Test-Retest and Inter-Rater Reliability of a Rotary Axis Encoder-Flywheel System for the Assessment of Hip Rotation Exercises
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Size
2.3. Outcome Measurement
2.4. Inertial Flywheel Measurement Protocol
2.5. Procedure
2.6. Statistical Analysis
3. Results
3.1. Test-Retest Reliability
3.2. Inter-Rater Reliability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paul, D.; Nassis, J. Testing strength and power in soccer players: The application of conventional and traditional methods of assessment. J. Strength Cond. Res. 2015, 29, 1748–1758. [Google Scholar] [CrossRef] [PubMed]
- Piqueras-Sanchiz, F.; Sabido, R.; Raya-González, J.; Madruga-Parera, M.; Romero-Rodríguez, D.; Beato, M.; de Hoyo, M.; Nakamura, F.Y.; Hernández-Davó, J.L. Effects of Different Inertial Load Settings on Power Output Using a Flywheel Leg Curl Exercise and its Inter-Session Reliability. J. Hum. Kinet. 2020, 74, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Mentiplay, B.F.; Perraton, L.G.; Bower, K.J.; Adair, B.; Pua, Y.H.; Williams, G.P.; McGaw, R.; Clark, R.A. Assessment of lower limb muscle strength and power using hand-held and fixed dynamometry: A reliability and validity study. PLoS ONE 2015, 10, e0140822. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, C.; Armijo-Olivo, S.; De La Fuente, C.; Fuentes, J.; Javier Chirosa, L. Absolute Reliability and Concurrent Validity of Hand Held Dynamometry and Isokinetic Dynamometry in the Hip, Knee and Ankle Joint: Systematic Review and Meta-analysis. Open Med. 2017, 12, 359. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.M.; Cheng, M.S.; Smith, A.R., Jr.; Kolber, M.J. Intrarater reliability of hand held dynamometry in measuring lower extremity isometric strength using a portable stabilization device. Musculoskelet. Sci. Pract. 2017, 27, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Mosler, A.B.; Kemp, J.; King, M.; Lawrenson, P.R.; Semciw, A.; Freke, M.; Jones, D.M.; Casartelli, N.C.; Wörner, T.; Ishøi, L.; et al. Standardised measurement of physical capacity in young and middle-aged active adults with hip-related pain: Recommendations from the first International Hip-related Pain Research Network (IHiPRN) meeting, Zurich, 2018. Br. J. Sports Med. 2020, 54, 23. [Google Scholar] [CrossRef] [PubMed]
- Beato, M.; Fleming, A.; Coates, A.; Dello Iacono, A. Validity and reliability of a flywheel squat test in sport. J. Sports Sci. 2021, 39, 482–488. [Google Scholar] [CrossRef]
- Boullosa, D.; Del Rosso, S.; Behm, D.G.; Foster, C. Post-activation potentiation (PAP) in endurance sports: A review. Eur. J. Sport Sci. 2018, 18, 595–610. [Google Scholar] [CrossRef]
- De Sá, E.C.; Medeiros, A.R.; Ferreira, A.S.; Ramos, A.G.; Janicijevic, D.; Boullosa, D. Validity of the iLOAD® app for resistance training monitoring. PeerJ 2019, 2019, e7372. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S.; Nosaka, K.; Alarcón-Gómez, J.; Martín-Rivera, F. Validity and Reliability of Inertial Measurement System for Linear Movement Velocity in Flywheel Squat Exercise. Sensors 2023, 23, 2193. [Google Scholar] [CrossRef]
- Beato, M.; Maroto-Izquierdo, S.; Hernández-Davó, J.L.; Raya-González, J. Flywheel Training Periodization in Team Sports. Front. Physiol. 2021, 12, 732802. [Google Scholar] [CrossRef] [PubMed]
- Martín-Rivera, F.; Beato, M.; Alepuz-Moner, V.; Maroto-Izquierdo, S. Use of concentric linear velocity to monitor flywheel exercise load. Front. Physiol. 2022, 13, 961572. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-López, A.; De Souza Fonseca, F.; Ramírez-Campillo, R.; Gantois, P.; Javier Nuñez, F.; Nakamura, F.Y. The use of real-time monitoring during flywheel resistance training programmes: How can we measure eccentric overload? A systematic review and meta-analysis. Biol. Sport 2021, 38, 639. [Google Scholar] [CrossRef] [PubMed]
- Tesch, P.A.; Fernandez-Gonzalo, R.; Lundberg, T.R. Clinical Applications of Iso-Inertial, Eccentric-Overload (YoYoTM) Resistance Exercise. Front. Physiol. 2017, 8, 241. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Izquierdo, S.; Raya-González, J.; Hernández-Davó, J.L.; Beato, M. Load Quantification and Testing Using Flywheel Devices in Sports. Front. Physiol. 2021, 12, 739399. [Google Scholar] [CrossRef] [PubMed]
- Tous-Fajardo, J.; Maldonado, R.A.; Quintana, J.M.; Pozzo, M.; Tesch, P.A. The Flywheel Leg-Curl Machine: Offering Eccentric Overload for Hamstring Development. Int. J. Sports Physiol. Perform. 2006, 1, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Claudino, J.G.; Cardoso Filho, C.A.; Bittencourt, N.F.N.; Gonçalves, L.G.; Couto, C.R.; Quintão, R.C.; Reis, G.F.; de Oliveira Júnior, O.; Amadio, A.C.; Boullosa, D.; et al. Eccentric Strength Assessment of Hamstring Muscles with New Technologies: A Systematic Review of Current Methods and Clinical Implications. Sports Med. Open 2021, 7, 10. [Google Scholar] [CrossRef]
- Spudić, D.; Smajla, D.; Šarabon, N. Intra-session reliability of electromyographic measurements in flywheel squats. PLoS ONE 2020, 15, e0243090. [Google Scholar] [CrossRef]
- Ryan, S.; Ramirez-Campillo, R.; Browne, D.; Moody, J.A.; Byrne, P.J. Intra- and Inter-Day Reliability of Inertial Loads with Cluster Sets When Performed during a Quarter Squat on a Flywheel Device. Sports 2023, 11, 121. [Google Scholar] [CrossRef]
- Claiborne, T.L.; Timmons, M.K.; Pincivero, D.M. Test–retest reliability of cardinal plane isokinetic hip torque and EMG. J. Electromyogr. Kinesiol. 2009, 19, e345–e352. [Google Scholar] [CrossRef]
- Harris-Hayes, M.; Hillen, T.J.; Commean, P.K.; Harris, M.D.; Mueller, M.J.; Clohisy, J.C.; Salsich, G.B. Hip kinematics during single leg tasks in people with and without hip-related groin pain and the association among kinematics, hip muscle strength and bony morphology. J. Orthop. Sports Phys. Ther. 2020, 50, 243–251. [Google Scholar] [CrossRef]
- Selkowitz, D.M.; Beneck, G.J.; Powers, C.M. Which exercises target the gluteal muscles while minimizing activation of the tensor fascia lata? Electromyographic assessment using fine-wire electrodes. J. Orthop. Sports Phys. Ther. 2013, 43, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Yim, J. Core Stability and Hip Exercises Improve Physical Function and Activity in Patients with Non-Specific Low Back Pain: A Randomized Controlled Trial. Tohoku J. Exp. Med. 2020, 251, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kang, S. The relationship of hip rotation range, hip rotator strength and balance in healthy individuals. J. Back Musculoskelet. Rehabil. 2020, 33, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Powers, C.M. The influence of abnormal hip mechanics on knee injury: A biomechanical perspective. J. Orthop. Sports Phys. Ther. 2010, 40, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Kottner, J.; Audigé, L.; Brorson, S.; Donner, A.; Gajewski, B.J.; Hróbjartsson, A.; Roberts, C.; Shoukri, M.; Streiner, D.L. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J. Clin. Epidemiol. 2011, 64, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Arifin, W.N. A Web-based Sample Size Calculator for Reliability Studies. Educ. Med. J. 2018, 10, 67–76. [Google Scholar] [CrossRef]
- Manterola, C.; Otzen, T. Los Sesgos en Investigación Clínica. Int. J. Morphol. 2015, 33, 1156–1164. [Google Scholar] [CrossRef]
- Çevik Saldıran, T.; Kara, İ.; Kutlutürk Yıkılmaz, S. Quantification of the forearm muscles mechanical properties using Myotonometer: Intra- and Inter-Examiner reliability and its relation with hand grip strength. J. Electromyogr. Kinesiol. 2022, 67, 102718. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Giroux, C.; Rabita, G.; Chollet, D.; Guilhem, G. What is the best method for assessing lower limb force-velocity relationship? Int. J. Sports Med. 2014, 36, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Banyard, H.G.; Nosaka, K.; Sato, K.; Haff, G.G. Validity of Various Methods for Determining Velocity, Force, and Power in the Back Squat. Int. J. Sports Physiol. Perform. 2017, 12, 1170–1176. [Google Scholar] [CrossRef] [PubMed]
- Garnacho-Castaño, M.; Lopez-Lastra, S.; Maté-Muñoz, J. Reliability and validity assessment of a linear position transducer. J. Sports Sci. Med. 2015, 14, 128–136. [Google Scholar] [PubMed]
- Cronin, J.B.; Hing, R.D.; McNair, P.J. Reliability and validity of a linear position transducer for measuring jump performance. J. Strength Cond. Res. 2004, 18, 590–593. [Google Scholar] [PubMed]
- Sabido, R.; Hernández-Davó, J.L.; Botella, J.; Navarro, A.; Tous-Fajardo, J. Effects of adding a weekly eccentric-overload training session on strength and athletic performance in team-handball players. Eur. J. Sport Sci. 2017, 17, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Carroll, K.M.; Wagle, J.P.; Sato, K.; Taber, C.B.; Yoshida, N.; Bingham, G.E.; Stone, M.H. Characterising overload in inertial flywheel devices for use in exercise training. Sports Biomech. 2019, 18, 390–401. [Google Scholar] [CrossRef]
- Muñoz-López, A.; Galiano, C.; Núñez, F.J.; Floría, P. The Flywheel Device Shaft Shape Determines Force and Velocity Profiles in The Half Squat Exercise. J. Hum. Kinet. 2022, 81, 15–25. [Google Scholar] [CrossRef]
- Sabido, R.; Hernández-Davó, J.L.; Pereyra-Gerber, G.T. Influence of Different Inertial Loads on Basic Training Variables during the Flywheel Squat Exercise. Int. J. Sports Physiol. Perform. 2018, 13, 482–489. [Google Scholar] [CrossRef]
- Cenci, S.; Kealhofer, S. Reliability of work-related assessments. Work 1999, 13, 107–124. [Google Scholar]
Variables | Test 1 (M ± SD) | Test 2 (M ± SD) | ICC (95% CI) | SEM | SEM% | MDC | CV (%) | |
---|---|---|---|---|---|---|---|---|
ER | V (m/s) | 0.55 (0.08) | 0.56 (0.08) | 0.95 (0.89–0.98) | 0.02 | 3.58 | 0.06 | 6.9 |
Vmax (m/s) | 0.71 (0.12) | 0.72 (0.11) | 0.97 (0.93–0.99) | 0.02 | 2.80 | 0.06 | 5.6 | |
P (W) | 47.93 (20.92) | 48.13 (21.33) | 0.98 (0.96–0.99) | 2.95 | 6.14 | 8.18 | 12.0 | |
Pmax (W) | 143.95 (66.93) | 151.39 (66.68) | 0.97 (0.93–0.99) | 11.47 | 7.78 | 31.79 | 18.6 | |
F (N) | 130.62 (34.16) | 130.90 (34.90) | 0.98 (0.96–0.99) | 4.84 | 3.70 | 13.42 | 7.0 | |
Fmax (N) | 480.72 (128.97) | 503.45 (118.15) | 0.95 (0.89–0.98) | 27.50 | 5.59 | 76.23 | 12.0 | |
IR | V (m/s) | 0.64 (0.06) | 0.65 (0.06) | 0.93 (0.85–0.97) | 0.02 | 3.08 | 0.05 | 4.7 |
Vmax (m/s) | 0.86 (0.08) | 0.85 (0.08) | 0.93 (0.85–0.97) | 0.02 | 2.35 | 0.06 | 4.9 | |
P (W) | 72.98 (20.82) | 71.95 (22.31) | 0.96 (0.92–0.98) | 4.01 | 5.50 | 11.12 | 10.6 | |
Pmax (W) | 190.39 (63.94) | 213.91 (66.96) | 0.89 (0.75–0.94) | 21.86 | 10.81 | 60.59 | 18.2 | |
F (N) | 169.55 (32.30) | 169.61 (30.66) | 0.96 (0.92–0.98) | 6.24 | 3.68 | 19.18 | 6.9 | |
Fmax (N) | 550.93 (126.38) | 590.60 (120.28) | 0.86 (0.69–0.94) | 46.33 | 8.12 | 128.42 | 15.6 |
Variables | Test 1 (M ± SD) | Test 2 (M ± SD) | ICC (95% CI) | SEM | %SEM | MDC | CV (%) | |
---|---|---|---|---|---|---|---|---|
ER | V (m/s) | 0.55 (0.08) | 0.55 (0.08) | 0.95 (0.89–0.98) | 0.02 | 3.63 | 0.06 | 6.2 |
Vmax (m/s) | 0.71 (0.12) | 0.70 (0.10) | 0.97 (0.94–0.99) | 0.02 | 2.83 | 0.06 | 4.8 | |
P (W) | 47.93 (20.92) | 46.02 (18.65) | 0.98 (0.96–0.99) | 2.78 | 5.92 | 7.71 | 9.8 | |
Pmax (W) | 143.95 (66.93) | 142.53 (54.58) | 0.95 (0.89–0.98) | 13.52 | 9.46 | 37.47 | 15.5 | |
F (N) | 130.62 (34.16) | 128.03 (32.07) | 0.98 (0.96–0.99) | 4.64 | 3.59 | 12.86 | 6.1 | |
Fmax (N) | 480.72 (128.97) | 480.72 (128.96) | 0.95 (0.90–0.98) | 27.35 | 5.72 | 75.81 | 11.0 | |
IR | V (m/s) | 0.64 (0.06) | 0.64 (0.07) | 0.91 (0.81–0.96) | 0.02 | 3.12 | 0.06 | 5.5 |
Vmax (m/s) | 0.86 (0.08) | 0.84 (0.09) | 0.94 (0.88–0.97) | 0.02 | 2.35 | 0.06 | 4.7 | |
P (W) | 72.98 (20.82) | 71.95 (22.31) | 0.97 (0.94–0.99) | 3.70 | 5.11 | 10.26 | 9.0 | |
Pmax (W) | 190.39 (63.94) | 191.26 (70.64) | 0.85 (0.66–0.93) | 25.85 | 13.55 | 71.65 | 16.9 | |
F (N) | 169.55 (32.30) | 167.97 (35.61) | 0.98 (0.95–0.99) | 4.36 | 2.58 | 12.09 | 6.0 | |
Fmax (N) | 550.93 (126.38) | 553.76 (141.26) | 0.91 (0.80–0.96) | 39.83 | 7.21 | 110.40 | 11.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahuerta-Martín, S.; Esteban-Lozano, E.; Jiménez-del-Barrio, S.; Robles-Pérez, R.; Mingo-Gómez, M.T.; Ceballos-Laita, L.; Hernando-Garijo, I. Test-Retest and Inter-Rater Reliability of a Rotary Axis Encoder-Flywheel System for the Assessment of Hip Rotation Exercises. Appl. Sci. 2024, 14, 372. https://doi.org/10.3390/app14010372
Lahuerta-Martín S, Esteban-Lozano E, Jiménez-del-Barrio S, Robles-Pérez R, Mingo-Gómez MT, Ceballos-Laita L, Hernando-Garijo I. Test-Retest and Inter-Rater Reliability of a Rotary Axis Encoder-Flywheel System for the Assessment of Hip Rotation Exercises. Applied Sciences. 2024; 14(1):372. https://doi.org/10.3390/app14010372
Chicago/Turabian StyleLahuerta-Martín, Silvia, Elena Esteban-Lozano, Sandra Jiménez-del-Barrio, Román Robles-Pérez, María Teresa Mingo-Gómez, Luis Ceballos-Laita, and Ignacio Hernando-Garijo. 2024. "Test-Retest and Inter-Rater Reliability of a Rotary Axis Encoder-Flywheel System for the Assessment of Hip Rotation Exercises" Applied Sciences 14, no. 1: 372. https://doi.org/10.3390/app14010372
APA StyleLahuerta-Martín, S., Esteban-Lozano, E., Jiménez-del-Barrio, S., Robles-Pérez, R., Mingo-Gómez, M. T., Ceballos-Laita, L., & Hernando-Garijo, I. (2024). Test-Retest and Inter-Rater Reliability of a Rotary Axis Encoder-Flywheel System for the Assessment of Hip Rotation Exercises. Applied Sciences, 14(1), 372. https://doi.org/10.3390/app14010372