolo, E.T. Hardness of Heat-Polymerized Acrylic Resins after Disinfection and Long-Term Water Immersion. J. Prosthet. Dent. 2005, 93, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, A.; Machado, A.L.; Vergani, C.E.; Giampaolo, E.T.; Pavarina, A.C.; Magnani, R. Effect of Disinfectants on the Hardness and Roughness of Reline Acrylic Resins. J. Prosthodont. 2006, 15, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Matos, A.O.; Costa, J.O.; Beline, T.; Ogawa, E.S.; Assunção, W.G.; Mesquita, M.F.; Consani, R.X.; Barão, V.A. Effect of Disinfection on the Bond Strength between Denture Teeth and Microwave-Cured Acrylic Resin Denture Base. J. Prosthodont. 2018, 27, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Conceição, P.R.; Franco, M.C.; Alves, N.; Portugal, J.; Neves, C.B. Fit Accuracy of Removable Partial Denture Metal Frameworks Produced by CAD-CAM–a Clinical Study. Rev. Port. Estomatol. Med. Dentária Cir. Maxilofac. 2021, 62, 194–200. [Google Scholar] [CrossRef]
- Costa, J.; Bettencourt, A.; Madeira, A.; Nepomuceno, L.; Portugal, J.; Neves, C.B. Surface properties after Chemical Aging of Chlorhexidine Delivery Systems Based on Acrylic Resin. Rev. Port. Estomatol. Med. Dent. Cir. Maxilofac. 2019, 60, 15562. [Google Scholar] [CrossRef]
- Sczepanski, F.; Sczepanski, C.R.B.; Berger, S.B.; Consani, R.L.X.; Gonini-Júnior, A.; Guiraldo, R.D. Effect of Sodium Hypochlorite and Peracetic Acid on the Surface Roughness of Acrylic Resin Polymerized by Heated Water for Short and Long Cycles. Eur. J. Dent. 2014, 08, 533–537. [Google Scholar] [CrossRef]
- Gonçalves, L.; Neto, D.; Bonan, R.; Carlo, H.; Batista, A. Complete and Partial Removable Dentures Cleansing Methods. Rev. Bras. Ciências Saúde. 2011, 1, 87–94. [Google Scholar] [CrossRef]
- Felton, D.; Cooper, L.; Duqum, I.; Minsley, G.; Guckes, A.; Haug, S.; Meredith, P.; Solie, C.; Avery, D.; Deal Chandler, N. Evidence-Based Guidelines for the Care and Maintenance of Complete Dentures: A Publication of the American College of Prosthodontists. J. Prosthodont. 2011, 20, S1–S12. [Google Scholar] [CrossRef]
Deflex Classic SR | Deflex Supra SF | |
---|---|---|
Manufacturer | Nuxen SRL, Buenos Aires, Argentina | Nuxen SRL, Buenos Aires, Argentina |
Batch Number | 31318CL30 | 36217SU03 |
Injection Temperature | 280 °C | 260 °C |
Plastification Time | 15 min | 12 min |
Support Time | 1 min | 1 min |
Air Pressure | 6.0 Kg/cm2 = 6.0 Bar = 86 PSI | 3.5 Kg/cm2 = 3.5 Bar = 50 PSI |
ProBase Hot | |
---|---|
Manufacturer | Ivoclar Vivadent AG, Schaan, Liechtenstein |
Batch Number | WT0763 (Powder) N46447 (Liquid) |
Powder/Liquid ratio (g/mL) | 22.5/10 |
Composition | Powder: Polymethylmethacrylate, Softening Agent, Benzoyl Peroxide, Pigments Liquid: Methylmethacrylate, Dimethacrylate (Linking agent), Catalyst |
Standard Polymerization Cycle | 100 °C for 45 min |
Material | Microhardness (KHN) before Thermal Aging | Microhardness (MPa) after Thermal Aging | ||
---|---|---|---|---|
Mean (±SD) | Median (IQR) | Mean (±SD) | Median (IQR) | |
ProBase Hot | 14.6 (±3.13) | 14.6 (3.3) | 14.5 (±3.24) | 14.5 (3.3) |
Deflex Classic SR | 7.8 (±1.60) | 7.5 (1.5) | 7.5 (±1.37) | 7.3 (1.4) |
Deflex Supra SF | 8.6 (±2.10) | 8.6 (2.7) | 8.0 (±1.79) | 7.9 (2.3) |
Material | Flexural Strength (MPa) before Thermal Aging | Flexural Strength (MPa) after Thermal Aging | ||
---|---|---|---|---|
Mean (±SD) | Median (IQR) | Mean (±SD) | Median (IQR) | |
ProBase Hot | 83.2 (±12.31) | 80.1 (23.22) | 71.0 (±18.39) | 66.9 (14.49) |
Deflex Classic SR | 63.0 (±3.53) | 62.7 (5.35) | 69.4 (±3.82) | 61.2 (3.70) |
Deflex Supra SF | 54.8 (±4.14) | 54.5 (8.13) | 52.6 (±2.70) | 52.5 (2.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, I.; Rodrigues dos Santos, N.; Anes, V.; Neves, C.B.; Santos, V. Effect of Thermal Aging and Chemical Disinfection on the Microhardness and Flexural Strength of Flexible Resins. Appl. Sci. 2024, 14, 361. https://doi.org/10.3390/app14010361
Nascimento I, Rodrigues dos Santos N, Anes V, Neves CB, Santos V. Effect of Thermal Aging and Chemical Disinfection on the Microhardness and Flexural Strength of Flexible Resins. Applied Sciences. 2024; 14(1):361. https://doi.org/10.3390/app14010361
Chicago/Turabian StyleNascimento, Inês, Nuno Rodrigues dos Santos, Vitor Anes, Cristina Bettencourt Neves, and Virgínia Santos. 2024. "Effect of Thermal Aging and Chemical Disinfection on the Microhardness and Flexural Strength of Flexible Resins" Applied Sciences 14, no. 1: 361. https://doi.org/10.3390/app14010361