Secure and Scalable Internet of Things Model Using Post-Quantum MACsec
Abstract
:1. Introduction
- The confidentiality of L2TP and MACsec is enhanced, and the utilization of computing resources for PQC-TLS is optimized by improving the SSI’s structure.
- A strategy to prevent unauthorized IoT device access to the IoT network platform has been proposed for Zerotrust.
- Experimental validation has confirmed that SSI-PQM, which incorporates the NTRU algorithm as PQC, is well-suited for IoT devices.
2. Problem Analysis
2.1. Secret Key Exchange in Quantum Computing Environment
2.2. Vulnerabilities of the SSI Network Platform
2.3. Security Threat Modeling Using STRIDE
3. Related Work
3.1. MACsec (802.1AE, MAC Security)
3.2. NTRUs (Nth Degree Truncated Polynomial Ring Units)
4. Methodology
4.1. Overview
4.2. PQC-TLS Using NTRUs
4.2.1. Notations
4.2.2. Implementation
4.3. Network Architecture of SSI-PQM
5. Experimental Environment and Results
5.1. Experimental Environment
5.2. Results
6. Conclusions and Outlooks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmid, M.; Kazar, O.; Barka, E. Internet of Things Overview: Architecture, Technologies, Application, and Challenges. In Decision Making and Security Risk Management for IoT Environments; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–19. [Google Scholar]
- Bommu, S.; Babburu, K.; N, S.; Thalluri, L.N.; Gopalan, A.; Mallapati, P.K.; Guha, K.; Mohammad, H.R. Smart City IoT System Network Level Routing Analysis and Blockchain Security Based Implementation. J. Electr. Eng. Technol. 2023, 18, 1351–1368. [Google Scholar] [CrossRef] [PubMed]
- Rana, P.; Patil, B. Cyber security threats in IoT: A review. J. High Speed Netw. 2023, 29, 105–120. [Google Scholar] [CrossRef]
- Sheng, H.; Zhu, Q.; Tao, J.; Zhang, H.; Peng, F. Distribution network reconfiguration and photovoltaic optimal allocation considering harmonic interaction between photovoltaic and distribution network. J. Electr. Eng. Technol. 2024, 19, 17–30. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Guan, W.; Wang, W.; Xu, L.; Li, L.; Huang, S.; Wang, W. Trustworthy Health Monitoring Based On Distributed Wearable Electronics With Edge Intelligence. IEEE Trans. Consum. Electron. 2024, 70, 2333–2341. [Google Scholar] [CrossRef]
- Liu, L.; Feng, J.; Wu, C.; Chen, C.; Pei, Q. Reputation Management for Consensus Mechanism in Vehicular Edge Metaverse. IEEE J. Sel. Areas Commun. 2023, 42, 919–932. [Google Scholar] [CrossRef]
- Ukil, A.; Bandyoapdhyay, S.; Puri, C.; Pal, A. IoT healthcare analytics: The importance of anomaly detection. In Proceedings of the 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), Crans-Montana, Switzerland, 23–25 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 994–997. [Google Scholar]
- Hassija, V.; Chamola, V.; Saxena, V.; Jain, D.; Goyal, P.; Sikdar, B. A survey on IoT security: Application areas, security threats, and solution architectures. IEEE Access 2019, 7, 82721–82743. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H. Secure and Scalable IoT: An IoT Network Platform Based on Network Overlay and MAC Security. In Proceedings of the IFIP International Conference on ICT Systems Security and Privacy Protection, Oslo, Norway, 22–24 June 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 287–301. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum computation and quantum information. Phys. Today 2001, 54, 60. [Google Scholar]
- Aithal, P. Advances and new research opportunities in quantum computing technology by integrating it with other ICCT underlying technologies. Int. J. Case Stud. Business Educ. 2023, 7, 314–358. [Google Scholar] [CrossRef]
- Berberich, J.; Fink, D. Quantum computing through the lens of control: A tutorial introduction. arXiv 2023, arXiv:2310.12571. [Google Scholar]
- Banegas, G.; Bernstein, D.J.; Van Hoof, I.; Lange, T. Concrete quantum cryptanalysis of binary elliptic curves. Cryptol. Eprint Arch. 2020. [CrossRef]
- Hoffstein, J.; Pipher, J.; Silverman, J.H. NTRU: A ring-based public key cryptosystem. In Proceedings of the International Algorithmic Number Theory Symposium, Portland, OR, USA, 21–25 June 1998; Springer: Berlin/Heidelberg, Germany, 1998; pp. 267–288. [Google Scholar]
- Hermans, J.; Vercauteren, F.; Preneel, B. Speed records for NTRU. In Proceedings of the Cryptographers’ Track at the RSA Conference, San Francisco, CA, USA, 1–5 March 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 73–88. [Google Scholar]
- Grover, L.K. Synthesis of quantum superpositions by quantum computation. Phys. Rev. Lett. 2000, 85, 1334. [Google Scholar] [CrossRef] [PubMed]
- Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; IEEE: Piscataway, NJ, USA, 1994; pp. 124–134. [Google Scholar]
- Ghosh, S. Quantum-Resistant Security Framework for Scada Communication in Industrial Control Systems. Ph.D. Thesis, Dalhousie University, Halifax, NS, Canada, 2023. [Google Scholar]
- CyaSSL+NTRU High-Performance SSL. Available online: https://www.wolfssl.com/documentation/flyers/cyassl_ntru.pdf (accessed on 23 March 2024).
- McGrew, D.; Viega, J. The Galois/counter mode of operation (GCM). Submiss. Nist Modes Oper. Process 2004, 20, 10. [Google Scholar]
- Shahan, R.; Phil Meadows, B.L. IoT Security Architecture. Available online: https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-architecture (accessed on 23 March 2024).
- Carnevale, B.; Fanucci, L.; Bisase, S.; Hunjan, H. Macsec-based security for automotive ethernet backbones. J. Circuits Syst. Comput. 2018, 27, 1850082. [Google Scholar] [CrossRef]
- Lee, J.W.; Park, S.H.; Gum, K.H.; Chung, T.M. Design of secure arp on MACsec (802.1 AE). In Proceedings of the 5th International Conference on Ubiquitous Information Technologies and Applications, Sanya, China, 16–18 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–4. [Google Scholar]
- Schanck, J. Practical Lattice Cryptosystems: NTRUEncrypt and NTRUMLS. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2015. [Google Scholar]
- Hülsing, A.; Rijneveld, J.; Schanck, J.; Schwabe, P. High-speed key encapsulation from NTRU. In Proceedings of the International Conference on Cryptographic Hardware and Embedded Systems, Taipei, Taiwan, 25–28 September 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 232–252. [Google Scholar]
- Kadam, V.R.; Naidu, P.S. Lightweight Cryptography to Secure Internet of Things (IoT). Int. Res. J. Eng. Technol. 2020, 7, 5. [Google Scholar]
- Harjito, B.; Tyas, H.N.; Suryani, E.; Wardani, D.W. Comparative Analysis of RSA and NTRU Algorithms and Implementation in the Cloud. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 247960097. [Google Scholar] [CrossRef]
- Nandanavanam, A.; Upasana, I.; Nandanavanam, N. NTRU and RSA cryptosystems for data security in IoT environment. In Proceedings of the 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), Bengaluru, India, 9–10 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 371–376. [Google Scholar]
- NTRU_Python. Available online: https://github.com/pointedsphere/NTRU_python (accessed on 4 November 2021).
- Alaba, F.A.; Othman, M.; Hashem, I.A.T.; Alotaibi, F. Internet of Things security: A survey. J. Netw. Comput. Appl. 2017, 88, 10–28. [Google Scholar] [CrossRef]
- Farris, I.; Taleb, T.; Khettab, Y.; Song, J. A survey on emerging SDN and NFV security mechanisms for IoT systems. IEEE Commun. Surv. Tutorials 2018, 21, 812–837. [Google Scholar] [CrossRef]
- Hassan, W.H. Current research on Internet of Things (IoT) security: A survey. Comput. Netw. 2019, 148, 283–294. [Google Scholar]
- Shif, L.; Wang, F.; Lung, C.H. Improvement of security and scalability for IoT network using SD-VPN. In Proceedings of the NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium, Taipeim Taiwan, 23–27 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Kumar, S.; Hu, Y.; Andersen, M.P.; Popa, R.A.; Culler, D.E. JEDI Many-to-Many End-to-End Encryption and Key Delegation for IoT. In Proceedings of the 28th USENIX Security Symposium (USENIX Security 19), Santa Clara, CA, USA, 14–16 August 2019; pp. 1519–1536. [Google Scholar]
- McCormack, M.; Vasudevan, A.; Liu, G.; Echeverría, S.; O’Meara, K.; Lewis, G.; Sekar, V. Towards an Architecture for Trusted Edge IoT Security Gateways. In Proceedings of the 3rd {USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 20), Santa Clara, CA, USA, 30 April 2020. [Google Scholar]
- Irshad, R.R.; Hussain, S.; Hussain, I.; Nasir, J.A.; Zeb, A.; Alalayah, K.M.; Alattab, A.A.; Yousif, A.; Alwayle, I.M. IoT-Enabled Secure and Scalable Cloud Architecture for Multi-User Systems: A Hybrid Post-Quantum Cryptographic and Blockchain based Approach Towards a Trustworthy Cloud Computing. IEEE Access 2023, 11, 105479–105498. [Google Scholar] [CrossRef]
STRIDE | SSI Vulnerabilities | SSI Security Threats | Countermeasures |
---|---|---|---|
Spoofing | Opened network for authenticationInsecure public key encryption in quantum computing | Unauthorized access | Data Encryption with PQC |
Tampering | Opened network for 1st authentication | Response: false information | Data Encryption with PQC |
Repudiation | Opened network for 1st authentication | Authentication failure | Data Encryption with PQC |
Information Disclosure | Opened network for 1st authenticationInsecure public key encryption in quantum computing | Eavesdropping | Data Encryption with PQC |
Denial of Service | Opened network for 1st authentication | Response: false informationUnauthorized access | Network Access Control |
Elevation of Privilege | Insecure public key encryption in quantum computing | Unauthorized access | Data Encryption with PQC |
|
Security Level (bits) | Example Values | RSA Key Size (bits) | Notes |
---|---|---|---|
80 | , , | 1024 | Constrained environments |
112 | , , | 2048 | Balanced security and performance |
128 | , , | 3072 | Standard security level |
160 | , , | 4096 | Higher security |
192 | , , | 7680 | Enhanced security |
256 | , , | 15,360 | Maximum security |
Security Level (bits) | Minimum Latency for TLS (s.) (➀+➁+➂) | ➀ Key Generation (IoT) | ➁ Encryption (Server) | ➂ Descryption (IoT) | ||||
---|---|---|---|---|---|---|---|---|
NTRUs | RSA | NTRUs | RSA | NTRUs | RSA | NTRUs | RSA | |
80 | 123.4110 | 2.437 | 105.2439 | 2.3780 | 0.6336 | 0.0001 | 17.5335 | 0.0589 |
112 | 273.1801 | 58.4968 | 251.3992 | 58.1634 | 0.8043 | 0.0002 | 20.9766 | 0.3332 |
128 | 319.3766 | 245.786 | 293.9652 | 244.7936 | 0.7778 | 0.0004 | 24.6336 | 0.9920 |
160 | 409.9317 | 658.7048 | 381.2517 | 656.5520 | 0.9558 | 0.0006 | 27.7242 | 2.1522 |
192 | 612.2242 | 8214.6037 | 571.8158 | 8202.1173 | 1.0726 | 0.0017 | 39.3358 | 12.4847 |
256 | 978.7406 | 80,798.9095 | 916.3855 | 80,710.4963 | 1.2568 | 0.0070 | 61.0983 | 88.4062 |
Function | SSI-PQM | SSI (2021) [9] | Linda et al. (2018) [33] | Kumar et al. (2019) [34] | McCormack et al. (2020) [35] | Irshad et al.(2023) [36] |
---|---|---|---|---|---|---|
PQC | Yes | No | No | No | No | Yes |
layer 2 Communication | Yes | Yes | No | No | No | No |
Net Separation | Yes | Yes | Yes | No | No | Yes |
Authentication | Yes | Yes | No | Yes | No | Yes |
Access Control | Yes | Yes | Yes | No | Yes | Yes |
End-to-End Enc. | Yes | Yes | No | Yes | No | Yes |
Many-to-Many Enc. | Yes | Yes | No | Yes | No | Yes |
L2 Encryption | Yes | Yes | No | No | No | Yes |
SDN | Yes | Yes | Yes | No | Yes | No |
Detection | No | No | No | No | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Lee, J. Secure and Scalable Internet of Things Model Using Post-Quantum MACsec. Appl. Sci. 2024, 14, 4215. https://doi.org/10.3390/app14104215
Choi J, Lee J. Secure and Scalable Internet of Things Model Using Post-Quantum MACsec. Applied Sciences. 2024; 14(10):4215. https://doi.org/10.3390/app14104215
Chicago/Turabian StyleChoi, Juhee, and Junwon Lee. 2024. "Secure and Scalable Internet of Things Model Using Post-Quantum MACsec" Applied Sciences 14, no. 10: 4215. https://doi.org/10.3390/app14104215
APA StyleChoi, J., & Lee, J. (2024). Secure and Scalable Internet of Things Model Using Post-Quantum MACsec. Applied Sciences, 14(10), 4215. https://doi.org/10.3390/app14104215