A Novel Energy-Efficient Coding Based on Coordinated Group Signal Transformation for Image Compression in Energy-Starved Systems
Abstract
:1. Introduction
- Network level;
- System (or protocol) level;
- Radio interface (channel) level;
2. Coordinated Group Signal Transformation Basics
3. CGST Codec Simulation for Processing Images
3.1. PNG Image Compression
3.2. CGST Algorithm Modification to Reduce Distortions
3.3. CGST-Compressed Image Restoration Using the Frequency Method
3.4. CGST-Compressed Image Postprocessing Using Neural Networks
3.5. Combining CGST with JPEG Compression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ericsson Mobility Report November 2021. Available online: https://www.ericsson.com/4ad7e9/assets/local/reports-papers/mobility-report/documents/2021/ericsson-mobility-report-november-2021.pdf (accessed on 26 March 2024).
- Halpin, S. Space Traffic Data Volumes Increase 14x Over the Next Ten Years. Available online: https://www.nsr.com/space-traffic-data-volumes-increase-14x-over-the-next-ten-years/ (accessed on 26 March 2024).
- State of IoT 2023: Number of Connected IoT Devices Growing 16% to 16.7 Billion Globally. Available online: https://iot-analytics.com/number-connected-iot-devices/ (accessed on 26 March 2024).
- Alliance, B.N.; Hattachi, R.E.; Erfanian, J. NGMN 5G White Paper; NGMN: Düsseldorf, Germany, 2015. [Google Scholar]
- Tong, P.Z.W. (Ed.) 6G: The Next Horizon: From Connected People and Things to Connected Intelligence; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Plastras, S.; Tsoumatidis, D.; Skoutas, D.N.; Rouskas, A.; Kormentzas, G.; Skianis, C. Non-Terrestrial Networks for Energy-Efficient Connectivity of Remote IoT Devices in the 6G Era: A Survey. Sensors 2024, 24, 1227. [Google Scholar] [CrossRef] [PubMed]
- Ledesma, O.; Lamo, P.; Fraire, J.A. Trends in LPWAN Technologies for LEO Satellite Constellations in the NewSpace Context. Electronics 2024, 13, 579. [Google Scholar] [CrossRef]
- Alagoz, F.; Gur, G. Energy efficiency and satellite networking: A holistic overview. Proc. IEEE 2011, 99, 1954–1979. [Google Scholar] [CrossRef]
- Nekoogar, F.; Nekoogar, F. From ASICs to SOCs: A Practical Approach; Prentice Hall Professional: Hoboken, NJ, USA, 2003. [Google Scholar]
- Rathore, R.S.; Sangwan, S.; Kaiwartya, O.; Aggarwal, G. Green communication for next-generation wireless systems: Optimization strategies, challenges, solutions, and future aspects. Wirel. Commun. Mob. Comput. 2021, 2021, 5528584. [Google Scholar] [CrossRef]
- Kaur, P.; Garg, R.; Kukreja, V. Energy-efficiency schemes for base stations in 5G heterogeneous networks: A systematic literature review. Telecommun. Syst. 2023, 84, 115–151. [Google Scholar] [CrossRef]
- Sabella, D.; Rapone, D.; Fodrini, M.; Cavdar, C.; Olsson, M.; Frenger, P.; Tombaz, S. Energy management in mobile networks towards 5G. Stud. Syst. Decis. Control 2016, 50, 397–427. [Google Scholar] [CrossRef] [PubMed]
- Elhawary, M.; Haas, Z.J. Energy-Efficient Protocol for Cooperative Networks. IEEE/ACM Trans. Netw. 2011, 19, 561–574. [Google Scholar] [CrossRef]
- Herrería-Alonso, S.; Rodríguez-Pérez, M.; Fernández-Veiga, M.; Lopez-Garcia, C. Adaptive DRX Scheme to Improve Energy Efficiency in LTE Networks with Bounded Delay. IEEE J. Sel. Areas Commun. 2015, 33, 2963–2973. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, Y.; Zhang, N.; Zhang, D.; Shen, X. Dynamic Channel Access to Improve Energy Efficiency in Cognitive Radio Sensor Networks. IEEE Trans. Wirel. Commun. 2016, 15, 3143–3156. [Google Scholar] [CrossRef]
- Jong, C.; Kim, Y.C.; So, J.H.; Ri, K.C. QoS and energy-efficiency aware scheduling and resource allocation scheme in LTE—A uplink systems. Telecommun. Syst. 2023, 82, 175–191. [Google Scholar] [CrossRef]
- Dong, Z.; Wei, J.; Chen, X.; Zheng, P. Energy Efficiency Optimization and Resource Allocation of Cross-Layer Broadband Wireless Communication System. IEEE Access 2020, 8, 50740–50754. [Google Scholar] [CrossRef]
- Xiong, C.; Li, G.Y.; Zhang, S.; Chen, Y.; Xu, S. Energy-Efficient Resource Allocation in OFDMA Networks. IEEE Trans. Commun. 2012, 60, 3767–3778. [Google Scholar] [CrossRef]
- Markiewicz, T.G. An Energy Efficient QAM Modulation with Multidimensional Signal Constellation. Int. J. Electron. Telecommun. 2016, 62, 159–165. [Google Scholar] [CrossRef]
- Li, W.; Ghogho, M.; Zhang, J.; McLernon, D.; Lei, J.; Zaidi, S.A.R. Design of an energy-efficient multidimensional secure constellation for 5G communications. In Proceedings of the 2019 IEEE International Conference on Communications Workshops, ICC Workshops 2019, Shanghai, China, 20–24 May 2019. [Google Scholar] [CrossRef]
- Turcza, P.; Duplaga, M. Energy-efficient image compression algorithm for high-frame rate multi-view wireless capsule endoscopy. J. Real-Time Image Process. 2019, 16, 1425–1437. [Google Scholar] [CrossRef]
- Resmi, N.; Chouhan, S. Energy Efficient Communication with Interdependent Source-Channel Coding: An Enhanced Methodology. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Peng, Y.; Andrieux, G.; Diouris, J.F. Minimization of Energy Consumption for OOK Transmitter Through Minimum Energy Coding. Wirel. Pers. Commun. 2022, 122, 2219–2233. [Google Scholar] [CrossRef]
- Khammassi, M.; Kammoun, A.; Alouini, M.S. Precoding for high throughput satellite communication systems: A survey. IEEE Commun. Surv. Tutor. 2023, 26, 80–118. [Google Scholar] [CrossRef]
- Hyla, J.; Sułek, W. Energy-Efficient Raptor-like LDPC Coding Scheme Design and Implementation for IoT Communication Systems. Energies 2023, 16, 4697. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hamada, M. Lossless image compression techniques: A state-of-the-art survey. Symmetry 2019, 11, 1274. [Google Scholar] [CrossRef]
- ZainEldin, H.; Elhosseini, M.A.; Ali, H.A. Image compression algorithms in wireless multimedia sensor networks: A survey. Ain Shams Eng. J. 2015, 6, 481–490. [Google Scholar] [CrossRef]
- Nauman, A.; Qadri, Y.A.; Amjad, M.; Zikria, Y.B.; Afzal, M.K.; Kim, S.W. Multimedia Internet of Things: A Comprehensive Survey. IEEE Access 2020, 8, 8202–8250. [Google Scholar] [CrossRef]
- Budati, A.K.; Islam, S.; Hasan, M.K.; Safie, N.; Bahar, N.; Ghazal, T.M. Optimized visual internet of things for video streaming enhancement in 5G sensor network devices. Sensors 2023, 23, 5072. [Google Scholar] [CrossRef] [PubMed]
- Coops, N.C.; Tompalski, P.; Goodbody, T.R.; Achim, A.; Mulverhill, C. Framework for near real-time forest inventory using multi source remote sensing data. Forestry 2023, 96, 1–19. [Google Scholar] [CrossRef]
- Phang, S.K.; Chiang, T.H.A.; Happonen, A.; Chang, M.M.L. From Satellite to UAV-based Remote Sensing: A Review on Precision Agriculture. IEEE Access 2023, 11, 127057–127076. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L. A review on unmanned aerial vehicle remote sensing: Platforms, sensors, data processing methods, and applications. Drones 2023, 7, 398. [Google Scholar] [CrossRef]
- Jayasankar, U.; Thirumal, V.; Ponnurangam, D. A survey on data compression techniques: From the perspective of data quality, coding schemes, data type and applications. J. King Saud Univ.-Comput. Inf. Sci. 2021, 33, 119–140. [Google Scholar] [CrossRef]
- Zhang, C.; Ugur, K.; Lainema, J.; Gabbouj, M. Video Coding Using Spatially Varying Transform. In Advances in Image and Video Technology; Series Title: Lecture Notes in Computer Science; Wada, T., Huang, F., Lin, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5414, pp. 796–806. [Google Scholar] [CrossRef]
- Li, Z.N.; Drew, M.S.; Liu, J. Fundamentals of Multimedia; Texts in Computer Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Puzicha, J.; Held, M.; Ketterer, J.; Buhmann, J.; Fellner, D. On spatial quantization of color images. IEEE Trans. Image Process. 2000, 9, 666–682. [Google Scholar] [CrossRef] [PubMed]
- Ponti, M.; Nazaré, T.S.; Thumé, G.S. Image quantization as a dimensionality reduction procedure in color and texture feature extraction. Neurocomputing 2016, 173, 385–396. [Google Scholar] [CrossRef]
- Afonso, M.; Sole, J.; Krasula, L.; Li, Z.; Tandon, P. CAMBI: Introduction and latest advances. In Proceedings of the 1st Mile-High Video Conference, Denver, CO, USA, 1–3 March 2022; pp. 105–106. [Google Scholar]
- Pérez-Delgado, M.L.; Román Gallego, J.Á. A two-stage method to improve the quality of quantized images. J. Real-Time Image Process. 2020, 17, 581–605. [Google Scholar] [CrossRef]
- Huang, Q.; Kim, H.Y.; Tsai, W.J.; Jeong, S.Y.; Choi, J.S.; Kuo, C.C.J. Understanding and Removal of False Contour in HEVC Compressed Images. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 378–391. [Google Scholar] [CrossRef]
- Voronkov, G.S.; Smirnova, E.A.; Kuznetsov, I.V. The method for synthesis of the coordinated group DPCM codec for unmanned aerial vehicles communication systems. In Proceedings of the ICOECS 2019: 2019 International Conference on Electrotechnical Complexes and Systems, Ufa, Russia, 22–25 October 2019. [Google Scholar] [CrossRef]
- Ivanov, V.V.; Lopukhova, E.A.; Voronkov, G.S.; Kuznetsov, I.V.; Grakhova, E.P. Efficiency Evaluation of Group Signals Transformation for Wireless Communication in V2X Systems. In Proceedings of the 2022 Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, 19–21 September 2022; pp. 167–170. [Google Scholar] [CrossRef]
- Sheferaw, G.K.; Mwangi, W.; Kimwele, M.; Mamuye, A. Waveform based speech coding using nonlinear predictive techniques: A systematic review. Int. J. Speech Technol. 2023, 26, 1–29. [Google Scholar] [CrossRef]
- Anees, M. Speech coding techniques and challenges: A comprehensive literature survey. Multimed. Tools Appl. 2023, 83, 29859–29879. [Google Scholar]
- Voronkov, G.S.; Filatov, P.E.; Sultanov, A.K.; Voronkova, A.V.; Vinogradova, I.L.; Kuznetsov, I.V. Signals and messages differential transformation research for increasing multichannel systems efficiency. J. Phys. Conf. Ser. 2018, 1096, 012175. [Google Scholar] [CrossRef]
- Voronkov, G.S.; Voronkova, A.V.; Kutluyarov, R.V.; Kuznetsov, I.V. Decreasing the dynamic range of OFDM signals based on extrapolation for information security increasing. In Proceedings of the 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2018, Yekaterinburg, Russia, 7–8 May 2018; pp. 271–274. [Google Scholar] [CrossRef]
- Voronkov, G.S.; Filatov, P.E.; Sultanov, A.K.; Kutluyarov, R.V.; Vinogradova, I.L.; Kuznetsov, I.V. Improving the efficiency of multichannel systems based on the coordination of channel signals. J. Phys. Conf. Ser. 2019, 1368, 042047. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Y.; Zhao, B.; Chanussot, J.; Hong, D.; Yao, J.; Gao, L. Progress and Challenges in Intelligent Remote Sensing Satellite Systems. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1814–1822. [Google Scholar] [CrossRef]
- Ekaterina-Lopukhova. The Dataset for Compression Method Based on Coordinated Group Signal Transformation. Available online: https://github.com/Ekaterina-Lopukhova/A-Novel-Image-Compression-Method-Based-on-Coordinated-Group-Signal-Transformation (accessed on 8 May 2024).
- Gonzalez, R.C. Digital Image Processing; Pearson Education India: Noida, India, 2009. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Simoncelli, E.P. Translation insensitive image similarity in complex wavelet domain. In Proceedings of the ICASSP’05: IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA, USA, 18–23 March 2005; Volume 2, pp. ii/573–ii/576. [Google Scholar]
- Pelt, D.M.; Batenburg, K.J. Fast tomographic reconstruction from limited data using artificial neural networks. IEEE Trans. Image Process. 2013, 22, 5238–5251. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, Y.; Zhang, W.; Liao, P.; Li, K.; Zhou, J.; Wang, G. Low-dose CT via convolutional neural network. Biomed. Opt. Express 2017, 8, 679. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Su, Z.; Ying, L.; Peng, X.; Zhu, S.; Liang, F.; Feng, D.; Liang, D. Accelerating magnetic resonance imaging via deep learning. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; pp. 514–517. [Google Scholar]
- Schlemper, J.; Caballero, J.; Hajnal, J.V.; Price, A.; Rueckert, D. A deep cascade of convolutional neural networks for MR image reconstruction. In Proceedings of the Information Processing in Medical Imaging: 25th International Conference, IPMI 2017, Boone, NC, USA, 25–30 June 2017; Proceedings 25. pp. 647–658. [Google Scholar]
- Technical Report ITU-R BT.2044-0 (2004) Tolerable Round-Trip Time Delay for Sound-Programme and Television Broadcast Programme Inserts—Context and Rationale. Available online: https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-BT.2044-2004-PDF-E.pdf (accessed on 8 May 2024).
- Gatys, L.A.; Ecker, A.S.; Bethge, M. Image Style Transfer Using Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2414–2423. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef]
- Ignatov, A.; Kobyshev, N.; Timofte, R.; Vanhoey, K.; Gool, L.V. DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3297–3305. [Google Scholar] [CrossRef]
- Savvin, S.; Sirota, A. An Algorithm for Multi-Fame Image Super-Resolution under Applicative Noise Based on a Convolutional Neural Network. In Proceedings of the 2020 2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency, SUMMA 2020, Lipetsk, Russia, 11–13 November 2020; pp. 422–424. [Google Scholar] [CrossRef]
- Vu, T.; Van Nguyen, C.; Pham, T.X.; Luu, T.M.; Yoo, C.D. Fast and efficient image quality enhancement via desubpixel convolutional neural networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Fourier Neural Operator for Parametric Partial Differential Equations. arXiv 2020, arXiv:2010.08895. [Google Scholar]
- Gardella, M.; Nikoukhah, T.; Li, Y.; Bammey, Q. The impact of jpeg compression on prior image noise. In Proceedings of the ICASSP 2022: 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 22–27 May 2022; pp. 2689–2693. [Google Scholar]
- Ehrlich, M.; Davis, L.; Lim, S.N.; Shrivastava, A. Analyzing and mitigating jpeg compression defects in deep learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 2357–2367. [Google Scholar]
- Ferianc, M.; Bohdal, O.; Hospedales, T.; Rodrigues, M. Impact of Noise on Calibration and Generalisation of Neural Networks. arXiv 2023, arXiv:2306.17630. [Google Scholar]
- Cappiello, A.G.; Popescu, D.C.; Harris, J.S.; Popescu, O. Radio link design for CubeSat-to-ground station communications using an experimental license. In Proceedings of the 2019 International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 11–12 July 2019; pp. 1–4. [Google Scholar]
Metric | Source and Received Image Comparison without Filtering | Source and Received Image Comparison Using Filtering |
---|---|---|
MSE | 43.9445 | 37.1378 |
MN | 76.9161 | 67.5922 |
SSIM | 0.0381 | 0.18605 |
CW-SSIM | 0.5075 | 0.4779 |
Neural Network Type | Response Time, ms | MSE | MN | SSIM | CW-SSIM |
---|---|---|---|---|---|
Fully connected | 13 | 36.214 | 67.014 | 0.1813 | 0.4493 |
20 | 35.943 | 65.891 | 0.1875 | 0.4636 | |
113 | 31.212 | 58.337 | 0.2162 | 0.4845 | |
140 | 25.613 | 46.611 | 0.3688 | 0.5175 | |
Recurrent | 13 | 36.454 | 68.845 | 0.1802 | 0.4263 |
20 | 29.814 | 42.674 | 0.4091 | 0.5343 | |
113 | 27.034 | 47.013 | 0.3825 | 0.5772 | |
140 | 22.613 | 37.421 | 0.6012 | 0.6553 | |
Convolution | 13 | – | – | – | – |
20 | 30.614 | 57.437 | 0.2605 | 0.4858 | |
113 | 21.360 | 38.594 | 0.5790 | 0.6342 | |
140 | 18.714 | 34.803 | 0.6475 | 0.7716 | |
Convolution in Fourier space | 13 | – | – | – | – |
20 | – | – | – | – | |
113 | 20.018 | 37.020 | 0.6047 | 0.6642 | |
140 | 17.810 | 33.331 | 0.6759 | 0.8082 |
CW-SSIM | MN | MSE | |
---|---|---|---|
NN-assisted CGST | 0.813 | 31.921 | 17.031 |
JPEG | 0.838 | 86.651 | 24.220 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopukhova, E.; Voronkov, G.; Kuznetsov, I.; Ivanov, V.; Kutluyarov, R.; Grakhova, E. A Novel Energy-Efficient Coding Based on Coordinated Group Signal Transformation for Image Compression in Energy-Starved Systems. Appl. Sci. 2024, 14, 4176. https://doi.org/10.3390/app14104176
Lopukhova E, Voronkov G, Kuznetsov I, Ivanov V, Kutluyarov R, Grakhova E. A Novel Energy-Efficient Coding Based on Coordinated Group Signal Transformation for Image Compression in Energy-Starved Systems. Applied Sciences. 2024; 14(10):4176. https://doi.org/10.3390/app14104176
Chicago/Turabian StyleLopukhova, Ekaterina, Grigory Voronkov, Igor Kuznetsov, Vladislav Ivanov, Ruslan Kutluyarov, and Elizaveta Grakhova. 2024. "A Novel Energy-Efficient Coding Based on Coordinated Group Signal Transformation for Image Compression in Energy-Starved Systems" Applied Sciences 14, no. 10: 4176. https://doi.org/10.3390/app14104176