Physiological and Biomechanical Characteristics of Olympic and World-Class Rowers—Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Methodology
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maestu, J.; Jurimae, J.; Jurimae, T. Monitoring of performance and training in rowing. Sports Med. 2005, 35, 597–617. [Google Scholar] [CrossRef] [PubMed]
- Jurišić, D.; Donadić, Z.; Lozovina, M. Relation between Maximum Oxygen Uptake and Anaerobic Threshold, and the Rowing Ergometer Results in Senior Rowers. Acta Kinesiol. 2018, 8, 55–61. [Google Scholar]
- Hagerman, F.C.; Fielding, R.A.; Fiatarone, M.A.; Gault, J.A.; Kirkendall, D.T.; Ragg, K.E.; Evans, W.J. A 20-yr longitudinal study of Olympic oarsmen. Med. Sci. Sports Exerc. 1996, 28, 1150–1156. [Google Scholar] [CrossRef]
- Nybo, L.; Schmidt, J.F.; Fritzdorf, S.; Nordsborg, N.B. Physiological Characteristics of an Aging Olympic Athlete. Med. Sci. Sports Exerc. 2014, 46, 2132–2138. [Google Scholar] [CrossRef]
- Burnley, M.; Jones, A.M. Oxygen uptake kinetics as a determinant of sports performance. Eur. J. Sport Sci. 2007, 7, 63–79. [Google Scholar] [CrossRef]
- Penichet-Tomas, A.; Jimenez-Olmedo, J.M.; Pueo, B.; Olaya-Cuartero, J. Physiological and Mechanical Responses to a Graded Exercise Test in Traditional Rowing. Int. J. Env. Res. Public Health 2023, 20, 3664. [Google Scholar] [CrossRef]
- Hawkins, S.; Wiswell, R. Rate and Mechanism of Maximal Oxygen Consumption Decline with Aging. Sports Med. 2003, 33, 877–888. [Google Scholar] [CrossRef]
- Messonnier, L.; Bourdin, M.; Lacour, J. Influence of age on different determining factors of performance on rowing ergometer. Sci. Sports 1998, 13, 293–294. [Google Scholar] [CrossRef]
- Seiler, K.S.; Spirduso, W.W.; Martin, J.C. Gender differences in rowing performance and power with aging. Med. Sci. Sports Exerc. 1998, 30, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Boland, M.; Crotty, N.M.; Mahony, N.; Donne, B.; Fleming, N. A Comparison of Physiological Response to Incremental Testing on Stationary and Dynamic Rowing Ergometers. Int. J. Sports Physiol. Perform. 2022, 17, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Treff, G.; Winkert, K.; Steinacker, J. Olympic Rowing–Maximum Capacity over 2000 Meters. Ger. J. Sports Med. 2021, 72, 203–211. [Google Scholar] [CrossRef]
- Jensen, K.; Frydkjær, M.; Jensen, N.M.B.; Bannerholt, L.M.; Gam, S. A Maximal Rowing Ergometer Protocol to Predict Maximal Oxygen Uptake. Int. J. Sports Physiol. Perform. 2021, 16, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Cortis, C.; Fusco, A.; Barroso, R.; Bok, D.; Boullosa, D.; Conte, D.; Foster, C. Is It Time to Reconsider the Incremental Test Protocols? Int. J. Sports Physiol. Perform. 2023, 18, 561–562. [Google Scholar] [CrossRef] [PubMed]
- Lawton, T.W.; Cronin, J.B.; McGuigan, M.R. Strength Testing and Training of Rowers. Sports Med. 2011, 41, 413–432. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.; Ribeiro, J.; Sousa, M.; Vilas-Boas, J.P.; Fernandes, R.J. Influence of prior exercise on VO2 kinetics subsequent exhaustive rowing performance. PLoS ONE 2014, 9, e84208. [Google Scholar] [CrossRef] [PubMed]
- Ingham, S.A.; Pringle, J.S.; Hardman, S.L.; Fudge, B.W.; Richmond, V.L. Comparison of step-wise and ramp-wise incremental rowing exercise tests and 2000-m rowing ergometer performance. Int. J. Sports Physiol. Perform. 2013, 8, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, S.T.; Trangmar, S.J.; Watanabe, K.; González-Alonso, J. Integrative Human Cardiovascular Responses to Hyperthermia. In Heat Stress in Sport and Exercise: Thermophysiology of Health and Performance; Périard, J.D., Racinais, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 45–65. [Google Scholar]
- Sousa, A.; Rodríguez, F.; Machado, L.; Vilas-Boas, J.P.; Fernandes, R. Exercise modality effect on VO2 off-transient kinetics at VO2max intensity. Exp. Physiol. 2015, 100, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.; Rios, M.; Carvalho, D.; Monteiro, A.S.; Soares, S.; Abraldes, J.A.; Gomes, B.B.; Vilas-Boas, J.P.; Fernandes, R.J. Mechanics and Energetic Analysis of Rowing with Big Blades with Randall Foils. Int. J. Sports Med. 2023, 44, 1043–1048. [Google Scholar] [CrossRef]
- Fernandes, R.; de Jesus, K.; Baldari, C.; Sousa, A.; Vilas-Boas, J.; Guidetti, L. Different VO2max Time-Averaging Intervals in Swimming. Int. J. Sports Med. 2012, 33, 1010–1015. [Google Scholar]
- Sousa, A.; Figueiredo, P.; Zamparo, P.; Pyne, D.B.; Vilas-Boas, J.P.; Fernandes, R.J. Exercise Modality Effect on Bioenergetical Performance at VO2max Intensity. Med. Sci. Sports Exerc. 2015, 47, 1705–1713. [Google Scholar] [CrossRef]
- Jesus, K.; Sousa, A.; De Jesus, K.; Ribeiro, J.; Machado, L.; Rodríguez, F.; Keskinen, K.L.; Vilas-Boas, J.P.; Fernandes, R. The effects of intensity on VO2 kinetics during incremental free swimming. Appl. Physiol. Nutr. Metab. 2015, 40, 918–923. [Google Scholar] [CrossRef]
- Rios, M.; Becker, K.; Cardoso, F.; Pyne, D.; Reis, V.; Moreira-Gonçalves, D.; Fernandes, R. Assessment of Cardiorespiratory and Metabolic Contributions in an Extreme Intensity CrossFit® Benchmark Workout. Sensors 2024, 24, 513. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.D.; Soares, S.; Zacca, R.; Sousa, J.; Marinho, D.A.; Silva, A.J.; Vilas-Boas, J.P.; Fernandes, R.J. Anaerobic Threshold Biophysical Characterisation of the Four Swimming Techniques. Int. J. Sports Med. 2020, 41, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.S.; Carvalho, D.D.; Elói, A.; Silva, F.; Vilas-Boas, J.P.; Buzzachera, C.F.; Fernandes, R.J. Repeatability of ventilatory, metabolic and biomechanical responses to an intermittent incremental swimming protocol. Physiol. Meas. 2022, 43, 075009. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.S.; Magalhães, J.; Knechtle, B.; Buzzachera, C.; Vilas-Boas, J.P.; Fernandes, R. Acute ventilatory responses to swimming at increasing intensities. PeerJ 2023, 11, e15042. [Google Scholar] [CrossRef] [PubMed]
- Bustos, D.; Cardoso, R.; Carvalho, D.D.; Guedes, J.; Vaz, M.; Torres Costa, J.; Santos Baptista, J.; Fernandes, R.J. Exploring the Applicability of Physiological Monitoring to Manage Physical Fatigue in Firefighters. Sensors 2023, 23, 5127. [Google Scholar] [CrossRef] [PubMed]
- Bourdin, M.; Lacour, J.R.; Imbert, C.; Messonnier, L.A. Factors of Rowing Ergometer Performance in High-Level Female Rowers. Int. J. Sports Med. 2017, 38, 1023–1028. [Google Scholar] [CrossRef] [PubMed]
- Andrade, D.; Fonseca, P.; Sousa, F.; Gutierres, M. Does Anterior Cruciate Ligament Reconstruction with a Hamstring Tendon Autograft Predispose to a Knee Valgus Alignment on Initial Contact during Landing? A Drop Vertical Jump Movement Analysis. Appl. Sci. 2023, 13, 7363. [Google Scholar] [CrossRef]
- Keller, V.T.; Outerleys, J.B.; Kanko, R.M.; Laende, E.K.; Deluzio, K.J. Clothing condition does not affect meaningful clinical interpretation in markerless motion capture. J. Biomech. 2022, 141, 111182. [Google Scholar] [CrossRef]
- Kleshnev, V. Biomechanics of Rowing, Revised 2nd ed.; The Crowood Press Ltd.: Wiltshire, UK, 2020. [Google Scholar]
- Klusiewicz, A.; Starczewski, M.; Ladyga, M.; Długołęcka, B.; Braksator, W.; Mamcarz, A.; Sitkowski, D. Reference Values of Maximal Oxygen Uptake for Polish Rowers. J. Hum. Kinet. 2014, 44, 121–127. [Google Scholar] [CrossRef]
- Mikulic, P. Maturation to elite status: A six-year physiological case study of a world champion rowing crew. Eur. J. Appl. Physiol. 2011, 111, 2363–2368. [Google Scholar] [CrossRef] [PubMed]
- Mäestu, J.; Lelle, R.; Mäestu, E.; Pind, R.; Vahtra, E.; Purge, P.; Mikulic, P. Long-Term Rowing Performance Development in Male Olympic and World Championship Medal Winners Compared With Nonmedalists. J. Strength Cond. Res. 2023, 37, e521–e526. [Google Scholar] [CrossRef] [PubMed]
- Mikulic, P.; Bralic, N. Elite status maintained: A 12-year physiological and performance follow-up of two Olympic champion rowers. J. Sports Sci. 2017, 36, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Wheatley, C.M.; Behnia, M.; Johnson, B.D. The Effect of Aging on Relationships between Lean Body Mass and VO2max in Rowers. PLoS ONE 2016, 11, e0160275. [Google Scholar] [CrossRef] [PubMed]
- Rios, M.; Zacca, R.; Azevedo, R.; Fonseca, P.; Pyne, D.B.; Reis, V.M.; Moreira-Gonçalves, D.; Fernandes, R.J. Bioenergetic Analysis and Fatigue Assessment During the Fran Workout in Experienced Crossfitters. Int. J. Sports Physiol. Perform. 2023, 18, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Van Driessche, S.; Delecluse, C.; Bautmans, I.; Vanwanseele, B.; Van Roie, E. Age-related differences in rate of power development exceed differences in peak power. Exp. Gerontol. 2018, 101, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Ettema, G.; Haug, A.; Ludvigsen, T.P.; Danielsen, J. The role of stroke rate and intensity on rowing technique. Sports Biomech. 2022, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Warmenhoven, J.; Cobley, S.; Draper, C.; Harrison, A.; Bargary, N.; Smith, R. Considerations for the use of functional principal components analysis in sports biomechanics: Examples from on-water rowing. Sports Biomech. 2019, 18, 317–341. [Google Scholar] [CrossRef] [PubMed]
- Kannus, P.; Beynnon, B. Peak torque occurrence in the range of motion during isokinetic extension and flexion of the knee. Int. J. Sports Med. 1993, 14, 4226. [Google Scholar] [CrossRef]
- Podstawski, R.; Borysławski, K.; Katona, Z.; Alföldi, Z.; Boraczyński, M.; Jaszczur-Nowicki, J.; Gronek, P. Sex Differences in Anthropometric and Physiological Profiles of Hungarian Rowers of Different Ages. Int. J. Environ. Res. Public Health 2022, 19, 8115. [Google Scholar] [CrossRef]
- Warmenhoven, J.; Cobley, S.; Draper, C.; Smith, R. Over 50 Years of Researching Force Profiles in Rowing: What Do We Know? Sports Med. 2018, 48, 2703–2714. [Google Scholar] [CrossRef]
- Keenan, K.G.; Senefeld, J.W.; Hunter, S.K. Girls in the boat: Sex differences in rowing performance and participation. PLoS ONE 2018, 13, e0191504. [Google Scholar] [CrossRef] [PubMed]
- Ansdell, P.; Thomas, K.; Hicks, K.M.; Hunter, S.K.; Howatson, G.; Goodall, S. Physiological sex differences affect the integrative response to exercise: Acute and chronic implications. Exp. Physiol. 2020, 105, 2007–2021. [Google Scholar] [CrossRef] [PubMed]
- Coe, L.N.; Astorino, T.A. Sex differences in hemodynamic response to high-intensity interval exercise. Scand. J. Med. Sci. Sports 2024, 34, e14495. [Google Scholar] [CrossRef] [PubMed]
- Attenborough, A.S.; Smith, R.M.; Sinclair, P.J. Effect of gender and stroke rate on joint power characteristics of the upper extremity during simulated rowing. J. Sports Sci. 2012, 30, 449–458. [Google Scholar] [CrossRef]
- Nuzzo, J.L. Sex differences in skeletal muscle fiber types: A meta-analysis. Clin. Anat. 2024, 37, 81–91. [Google Scholar] [CrossRef]
Variable | Male | Female |
---|---|---|
Age (years) | 37 | 35 |
Height (cm) | 187 | 186 |
Weight (Kg) | 79.9 | 77.8 |
Body mass index (Kg/m2) | 23.12 | 22.51 |
Rowing experience (years) | 21 | 16 |
Variables | Low | Moderate | Heavy | Severe | Extreme |
---|---|---|---|---|---|
Physiological | |||||
Oxygen uptake (mL/min/kg) | 45.6 ± 1.2 | 65.9 ± 0.3 * | 70.9 ± 2.6 * | 79.4 ± 2.4 *# | 62.9 ± 10.4 * |
Respiratory frequency (b/min) | 39.7 ± 1.1 | 51.8 ± 0.8 * | 55.4 ± 3.1 * | 66.3 ± 2.6 *#+ | 70.5 ± 0.9 *#+ |
Ventilation (L/min) | 83.0 ± 2.6 | 136.8 ± 1.9 * | 152.2 ± 5.4 * | 179.3 ± 5.7 *# | 174.2 ± 6.1 *# |
Carbon dioxide production (mL/min/Kg) | 36.7 ± 1.2 | 58.5 ± 0.4 * | 64.0 ± 2.8 * | 76.2 ± 1.8 *# | 65.4 ± 1.6 *#§ |
Respiratory quotient | 0.8 ± 0.0 | 0.8 ± 0.0 * | 0.9 ± 0.0 * | 1.0 ± 0.0 *#+ | 1.1 ± 0.2 * |
Heart rate (bpm) | 117 ± 1 | 148 ± 1 * | 157 ± 0 *# | 164 ± 0 *#+ | 170 ± 1 *#+§ |
Blood lactate (mmol/L) | 1.4 | 2.2 | 3.2 | 4.5 | 10.6 |
Core temperature (°C) | 37.0 ± 0.02 | 37.1 ± 0.06 * | 37.5 ± 0.09 *# | 37.8 ± 0.08 *#+ | 38.1 ± 0.03 *#+§ |
Mechanical Power | |||||
Power (W) | 210 | 300 | 330 | 360 | 539 |
Power (W/Kg) | 2.6 | 3.8 | 4.1 | 4.5 | 6.8 |
Work (J) | 226.8 | 285.0 | 300.3 | 313.3 | 398.9 |
Kinematic | |||||
Rowing rate (cycles/min) | 20 | 26 | 29 | 31 | 40 |
Rowing cycle length (m) | 1.56 ± 0.01 | 1.53 ± 0.01 * | 1.52 ± 0.01 *#+ | 1.49 ± 0.01 *#+ | 1.42 ± 0.03 *#+§ |
Propulsive time (s) | 1.08 ± 0.01 | 0.95 ± 0.01 * | 0.91 ± 0.01 *#+ | 0.87 ± 0.01 *#+ | 0.74 ± 0.02 *#+§ |
Maximal seat velocity (m/s) | 1.19 ± 0.03 | 1.32 ± 0.03 * | 1.29 ± 0.04 *+ | 1.37 ± 0.05 *#+ | 1.31 ± 0.04 *§ |
Maximal handle drive velocity (m/s) | 1.86 ± 0.02 | 2.03 ± 0.02 * | 2.08 ± 0.02 *#+ | 2.13 ± 0.02 *#+ | 2.35 ± 0.02 *#+§ |
Catch factor (ms) | −20 ± 10 | −20 ± 10 | −20 ± 10 | −20 ± 10 | 20 ± 10 |
Rhythm (%) | 37 ± 1.3 | 42 ± 0.50 * | 44 ± 0.58 *#+ | 46 ± 0.50 *#+ | 50 ± 0.96 *#+§ |
Variables | Low | Moderate | Heavy | Severe | Extreme |
---|---|---|---|---|---|
Physiological | |||||
Oxygen uptake (mL/min/kg) | 47.4 ± 1.6 | 57.8 ± 1.4 | 60.4 ± 2.1 | 69.7 ± 1.5 * | 50.1 ± 0.6 #+§ |
Respiratory frequency (b/min) | 41.8 ± 0.3 | 48.6 ± 2.1 | 49.4 ± 1.9 | 57.2 ± 0.7 * | 53.2 ± 4.3 |
Ventilation (L/min) | 80.1 ± 1.3 | 107.3 ± 1.3 * | 117.0 ± 1.6 *# | 152.5 ± 2.9 *#+ | 127.6 ± 5.8 *§ |
Carbon dioxide production (mL/min/Kg) | 38.2 ± 0.7 | 51.7 ± 1.1 * | 54.1 ± 0.5 * | 73.0 ± 1.5 *#+ | 51.2 ± 4.5 § |
Respiratory quotient | 0.8 ± 0.0 | 0.9 ± 0.0 * | 0.9 ± 0.0 | 1.1 ± 0.0 *#+ | 1.1 ± 0.1 * |
Heart rate (bpm) | 134 ± 1 | 159 ± 0 *# | 168 ± 1 *# | 173 ± 0 *#+ | 169 ± 1 *#§ |
Blood lactate (mmol/L) | 1.2 | 2.4 | 3.6 | 6.7 | 15.8 |
Core temperature (°C) | 37.1 ± 0.01 | 37.5 ± 0.07 *# | 37.8 ± 0.09 *# | 38.1 ± 0.09 *#+ | 38.8 ± 0.03 *#+§ |
Mechanical Power | |||||
Power (W) | 150 | 210 | 240 | 270 | 360 |
Power (W/Kg) | 1.9 | 2.7 | 3.1 | 3.5 | 4.8 |
Work (J) | 174.0 | 212.1 | 237.6 | 237.6 | 259.0 |
Kinematic | |||||
Rowing rate (cycles/min) | 21 | 24 | 26 | 34 | 46 |
Rowing cycle length (m) | 1.55 ± 0.01 | 1.53 ± 0.01 * | 1.53 ± 0.01 * | 1.39 ± 0.12 * | 1.27 ± 0.08 *#+§ |
Propulsive time (s) | 1.16 ± 0.01 | 1.01 ± 0.01 * | 0.99 ± 0.01 *# | 0.88 ± 0.11 *#+ | 0.70 ± 0.03 *#+§ |
Maximal seat velocity (m/s) | 1.27 ± 0.02 | 1.39 ± 0.02 * | 1.40 ± 0.03 * | 1.28 ± 0.15 *#+ | 1.23 ± 0.14 #+ |
Maximal handle drive velocity (m/s) | 1.43 ± 0.05 | 1.65 ± 0.02 * | 1.72 ± 0.05 *# | 1.95 ± 0.26 *#+ | 2.39 ± 0.12 *#+§ |
Catch factor (ms) | −10 ± 10 | 10 ± 10 | −10 ± 10 | −20 ± 10 *#+ | −20 ± 10 *#+ |
Rhythm (%) | 40 ± 0.50 | 39 ± 0.70 * | 43 ± 0.81 *# | 50 ± 0.51 *#+ | 54 ± 2.50 *#+§ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, R.; Rios, M.; Cardoso, F.; Fonseca, P.; Ferreira, F.A.; Abraldes, J.A.; Gomes, B.B.; Vilas-Boas, J.P.; Fernandes, R.J. Physiological and Biomechanical Characteristics of Olympic and World-Class Rowers—Case Study. Appl. Sci. 2024, 14, 4273. https://doi.org/10.3390/app14104273
Cardoso R, Rios M, Cardoso F, Fonseca P, Ferreira FA, Abraldes JA, Gomes BB, Vilas-Boas JP, Fernandes RJ. Physiological and Biomechanical Characteristics of Olympic and World-Class Rowers—Case Study. Applied Sciences. 2024; 14(10):4273. https://doi.org/10.3390/app14104273
Chicago/Turabian StyleCardoso, Ricardo, Manoel Rios, Filipa Cardoso, Pedro Fonseca, Francisco A. Ferreira, Jose Arturo Abraldes, Beatriz B. Gomes, João Paulo Vilas-Boas, and Ricardo J. Fernandes. 2024. "Physiological and Biomechanical Characteristics of Olympic and World-Class Rowers—Case Study" Applied Sciences 14, no. 10: 4273. https://doi.org/10.3390/app14104273
APA StyleCardoso, R., Rios, M., Cardoso, F., Fonseca, P., Ferreira, F. A., Abraldes, J. A., Gomes, B. B., Vilas-Boas, J. P., & Fernandes, R. J. (2024). Physiological and Biomechanical Characteristics of Olympic and World-Class Rowers—Case Study. Applied Sciences, 14(10), 4273. https://doi.org/10.3390/app14104273