DTR-GAN: An Unsupervised Bidirectional Translation Generative Adversarial Network for MRI-CT Registration
Abstract
:1. Introduction
2. Related Work
3. Methods
3.1. Registration Network
3.2. Dual Contrastive Translation Network
3.2.1. Generator
3.2.2. Discriminator
3.3. Training Loss
3.3.1. Registration Loss
3.3.2. Translation Loss
3.4. Objection Function
4. Results
4.1. Dataset and Preprocessing
4.2. Implementation Details
4.3. Evaluation Metrics
4.4. Results on the Learn2Reg and CHAOS Datasets
4.5. Ablation Experiment
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Metcalfe, P.; Liney, G.P.; Holloway, L.; Walker, A.; Barton, M.; Delaney, G.P.; Vinod, S.; Tome, W. The Potential for an Enhanced Role for MRI in Radiation-Therapy Treatment Planning. Technol. Cancer Res. Treat. 2013, 12, 429–446. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, E.; Wyatt, J.J.; Henry, A.M.; Short, S.C.; Sebag-Montefiore, D.; Murray, L.; Kelly, C.G.; McCallum, H.M.; Speight, R. Systematic Review of Synthetic Computed Tomography Generation Methodologies for Use in Magnetic Resonance Imaging–Only Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 199–217. [Google Scholar] [CrossRef] [PubMed]
- Sharafudeen, M.; Chandra, S.S.V. Leveraging Vision Attention Transformers for Detection of Artificially Synthesized Dermoscopic Lesion Deepfakes Using Derm-CGAN. Diagnostics 2023, 13, 825. [Google Scholar] [CrossRef] [PubMed]
- Commandeur, F.; Simon, A.; Mathieu, R.; Nassef, M.; Arango, J.D.; Roll, Y.; Haigron, P.; De Crevoisier, R.; Acosta, O. MRI to CT Prostate Registration for Improved Targeting in Cancer External Beam Radiotherapy. IEEE J. Biomed. Health Inform. 2016, 21, 1015–1026. [Google Scholar] [CrossRef]
- Sun, Y.; Moelker, A.; Niessen, W.J.; van Walsum, T. Towards Robust CT-Ultrasound Registration Using Deep Learning Methods. In Understanding and Interpreting Machine Learning in Medical Image Computing Applications, Proceedings of the First International Workshops, MLCN 2018, DLF 2018, and iMIMIC 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 16–20 September 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 43–51. [Google Scholar] [CrossRef]
- Fan, J.; Cao, X.; Yap, P.T.; Shen, D. BIRNet: Brain image registration using dual-supervised fully convolutional networks. Med. Image Anal. 2019, 54, 193–206. [Google Scholar] [CrossRef] [PubMed]
- De Vos, B.D.; Berendsen, F.F.; Viergever, M.A.; Staring, M.; Išgum, I. End-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Proceedings of the Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, 14 September 2017; Springer International Publishing: Cham, Switzerland, 2017; pp. 204–212. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Zhao, A.; Sabuncu, M.R.; Guttag, J.; Dalca, A.V. VoxelMorph: A learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 2019, 38, 1788–1800. [Google Scholar] [CrossRef]
- Kori, A.; Krishnamurthi, G. Zero Shot Learning for Multi-Modal Real Time Image Registration. arXiv 2019, arXiv:1908.06213. [Google Scholar]
- Yu, H.; Zhou, X.; Jiang, H.; Kang, H.; Wang, Z.; Hara, T.; Fujita, H. Learning 3D non-rigid deformation based on an unsupervised deep learning for PET/CT image registration. In Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging; SPIE: Bellingham, WA, USA, 2019; Volume 10953, pp. 439–444. [Google Scholar] [CrossRef]
- Yan, P.; Xu, S.; Rastinehad, A.R.; Wood, B.J. Adversarial Image Registration with Application for MR and TRUS Image Fusion. In Machine Learning in Medical Imaging, Proceedings of the 9th International Workshop, MLMI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 16 September 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 197–204. [Google Scholar] [CrossRef]
- Fan, J.; Cao, X.; Wang, Q.; Yap, P.T.; Shen, D. Adversarial learning for mono-or multi-modal registration. Med. Image Anal. 2019, 58, 101545. [Google Scholar] [CrossRef]
- Mahapatra, D. GAN Based Medical Image Registration. arXiv 2018, arXiv:1805.02369. [Google Scholar]
- Mahapatra, D.; Antony, B.; Sedai, S.; Garnavi, R. Deformable medical image registration using generative adversarial networks. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 1449–1453. [Google Scholar] [CrossRef]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the IEEE International Conference on Computer vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar] [CrossRef]
- Xu, Z.; Luo, J.; Yan, J.; Pulya, R.; Li, X.; Wells, W.; Jagadeesan, J. Adversarial Uni- and Multi-modal Stream Networks for Multimodal Image Registration. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020, Proceedings of the 23rd International Conference, Lima, Peru, 4–8 October 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 222–232. [Google Scholar] [CrossRef]
- Tang, Z.; Yap, P.T.; Shen, D. A New Multi-Atlas Registration Framework for Multimodal Pathological Images Using Conventional Monomodal Normal Atlases. IEEE Trans. Image Process. 2018, 28, 2293–2304. [Google Scholar] [CrossRef] [PubMed]
- Tanner, C.; Ozdemir, F.; Profanter, R.; Vishnevsky, V.; Konukoglu, E.; Goksel, O. Generative Adversarial Networks for MR-CT Deformable Image Registration. arXiv 2018, arXiv:1807.07349. [Google Scholar]
- Han, R.; Jones, C.K.; Lee, J.; Wu, P.; Vagdargi, P.; Uneri, A.; Helm, P.A.; Luciano, M.; Anderson, W.S.; Siewerdsen, J.H. Deformable MR-CT image registration using an unsupervised, dual-channel network for neurosurgical guidance. Med. Image Anal. 2022, 75, 102292. [Google Scholar] [CrossRef]
- Qin, C.; Shi, B.; Liao, R.; Mansi, T.; Rueckert, D.; Kamen, A. Unsupervised Deformable Registration for Multi-modal Images via Disentangled Representations. In Proceedings of the International Conference on Information Processing in Medical Imaging, Davis, CA, USA, 22 May 2019; Springer International Publishing: Cham, Switzerland, 2019; pp. 249–261. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, S. A Disentangled Representations based Unsupervised Deformable Framework for Cross-modality Image Registration. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico City, Mexico, 1 November 2021; pp. 3531–3534. [Google Scholar] [CrossRef]
- Arar, M.; Ginger, Y.; Danon, D.; Bermano, A.H.; Cohen-Or, D. Unsupervised Multi-Modal Image Registration via Geometry Preserving Image-to-Image Translation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 13410–13419. [Google Scholar] [CrossRef]
- Cao, X.; Yang, J.; Gao, Y.; Guo, Y.; Wu, G.; Shen, D. Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis. Med. Image Anal. 2017, 41, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Casamitjana, A.; Mancini, M.; Iglesias, J.E. Synth-by-Reg (SbR): Contrastive Learning for Synthesis-Based Registration of Paired Images. In Simulation and Synthesis in Medical Imaging, Proceedings of the 6th International Workshop, SASHIMI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, 27 September 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 44–54. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, J.; Li, R. Unsupervised Multi-Modal Medical Image Registration via Discriminator-Free Image-to-Image Translation. arXiv 2022, arXiv:2204.13656. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Li, Y.; Lai, H.; Huang, S.; Yang, X. Geometry-Consistent Adversarial Registration Model for Unsupervised Multi-Modal Medical Image Registration. IEEE J. Biomed. Health Inform. 2023, 27, 3455–3466. [Google Scholar] [CrossRef]
- Kong, L.; Qi, X.S.; Shen, Q.; Wang, J.; Zhang, J.; Hu, Y.; Zhou, Q. Indescribable Multi-modal Spatial Evaluator. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17–21 June 2023; pp. 9853–9862. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Jaderberg, M.; Simonyan, K.; Zisserman, A. Spatial transformer networks. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar]
- Park, T.; Efros, A.A.; Zhang, R.; Zhu, J.Y. Contrastive Learning for Unpaired Image-to-Image Translation. In Computer Vision–ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 319–345. [Google Scholar] [CrossRef]
- Han, J.; Shoeiby, M.; Petersson, L.; Armin, M.A. Dual Contrastive Learning for Unsupervised Image-to-Image Translation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 746–755. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar] [CrossRef]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Hering, A.; Hansen, L.; Mok, T.C.; Chung, A.C.; Siebert, H.; Häger, S.; Lange, A.; Kuckertz, S.; Heldmann, S.; Shao, W.; et al. Learn2Reg: Comprehensive Multi-Task Medical Image Registration Challenge, Dataset and Evaluation in the Era of Deep Learning. IEEE Trans. Med. Imaging 2022, 42, 697–712. [Google Scholar] [CrossRef]
- Kavur, A.E.; Gezer, N.S.; Barış, M.; Aslan, S.; Conze, P.H.; Groza, V.; Pham, D.D.; Chatterjee, S.; Ernst, P.; Özkan, S.; et al. CHAOS Challenge-combined (CT-MR) healthy abdominal organ segmentation. Med. Image Anal. 2021, 69, 101950. [Google Scholar] [CrossRef]
- Marstal, K.; Berendsen, F.; Staring, M.; Klein, S. SimpleElastix: A User-Friendly, Multi-lingual Library for Medical Image Registration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA, 27–30 June 2016; pp. 134–142. [Google Scholar] [CrossRef]
- Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
Source | Modality | Size | Train/Validation/Test | Resize |
---|---|---|---|---|
Learn2Reg | CT, MRI | 192 ×160 | 10/2/4 | ✓ |
CHAOS | CT, MRI | -* | 14/2/4 | ✓ |
MRI-CT | CT-MRI | |||
---|---|---|---|---|
(mm) ↓ | (mm) ↓ | |||
Affine [37] | 65.51 ± 3.10 | 5.63 ± 1.77 | 64.91 ± 3.10 | 6.10 ± 1.77 |
VoxelMorph [8] | 68.21 ± 2.42 | 6.10 ± 1.37 | 66.60 ± 3.94 | 6.32 ± 1.67 |
CR-GAN | 77.81 ± 1.80 | 5.15 ± 1.57 | 76.19 ± 2.70 | 5.50 ± 1.51 |
SbR [25] | 76.52 ± 2.62 | 4.55 ± 1.36 | 75.51 ± 1.60 | 4.55 ± 1.36 |
RoT [23] | 74.81 ± 0.78 | 5.05 ± 1.79 | 73.30 ± 2.20 | 5.65 ± 1.79 |
IMSE [28] | 74.29 ± 2.37 | 5.05 ± 2.12 | 73.79 ± 2.21 | 5.06 ± 1.62 |
DFR [26] | 78.50 ± 2.50 | 4.54 ± 1.22 | 77.65 ± 2.50 | 4.74 ± 1.11 |
DTR-GAN | 80.85 ± 2.09 | 4.21 ± 1.65 | 79.73 ± 2.03 | 4.62 ± 1.76 |
T1-CT | CT-T1 | |||
---|---|---|---|---|
(mm) ↓ | (mm) ↓ | |||
Affine [37] | 65.15 ± 6.20 | 7.54 ± 2.56 | 64.23 ± 6.40 | 7.66 ± 2.40 |
VoxelMorph [8] | 69.59 ± 6.81 | 7.23 ± 2.41 | 68.83 ± 6.10 | 7.43 ± 2.40 |
CR-GAN | 76.67 ± 4.20 | 7.08 ± 3.93 | 75.18 ± 4.81 | 7.26 ± 2.78 |
SbR [25] | 75.49 ± 6.18 | 6.77 ± 2.65 | 74.63 ± 6.18 | 6.82 ± 2.66 |
RoT [23] | 73.52 ± 5.62 | 7.55 ± 2.36 | 72.20 ± 5.29 | 7.62 ± 2.05 |
IMSE [28] | 74.26 ± 2.07 | 7.17 ± 2.86 | 73.42 ± 2.30 | 7.40 ± 2.18 |
DFR [26] | 78.19 ± 6.06 | 6.35 ± 2.41 | 77.53 ± 6.35 | 6.54 ± 2.08 |
DTR-GAN | 80.17 ± 1.77 | 6.07 ± 2.19 | 79.04 ± 2.40 | 6.28 ± 2.50 |
MRI-CT | CT-MRI | |||
---|---|---|---|---|
(mm) ↓ | (mm) ↓ | |||
TR-GAN | 76.02 ± 2.68 | 4.91 ± 1.62 | 75.67 ± 2.64 | 5.10 ± 1.24 |
DR-GAN | 77.03 ± 2.99 | 5.00 ± 1.88 | 76.30 ± 2.08 | 4.96 ± 1.94 |
DTR-GAN | 80.85 ± 2.09 | 4.21 ± 1.65 | 79.73 ± 2.03 | 4.62 ± 1.76 |
PDTR-GAN | 78.70 ± 2.70 | 4.79 ± 1.93 | 77.28 ± 2.07 | 4.87 ± 1.01 |
T1-CT | CT-T1 | |||
---|---|---|---|---|
(mm) ↓ | (mm) ↓ | |||
TR-GAN | 77.47 ± 2.09 | 6.83 ± 2.82 | 76.68 ± 2.91 | 6.93 ± 2.90 |
DR-GAN | 78.80 ± 2.97 | 6.45 ± 2.63 | 77.40 ± 2.33 | 6.76 ± 2.06 |
DTR-GAN | 80.17 ± 1.77 | 6.07 ± 2.19 | 79.04 ± 2.40 | 6.28 ± 2.50 |
PDTR-GAN | 79.92 ± 2.28 | 6.23 ± 2.09 | 78.36 ± 2.72 | 6.40 ± 2.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, A.; Yang, T.; Zhao, X.; Zhang, X.; Yan, Y.; Jiao, C. DTR-GAN: An Unsupervised Bidirectional Translation Generative Adversarial Network for MRI-CT Registration. Appl. Sci. 2024, 14, 95. https://doi.org/10.3390/app14010095
Yang A, Yang T, Zhao X, Zhang X, Yan Y, Jiao C. DTR-GAN: An Unsupervised Bidirectional Translation Generative Adversarial Network for MRI-CT Registration. Applied Sciences. 2024; 14(1):95. https://doi.org/10.3390/app14010095
Chicago/Turabian StyleYang, Aolin, Tiejun Yang, Xiang Zhao, Xin Zhang, Yanghui Yan, and Chunxia Jiao. 2024. "DTR-GAN: An Unsupervised Bidirectional Translation Generative Adversarial Network for MRI-CT Registration" Applied Sciences 14, no. 1: 95. https://doi.org/10.3390/app14010095
APA StyleYang, A., Yang, T., Zhao, X., Zhang, X., Yan, Y., & Jiao, C. (2024). DTR-GAN: An Unsupervised Bidirectional Translation Generative Adversarial Network for MRI-CT Registration. Applied Sciences, 14(1), 95. https://doi.org/10.3390/app14010095