The Effects of Feedstock, Pyrolysis Temperature, and Residence Time on the Properties and Uses of Biochar from Broom and Gorse Wastes
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Feedstock Selection
2.2. Biochar Production
2.3. Characterization of the Feedstock and Biochars
2.3.1. Elemental Analysis
2.3.2. Energy Properties
2.3.3. Proximate Analysis
2.3.4. Chemical Properties
2.3.5. Physical Properties
2.3.6. Polycyclic Aromatic Hydrocarbon (PAH) Content
2.3.7. Statistical Analysis
3. Results and Discussion
3.1. Elemental Analysis
3.2. Proximate Analysis
3.3. Chemical Properties
3.4. Physical Properties
3.5. PAH Content
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar Effects on Soil Biota—A Review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H.; Huang, H.; Xiao, R.; Li, R.; Zhang, Z. Influence of Temperature and Residence Time on Characteristics of Biochars Derived from Agricultural Residues: A Comprehensive Evaluation. Process Saf. Environ. Prot. 2020, 139, 218–229. [Google Scholar] [CrossRef]
- Cárdenas-Aguiar, E.; Gascó, G.; Lado, M.; Méndez, A.; Paz-Ferreiro, J.; Paz-González, A. New Insights into the Production, Characterization and Potential Uses of Vineyard Pruning Waste Biochars. Waste Manag. 2023, 171, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Méndez, A.; Tarquis, A.M.; Saa-Requejo, A.; Guerrero, F.; Gascó, G. Influence of Pyrolysis Temperature on Composted Sewage Sludge Biochar Priming Effect in a Loamy Soil. Chemosphere 2013, 93, 668–676. [Google Scholar] [CrossRef]
- Gascó, G.; Paz-Ferreiro, J.; Álvarez, M.L.; Saa, A.; Méndez, A. Biochars and Hydrochars Prepared by Pyrolysis and Hydrothermal Carbonisation of Pig Manure. Waste Manag. 2018, 79, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, M.L.; Méndez, A.; Paz-Ferreiro, J.; Gascó, G. Effects of Manure Waste Biochars in Mining Soils. Appl. Sci. 2020, 10, 3393. [Google Scholar] [CrossRef]
- Cárdenas-Aguiar, E.; Méndez, A.; Paz-Ferreiro, J.; Gascó, G. The Effects of Rabbit Manure-Derived Biochar on Soil Health and Quality Attributes of Two Mine Tailings. Sustainability 2022, 14, 866. [Google Scholar] [CrossRef]
- Méndez, a.; Paz-Ferreiro, J.; Araujo, F.; Gascó, G. Biochar from Pyrolysis of Deinking Paper Sludge and Its Use in the Treatment of a Nickel Polluted Soil. J. Anal. Appl. Pyrolysis 2014, 107, 46–52. [Google Scholar] [CrossRef]
- Liang, C.; Gascó, G.; Fu, S.; Méndez, A.; Paz-Ferreiro, J. Biochar from Pruning Residues as a Soil Amendment: Effects of Pyrolysis Temperature and Particle Size. Soil Tillage Res. 2016, 164, 3–10. [Google Scholar] [CrossRef]
- Sánchez-García, M.; Cayuela, M.L.; Rasse, D.P.; Sánchez-Monedero, M.A. Biochars from Mediterranean Agroindustry Residues: Physicochemical Properties Relevant for C Sequestration and Soil Water Retention. ACS Sustain. Chem. Eng. 2019, 7, 4724–4733. [Google Scholar] [CrossRef]
- Mukherjee, A.; Patra, B.R.; Podder, J.; Dalai, A.K. Synthesis of Biochar From Lignocellulosic Biomass for Diverse Industrial Applications and Energy Harvesting: Effects of Pyrolysis Conditions on the Physicochemical Properties of Biochar. Front. Mater. 2022, 9, 870184. [Google Scholar] [CrossRef]
- Liu, W.J.; Yu, H.Q. Thermochemical Conversion of Lignocellulosic Biomass into Mass-Producible Fuels: Emerging Technology Progress and Environmental Sustainability Evaluation. ACS Environ. Au 2022, 2, 98–114. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Benavente, I.; Gascó, G.; Plaza, C.; Paz-Ferreiro, J.; Méndez, A. Choice of Pyrolysis Parameters for Urban Wastes Affects Soil Enzymes and Plant Germination in a Mediterranean Soil. Sci. Total Environ. 2018, 634, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
- Zwölfer, H. Ulex Europaeus Project; European Investigations for New Zealand; Commonwealth Insistitue of Biological Control: Delémont, Switzerland, 1962. [Google Scholar]
- Brandes, U.; Furevik, B.B.; Nielsen, L.R.; Kjær, E.D.; Rosef, L.; Fjellheim, S. Introduction History and Population Genetics of Intracontinental Scotch Broom (Cytisus scoparius) Invasion. Divers. Distrib. 2019, 25, 1773–1786. [Google Scholar] [CrossRef]
- Heywood, V.H.; Ball, P.W. Leguminosae. In Flora Europaea: Rosaceae to Umbelliferae; Tutin, Thomas Gaskell, 1908th ed.; Cambridge University Press: Great Britain, UK, 1968; Volume 2, p. 489. ISBN 0521 06662 X. [Google Scholar]
- Williams, P.A. Aspects of the Ecology of Broom (Cytisus scoparius) in Canterbury, New Zealand. N. Zeal. J. Bot. 1981, 19, 31–43. [Google Scholar] [CrossRef]
- Peterson, D.J.; Prasad, R. The Biology of Canadian Weeds. 109. Cytisus scoparius (L.) Link. Can. J. Plant Sci. 1998, 78, 497–504. [Google Scholar] [CrossRef]
- Broadfield, N.; McHenry, M.T. A World of Gorse: Persistence of Ulex Europaeus in Managed Landscapes. Plants 2019, 8, 523. [Google Scholar] [CrossRef] [PubMed]
- Galappaththi, H.S.S.D.; de Silva, W.A.P.P.; Clavijo Mccormick, A. A Mini-Review on the Impact of Common Gorse in Its Introduced Ranges. Trop. Ecol. 2023, 64, 1–25. [Google Scholar] [CrossRef]
- Rojas-Sandoval, J. CABI International, Ulex Europaeus (Gorse). Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.55561 (accessed on 20 March 2024).
- Rojas-Sandoval, J. CABI International, Cytisus scoparius (Scotch Broom). Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.17610 (accessed on 20 March 2024).
- León Cordero, R.; Torchelsen, F.P.; Overbeck, G.E.; Anand, M. Invasive Gorse (Ulex Europaeus, Fabaceae) Changes Plant Community Structure in Subtropical Forest–Grassland Mosaics of Southern Brazil. Biol. Invasions 2016, 18, 1629–1643. [Google Scholar] [CrossRef]
- Cordero, R.L.; Torchelsen, F.P.; Overbeck, G.E.; Anand, M. Cytisus scoparius (Fam. Fabaceae) in Southern Brazil—First Step of an Invasion Process? An. Acad. Bras. Cienc. 2016, 88, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Bateman, J.B.; Vitousek, P.M. Soil Fertility Response to Ulex Europaeus Invasion and Restoration Efforts. Biol. Invasions 2018, 20, 2777–2791. [Google Scholar] [CrossRef]
- Udo, N.; Darrot, C.; Atlan, A. From Useful to Invasive, the Status of Gorse on Reunion Island. J. Environ. Manag. 2019, 229, 166–173. [Google Scholar] [CrossRef] [PubMed]
- DAISIE Handbook of Alien Species in Europe. In Invading Nature—Springer Series in Invasion Ecology; Springer: Knoxville, TN, USA, 2009; ISBN 978-1-4020-8279-5.
- Pardo-Muras, M.; Puig, C.G.; Souza-Alonso, P.; Pedrol, N. The Phytotoxic Potential of the Flowering Foliage of Gorse (Ulex Europaeus) and Scotch Broom (Cytisus scoparius), as Pre-Emergent Weed Control in Maize in a Glasshouse Pot Experiment. Plants 2020, 9, 203. [Google Scholar] [CrossRef] [PubMed]
- Bada, L.; Pereira, R.B.; Pereira, D.M.; Lores, M.; Celeiro, M.; Quezada, E.; Uriarte, E.; Gil-Longo, J.; Viña, D. Phytochemical Analysis and Antiproliferative Activity of Ulex Gallii Planch. (Fabaceae), a Medicinal Plant from Galicia (Spain). Molecules 2023, 28, 351. [Google Scholar] [CrossRef] [PubMed]
- USDA-NRCS The PLANTS Database. Available online: http://plants.usda.gov/ (accessed on 21 March 2024).
- Donegal County Council (DCC) Gorse Fires. Available online: https://www.donegalcoco.ie/services/fireservice/gorsefires/ (accessed on 20 March 2024).
- Gorse Action Group (GAG) Gorse and Fire Risk. Available online: https://gorseactiongroup.org/gorse-fire-risk/ (accessed on 20 March 2024).
- Marino, E.; Guijarro, M.; Hernando, C.; Madrigal, J.; Díez, C. Fire Hazard after Prescribed Burning in a Gorse Shrubland: Implications for Fuel Management. J. Environ. Manag. 2011, 92, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Vega, J.A.; Arellano-Pérez, S.; Álvarez-González, J.G.; Fernández, C.; Jiménez, E.; Fernández-Alonso, J.M.; Vega-Nieva, D.J.; Briones-Herrera, C.; Alonso-Rego, C.; Fontúrbel, T.; et al. Modelling Aboveground Biomass and Fuel Load Components at Stand Level in Shrub Communities in NW Spain. For. Ecol. Manag. 2022, 505, 119926. [Google Scholar] [CrossRef]
- Vega, J.A.; Álvarez-González, J.G.; Arellano-Pérez, S.; Fernández, C.; Cuiñas, P.; Jiménez, E.; Fernández-Alonso, J.M.; Fontúrbel, T.; Alonso-Rego, C.; Ruiz-González, A.D. Developing Customized Fuel Models for Shrub and Bracken Communities in Galicia (NW Spain). J. Environ. Manag. 2024, 351, 119831. [Google Scholar] [CrossRef] [PubMed]
- de Galicia, X. Cosellería do Medio Rural, Dirección Xeral de Ordenacióne Produción Forestal, C. do M.R. Primeira Revisión Do Plan Forestal de Galicia; 2021. Available online: https://www.ptfor.es/2022/12/22/http-www-ptfor-es-wp-content-uploads-sites-10-2022-12-20211112-plan-forestal-galicia-2021-2040-cast-1-pdf/ (accessed on 14 May 2024).
- Chaves Fernandes, B.C.; Ferreira Mendes, K.; Dias Júnior, A.; da Silva Caldeira, V.; da Silva Teófilo, T.; Severo Silva, T.; Mendonça, V.; de Freitas Souza, M.; Valadão Silva, D. Impact of Pyrolysis Temperature on the Properties of Eucalyptus Wood-Derived Biochar. Materials 2020, 13, 5841. [Google Scholar] [CrossRef]
- Francis, J.C.; Nighojkar, A.; Kandasubramanian, B. Relevance of Wood Biochar on CO2 Adsorption: A Review. Hybrid Adv. 2023, 3, 100056. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, D.; Zhang, Y.; Tang, W.; Meng, S.; Guo, Y.; Sun, S. Migration of Alkali and Alkaline Earth Metallic Species and Structure Analysis of Sawdust Pyrolysis Biochar. Korean Chem. Eng. Res. 2016, 54, 659–664. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, B.; Chen, M.; Wu, P.; Lee, X.; Xing, Y. Invasive Plants as Potential Sustainable Feedstocks for Biochar Production and Multiple Applications: A Review. Resour. Conserv. Recycl. 2021, 164, 105204. [Google Scholar] [CrossRef]
- Yousaf, B.; Liu, G.; Abbas, Q.; Ali, M.U.; Wang, R.; Ahmed, R.; Wang, C.; Al-Wabel, M.I.; Usman, A.R.A. Operational Control on Environmental Safety of Potentially Toxic Elements during Thermal Conversion of Metal-Accumulator Invasive Ragweed to Biochar. J. Clean. Prod. 2018, 195, 458–469. [Google Scholar] [CrossRef]
- Fan, L.; Zhou, X.; Liu, Q.; Wan, Y.; Cai, J.; Chen, W.; Chen, F.; Ji, L.; Cheng, L.; Luo, H. Properties of Eupatorium Adenophora Spreng (Crofton Weed) Biochar Produced at Different Pyrolysis Temperatures. Environ. Eng. Sci. 2019, 36, 937–946. [Google Scholar] [CrossRef]
- Ahmad, M.; Moon, D.H.; Vithanage, M.; Koutsospyros, A.; Lee, S.S.; Yang, J.E.; Lee, S.E.; Choong, J.; Ok, Y.S. Production and Use of Biochar from Buffalo-Weed (Ambrosia Trifida L.) for Trichloroethylene Removal from Water. J. Chem. Technol. Biotechnol. 2013, 89, 150–157. [Google Scholar] [CrossRef]
- Feng, J.; Zhu, Y. Alien Invasive Plants in China: Risk Assessment and Spatial Patterns. Biodivers. Conserv. 2010, 19, 3489–3497. [Google Scholar] [CrossRef]
- Núñez-Regueira, L.; Proupín-Castiñeiras, J.; Rodríguez-Añón, J.A. Energy Evaluation of Forest Residues Originated from Shrub Species in Galicia. Bioresour. Technol. 2004, 91, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Soliño, M.; Prada, A.; Vázquez, M.X. Designing a Forest-Energy Policy to Reduce Forest Fires in Galicia (Spain): A Contingent Valuation Application. J. For. Econ. 2010, 16, 217–233. [Google Scholar] [CrossRef]
- Amutio, M.; Lopez, G.; Alvarez, J.; Moreira, R.; Duarte, G.; Nunes, J.; Olazar, M.; Bilbao, J. Flash Pyrolysis of Forestry Residues from the Portuguese Central Inland Region within the Framework of the BioREFINA-Ter Project. Bioresour. Technol. 2013, 129, 512–518. [Google Scholar] [CrossRef]
- Beltrán, V.; Martínez, L.V.; López, A.; Gómez, M.F. Kinetic Analysis of Wood Residues and Gorse (Ulex Europaeus) Pyrolysis under Non-Isothermal Conditions: A Case of Study in Bogotá, Colombia. E3S Web Conf. 2019, 103, 02004. [Google Scholar] [CrossRef]
- González Martínez, M.; Dupont, C.; da Silva Perez, D.; Míguez-Rodríguez, L.; Grateau, M.; Thiéry, S.; Tamminen, T.; Meyer, X.M.; Gourdon, C. Assessing the Suitability of Recovering Shrub Biowaste Involved in Wildland Fires in the South of Europe through Torrefaction Mobile Units. J. Environ. Manag. 2019, 236, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Gómez, K.Y.; Quevedo, N.R.; Molina, L.D.C. Use of the Biochar Obtained by Slow Pyrolysis from Ulex Europaeus in the Removal of Total Chromium from the Bogotá-Colombia River Water. Chem. Eng. Trans. 2021, 86, 289–294. [Google Scholar] [CrossRef]
- Page-Dumroese, D.S.; Coleman, M.D.; Thomas, S.C. Opportunities and Uses of Biochar on Forest Sites in North America. In Biochar: A Regional Supply Chain Approach in View of Mitigating Climate Change; Cambridge University Press: Cambridge, UK, 2016; pp. 315–335. [Google Scholar]
- Kaal, J.; Martínez Cortizas, A.; Reyes, O.; Soliño, M. Molecular Characterization of Ulex Europaeus Biochar Obtained from Laboratory Heat Treatment Experiments—A Pyrolysis-GC/MS Study. J. Anal. Appl. Pyrolysis 2012, 95, 205–212. [Google Scholar] [CrossRef]
- Núñez- Regueira, L.; Rodríguez Añón, J.A.; Proupín Castiñeiras, J. Calorific Values and Flammability of Forest Species in Galicia. Coastal and Hillside Zones. Bioresour. Technol. 1996, 57, 283–289. [Google Scholar] [CrossRef]
- Puentes, A.; Basanta, M. Architecture of Ulex Europaeus: Changes in the Vertical Distribution of Organs in Relation to Plant Height and Season. J. Veg. Sci. 2002, 13, 793–802. [Google Scholar] [CrossRef]
- Cárdenas-Aguiar, E.; Gascó, G.; Paz-Ferreiro, J.; Méndez, A. Thermogravimetric Analysis and Carbon Stability of Chars Produced from Slow Pyrolysis and Hydrothermal Carbonization of Manure Waste. J. Anal. Appl. Pyrolysis 2019, 140, 434–443. [Google Scholar] [CrossRef]
- Channiwala, S.A.; Parikh, P.P. A Unified Correlation for Estimating HHV of Solid, Liquid and Gaseous Fuels. Fuel 2002, 81, 1051–1063. [Google Scholar] [CrossRef]
- Qian, C.; Li, Q.; Zhang, Z.; Wang, X.; Hu, J.; Cao, W. Prediction of Higher Heating Values of Biochar from Proximate and Ultimate Analysis. Fuel 2020, 265, 116925. [Google Scholar] [CrossRef]
- Smith, A.M.; Singh, S.; Ross, A.B. Fate of Inorganic Material during Hydrothermal Carbonisation of Biomass: Influence of Feedstock on Combustion Behaviour of Hydrochar. Fuel 2016, 169, 135–145. [Google Scholar] [CrossRef]
- Mbugua Nyambura, S.; Li, C.; Li, H.; Xu, J.; Wang, J.; Zhu, X.; Feng, X.; Li, X.; Bertrand, G.V.; Ndiithi Ndumia, J.; et al. Microwave Co-Pyrolysis of Kitchen Food Waste and Rice Straw: Effects of Susceptor on Thermal, Surface, and Fuel Properties of Biochar. Fuel 2023, 352, 129093. [Google Scholar] [CrossRef]
- Kongto, P.; Palamanit, A.; Ninduangdee, P.; Singh, Y.; Chanakaewsomboon, I.; Hayat, A.; Wae-hayee, M. Intensive Exploration of the Fuel Characteristics of Biomass and Biochar from Oil Palm Trunk and Oil Palm Fronds for Supporting Increasing Demand of Solid Biofuels in Thailand. Energy Rep. 2022, 8, 5640–5652. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Mandal, S.; Niazi, N.K.; Vithanage, M.; Parikh, S.J.; Mukome, F.N.D.; Rizwan, M.; Oleszczuk, P.; Al-Wabel, M.; Bolan, N.; et al. Advances and Future Directions of Biochar Characterization Methods and Applications. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2275–2330. [Google Scholar] [CrossRef]
- Anand, A.; Gautam, S.; Ram, L.C. Feedstock and Pyrolysis Conditions Affect Suitability of Biochar for Various Sustainable Energy and Environmental Applications. J. Anal. Appl. Pyrolysis 2023, 170, 105881. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis Part 3—Chemical Methods; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1009. [Google Scholar]
- Wong, J.W.C.; Ogbonnaya, U.O. Biochar Porosity : A Nature-Based Dependent Parameter to Deliver Microorganisms to Soils for Land Restoration. Environ. Sci. Pollut. Res. 2021, 28, 46894–46909. [Google Scholar] [CrossRef] [PubMed]
- Capareda, S.C. Comprehensive Biomass Characterization in Preparation for Conversion. In Sustainable Biochar for Water and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands; Madison Wisconsin, WI, USA, 2022; pp. 1–37. ISBN 9780128222256. [Google Scholar]
- Wang, C.; Wang, Y.; Herath, H.M.S.K. Polycyclic Aromatic Hydrocarbons (PAHs) in Biochar—Their Formation, Occurrence and Analysis: A Review. Org. Geochem. 2017, 114, 1–11. [Google Scholar] [CrossRef]
- Greco, G.; Videgain, M.; Di Stasi, C.; Pires, E.; Manyà, J.J. Importance of Pyrolysis Temperature and Pressure in the Concentration of Polycyclic Aromatic Hydrocarbons in Wood Waste-Derived Biochars. J. Anal. Appl. Pyrolysis 2021, 159, 105337. [Google Scholar] [CrossRef]
- Dumroese, R.K.; Page-Dumroese, D.S.; Pinto, J.R. Biochar Potential to Enhance Forest Resilience, Seedling Quality, and Nursery Efficiency. Tree Plant. Notes 2020, 63, 61–68. [Google Scholar]
- Jarvis, J.M.; Page-Dumroese, D.S.; Anderson, N.M.; Corilo, Y.; Rodgers, R.P. Characterization of Fast Pyrolysis Products Generated from Several Western USA Woody Species. Energy Fuels 2014, 28, 6438–6446. [Google Scholar] [CrossRef]
- Bakshi, S.; Banik, C.; Laird, D.A. Estimating the Organic Oxygen Content of Biochar. Sci. Rep. 2020, 10, 13082. [Google Scholar] [CrossRef]
- Nogués, I.; Mazzurco Miritana, V.; Passatore, L.; Zacchini, M.; Peruzzi, E.; Carloni, S.; Pietrini, F.; Marabottini, R.; Chiti, T.; Massaccesi, L.; et al. Biochar Soil Amendment as Carbon Farming Practice in a Mediterranean Environment. Geoderma Reg. 2023, 33, e00634. [Google Scholar] [CrossRef]
- Peuravuori, J.; Žbánková, P.; Pihlaja, K. Aspects of Structural Features in Lignite and Lignite Humic Acids. Fuel Process. Technol. 2006, 87, 829–839. [Google Scholar] [CrossRef]
- Cui, X.; Yan, H.; Zhao, P.; Yang, Y.; Xie, Y. Modeling of Molecular and Properties of Anthracite Base on Structural Accuracy Identification Methods. J. Mol. Struct. 2019, 1183, 313–323. [Google Scholar] [CrossRef]
- Malysheva, V.Y.; Fedorova, N.I.; Nikitin, A.P. Spectral Analysis of Anthracite. Coke Chem. 2023, 66, 490–495. [Google Scholar] [CrossRef]
- Liang, W.; Jiang, C.; Wang, G.; Ning, X.; Zhang, J.; Guo, X.; Xu, R.; Wang, P.; Ye, L.; Li, J.; et al. Research on the Co-Combustion Characteristics and Kinetics of Agricultural Waste Hydrochar and Anthracite. Renew. Energy 2022, 194, 1119–1130. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zhu, J.; Lu, Q. Experimental Study on Preheating and Combustion Characteristics of Pulverized Anthracite Coal. Fuel 2013, 113, 122–127. [Google Scholar] [CrossRef]
- Zou, C.; Zhao, J.; Li, X.; Shi, R. Effects of Catalysts on Combustion Reactivity of Anthracite and Coal Char with Low Combustibility at Low/High Heating Rate. J. Therm. Anal. Calorim. 2016, 126, 1469–1480. [Google Scholar] [CrossRef]
- Xiao, Y.; Meng, X.; Yin, L.; Li, Q.W.; Shu, C.M.; Tian, Y. Influence of Element Composition and Microcrystalline Structure on Thermal Properties of Bituminous Coal under Nitrogen Atmosphere. Process Saf. Environ. Prot. 2021, 147, 846–856. [Google Scholar] [CrossRef]
- Hwang, T.; Neculita, C.M. In Situ Immobilization of Heavy Metals in Severely Weathered Tailings Amended with Food Waste-Based Compost and Zeolite. Water. Air. Soil Pollut. 2013, 224, 1388. [Google Scholar] [CrossRef]
- Lu, X.; Pellechia, P.J.; Flora, J.R.V.; Berge, N.D. Influence of Reaction Time and Temperature on Product Formation and Characteristics Associated with the Hydrothermal Carbonization of Cellulose. Bioresour. Technol. 2013, 138, 180–190. [Google Scholar] [CrossRef]
- Cueva Zepeda, L.; Griffin, G.; Shah, K.; Al-Waili, I.; Parthasarathy, R. Energy Potential, Flow Characteristics and Stability of Water and Alcohol-Based Rice-Straw Biochar Slurry Fuel. Renew. Energy 2023, 207, 60–72. [Google Scholar] [CrossRef]
- Toloue Farrokh, N.; Suopajärvi, H.; Mattila, O.; Sulasalmi, P.; Fabritius, T. Characteristics of Wood-Based Biochars for Pulverized Coal Injection. Fuel 2020, 265, 117017. [Google Scholar] [CrossRef]
- Ghidotti, M.; Fabbri, D.; Hornung, A. Profiles of Volatile Organic Compounds in Biochar: Insights into Process Conditions and Quality Assessment. ACS Sustain. Chem. Eng. 2017, 5, 510–517. [Google Scholar] [CrossRef]
- Mandal, S.; Donner, E.; Vasileiadis, S.; Skinner, W.; Smith, E.; Lombi, E. The Effect of Biochar Feedstock, Pyrolysis Temperature, and Application Rate on the Reduction of Ammonia Volatilisation from Biochar-Amended Soil. Sci. Total Environ. 2018, 627, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Ronsse, F.; van Hecke, S.; Dickinson, D.; Prins, W. Production and Characterization of Slow Pyrolysis Biochar: Influence of Feedstock Type and Pyrolysis Conditions. GCB Bioenergy 2013, 5, 104–115. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. Pyrolysis Temperature Induced Changes in Characteristics and Chemical Composition of Biochar Produced from Conocarpus Wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef]
- Rehrah, D.; Reddy, M.R.; Novak, J.M.; Bansode, R.R.; Schimmel, K.A.; Yu, J.; Watts, D.W.; Ahmedna, M. Production and Characterization of Biochars from Agricultural By-Products for Use in Soil Quality Enhancement. J. Anal. Appl. Pyrolysis 2014, 108, 301–309. [Google Scholar] [CrossRef]
- Vaughn, S.F.; Kenar, J.A.; Eller, F.J.; Moser, B.R.; Jackson, M.A.; Peterson, S.C. Physical and Chemical Characterization of Biochars Produced from Coppiced Wood of Thirteen Tree Species for Use in Horticultural Substrates. Ind. Crops Prod. 2015, 66, 44–51. [Google Scholar] [CrossRef]
- Yargicoglu, E.N.; Sadasivam, B.Y.; Reddy, K.R.; Spokas, K. Physical and Chemical Characterization of Waste Wood Derived Biochars. Waste Manag. 2015, 36, 256–268. [Google Scholar] [CrossRef]
- Fu, P.; Hu, S.; Xiang, J.; Sun, L.; Su, S.; Wang, J. Evaluation of the Porous Structure Development of Chars from Pyrolysis of Rice Straw: Effects of Pyrolysis Temperature and Heating Rate. J. Anal. Appl. Pyrolysis 2012, 98, 177–183. [Google Scholar] [CrossRef]
- Buss, W.; Hilber, I.; Graham, M.C.; Mašek, O. Composition of PAHs in Biochar and Implications for Biochar Production. ACS Sustain. Chem. Eng. 2022, 10, 6755–6765. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Bucheli, T.D.; Kammann, C.; Glaser, B.; Abiven, S.; Leifeld, J. European Biochar Certificate—Guidelines for a Sustainable Production of Biochar. Eur. Biochar Found. 2016, 1–22. [Google Scholar] [CrossRef]
- Schlederer, F.; Martín-Hernández, E.; Vaneeckhaute, C. Ensuring Safety Standards in Sewage Sludge-Derived Biochar: Impact of Pyrolysis Process Temperature and Carrier Gas on Micropollutant Removal. J. Environ. Manag. 2024, 352, 19964. [Google Scholar] [CrossRef] [PubMed]
- De Luis, M.; Raventós, J.; González-Hidalgo, J.C. Factors Controlling Seedling Germination after Fire in Mediterranean Gorse Shrublands. Implications for Fire Prescription. J. Environ. Manag. 2005, 76, 159–166. [Google Scholar] [CrossRef] [PubMed]
HHV (MJ kg−1) | Formula | Reference | |
---|---|---|---|
HHV1 | HHV = 0.3491*%C + 1.1783*%H + 0.1005*%S − 0.1034*%O − 0.015*%N − 0.021*%Ash | (2) | [57] |
HHV2 | HHV = 32.9C + 162.7H − 16.2O − 954.4S + 1.408 | (3) | [58] |
HHV3 | HHV = (0.3383*%C) + (1.422*%H) − (%O/8) | (4) | [59] |
HHV4 | HHV = 0.3383*%C + 1.443(%H − (%O/8)) + (0.0942*%S) | (5) | Dulong’s approximation in [57] |
HHV average | HHV = ((HHV1 + HHV2 + HHV3 + HHV4)/4) | (6) | Present work |
%N | %C | %H | %S | %O | (O + N)/C | |
---|---|---|---|---|---|---|
BROOM | 2.93 ± 0.07 a,b | 42.37 ± 0.31 a | 5.76 ± 0.17 e | 0.11 ± 0.01 b | 45.67 ± 0.92 d | 0.87 ± 0.01 d |
BB300-1H | 2.93 ± 0.26 a,b | 59.4 ± 2.24 b | 5.16 ± 0.06 d | 0.03 ± 0 a | 28.57 ± 1.79 c | 0.40 ± 0.03 c |
BB300-3H | 3.12 ± 0.2 b | 62.68 ± 1.91 b | 4.81 ± 0.14 c | 0.02 ± 0 a | 25.04 ± 1.39 b | 0.34 ± 0.02 b |
BB600-1H | 2.62 ± 0.2 a | 68.66 ± 1 c | 1.92 ± 0.14 b | 0.03 ± 0 a | 20.88 ± 0.37 a | 0.26 ± 0 a |
BB600-3H | 2.63 ± 0.16 a | 67.67 ± 2.78 c | 1.54 ± 0.15 a | 0.03 ± 0 a | 20.54 ± 1 a | 0.26 ± 0.02 a |
GORSE | 1.55 ± 0.05 A | 44.83 ± 1.53 A | 6.05 ± 0.11 D | 0.08 ± 0.04 A | 45.03 ± 1.2 D | 0.78 ± 0.05 D |
BG300-1H | 2.09 ± 0.06 B | 58.27 ± 2.09 B | 5.42 ± 0.14 C | 0.04 ± 0.01 A | 31 ± 1.8 C | 0.43 ± 0.04 C |
BG300-3H | 2.48 ± 0.05 C | 62.81 ± 1.52 C | 4.87 ± 0.11 B | 0.04 ± 0.01 A | 25.54 ± 1.11 B | 0.34 ± 0.02 B |
BG600-1H | 1.95 ± 0.28 B | 71.67 ± 2.03 D | 1.72 ± 0.38 A | 0.05 ± 0 A | 18.81 ± 2.86 A | 0.22 ± 0.03 A |
BG600-3H | 1.63 ± 0.07 A | 72.32 ± 2.19 D | 1.66 ± 0.14 A | 0.05 ± 0 A | 19.26 ± 1.97 A | 0.22 ± 0.03 A |
Average HHV (MJ kg−1) | LHV (MJ kg−1) | CDF | EEF | CVI (%) | ED (MJ m−3) | |
---|---|---|---|---|---|---|
BROOM | 15.57 ± 0.25 a | 14.28 ± 0.21 a | - | - | - | 4359.15 ± 69.41 d |
BB300-1H | 23.06 ± 1.07 b,c | 21.91 ± 1.07 b,c,d | 1.4 ± 0.05 b | 1.48 ± 0.07 b,c | 48.14 ± 6.89 b,c | 4151.29 ± 192.96 c,d |
BB300-3H | 24.18 ± 1.08 c | 23.1 ± 1.05 c,d | 1.48 ± 0.05 b | 1.55 ± 0.07 c | 55.3 ± 6.91 c | 4351.88 ± 193.64 d |
BB600-1H | 22.62 ± 0.51 b,c | 22.19 ± 0.48 b,c,d | 1.62 ± 0.02 c | 1.45 ± 0.03 a,b,c | 45.31 ± 3.25 a,b,c | 5429.27 ± 121.36 e |
BB600-3H | 21.69 ± 1.33 b | 21.35 ± 1.31 b | 1.6 ± 0.07 c | 1.39 ± 0.09 a,b | 39.35 ± 8.55 a,b | 5423.48 ± 332.81 e |
GORSE | 17.02 ± 0.7 a | 15.67 ± 0.68 a | - | - | - | 3914.25 ± 160.17 b,c |
BG300-1H | 22.73 ± 0.74 b,c | 21.52 ± 0.78 b,c | 1.3 ± 0.05 a | 1.34 ± 0.04 a | 33.56 ± 4.37 a | 3636.84 ± 118.99 a,b |
BG300-3H | 24.21 ± 0.53 c | 23.12 ± 0.55 c,d | 1.4 ± 0.03 b | 1.42 ± 0.03 a,b | 42.26 ± 3.09 a,b | 3389.41 ± 73.55 a |
BG600-1H | 23.61 ± 1.46 c | 23.22 ± 1.4 c,d | 1.6 ± 0.05 c | 1.39 ± 0.09 a,b | 38.71 ± 8.6 a,b | 4013.01 ± 248.95 c,d |
BG600-3H | 23.71 ± 1.06 c | 23.34 ± 1.05 d | 1.61 ± 0.05 c | 1.39 ± 0.06 a,b | 39.34 ± 6.2 a,b | 4031.44 ± 179.5 c,d |
VM (%) | Ash (%) | FC (%) | FC/VM | FC/(VM + FC) | |
---|---|---|---|---|---|
BROOM | 80.71 ± 0.29 d | 3.16 ± 1.03 a | 16.12 ± 1.32 a | 0.2 ± 0.02 a | 0.17 ± 0.01 a |
BB300-1H | 56.32 ± 2.41 c | 3.91 ± 0.73 a,b | 39.78 ± 3.11 b | 0.71 ± 0.09 a,b | 0.41 ± 0.03 b |
BB300-3H | 47.38 ± 0.73 b | 4.33 ± 0.8 a,b | 48.29 ± 1.33 c | 1.02 ± 0.04 b | 0.5 ± 0.01 c |
BB600-1H | 13.47 ± 0.82 a | 5.89 ± 1.64 b,c | 80.64 ± 2.46 d | 6.01 ± 0.57 c | 0.86 ± 0.01 d |
BB600-3H | 12.03 ± 0.81 a | 7.58 ± 1.73 c | 80.39 ± 2.54 d | 6.71 ± 0.69 c | 0.87 ± 0.01 d |
GORSE | 82.94 ± 0.9 D | 2.47 ± 0.47 A | 14.6 ± 1.16 A | 0.18 ± 0.02 A | 0.15 ± 0.01 A |
BG300-1H | 60.05 ± 1.76 C | 3.17 ± 0.21 B | 36.77 ± 1.97 B | 0.61 ± 0.05 A | 0.38 ± 0.02 B |
BG300-3H | 48.01 ± 2.42 B | 4.26 ± 0.36 C | 47.73 ± 2.78 C | 1 ± 0.11 A | 0.5 ± 0.03 C |
BG600-1H | 12.82 ± 1.84 A | 5.8 ± 0.32 E | 81.37 ± 1.52 D | 6.45 ± 1.14 B | 0.86 ± 0.02 D |
BG600-3H | 10.3 ± 0.51 A | 5.09 ± 0.32 D | 84.61 ± 0.8 D | 8.23 ± 0.5 C | 0.89 ± 0.01 D |
Coxi (%) | pH | EC (µS cm−1) | WEOC (mg kg−1) | |
---|---|---|---|---|
BROOM | 44.36 ± 0.76 c | 5.65 ± 0.04 a | 218.67 ± 18.01 c | 67,196.37 ± 1882.12 c |
BB300-1H | 45.78 ± 0.82 c | 8.56 ± 0.31 b | 95 ± 3.96 b | 4671.04 ± 131.73 b |
BB300-3H | 39.12 ± 1.09 b | 8.90 ± 0.19 c | 75.27 ± 2.74 a | 1086.64 ± 9.68 a |
BB600-1H | 1.31 ± 0.9 a | 9.53 ± 0.15 d | 215.33 ± 2.52 c | 777.77 ± 22.35 a |
BB600-3H | 2.17 ± 0.44 a | 9.52 ± 0.11 d | 263 ± 8.54 d | 1001.02 ± 44.59 a |
GORSE | 42.95 ± 1.21 B | 6.48 ± 0.14 A | 108.8 ± 1.7 B | 31,396.85 ± 187.82 D |
BG300-1H | 47.24 ± 1.32 C | 8.28 ± 0.03 B | 104.25 ± 2.95 A,B | 3619.17 ± 44.23 C |
BG300-3H | 41.2 ± 1.79 B | 9.59 ± 0.17 C | 100.23 ± 1.69 A | 735.52 ± 15.29 B |
BG600-1H | 5.88 ± 0.35 A | 10.42 ± 0.12 D | 233.67 ± 4.16 D | 510.38 ± 19.54 A |
BG600-3H | 6.32 ± 0.19 A | 10.32 ± 0.04 D | 209.5 ± 4.5 C | 449.66 ± 20.86 A |
Measured Porosity (%) | Vmeso (cm3 g−1) | Vmacro (cm3 g−1) | Bulk Density (g cm−3) | Solid Density (g cm−3) | Calculated Total Porosity (%) | |
---|---|---|---|---|---|---|
BROOM | 43.59 | 0.06 | 0.51 | 0.28 | 1.28 | 78.12 |
BB300-1H | 56.51 | 0.08 | 0.97 | 0.18 | 1.28 | 85.68 |
BB300-3H | 57.59 | 0.09 | 1.04 | 0.18 | 1.27 | 85.50 |
BB600-1H | 57.80 | 0.18 | 0.88 | 0.24 | 1.47 | 83.45 |
BB600-3H | 60.28 | 0.19 | 1.04 | 0.25 | 1.53 | 83.93 |
GORSE | 34.69 | 0.12 | 0.24 | 0.23 | 1.34 | 82.91 |
BG300-1H | 52.15 | 0.07 | 0.77 | 0.16 | 1.29 | 87.73 |
BG300-3H | 48.06 | 0.07 | 0.79 | 0.14 | 1.36 | 89.61 |
BG600-1H | 57.14 | 0.13 | 0.93 | 0.17 | 1.47 | 88.72 |
BG600-3H | 56.79 | 0.19 | 0.86 | 0.17 | 1.49 | 88.73 |
Interactions | Feedstock:Residence Time | Temperature:Residence Time | Feedstock:Temperature | Feedstock:Temperature:Residence Time | |||
---|---|---|---|---|---|---|---|
300 °C | 600 °C | Broom | Gorse | 1 h | 3 h | ||
N | - | - | x | x | - | - | - |
C | - | - | x | x | x | x | - |
H | - | - | - | - | - | - | - |
S | - | - | - | - | - | - | - |
O | - | - | x | x | x | x | - |
H/C | - | - | x | x | - | - | - |
O/C | - | - | x | x | x | x | - |
(O + N)/C | - | - | x | x | x | x | - |
HHVaverage | - | - | - | - | - | - | - |
LHV | - | - | x | x | - | - | - |
CDF | - | - | x | x | x | x | - |
EEF | - | - | - | - | - | - | - |
CVI | - | - | - | - | - | - | - |
ED | - | - | - | - | x | x | x |
VM | - | - | x | x | x | x | - |
Ash | - | - | - | - | - | - | - |
FC | - | - | x | x | x | x | - |
FC/VM | - | - | - | - | x | x | - |
FC/(VM + FC) | - | - | x | x | x | x | - |
Coxi | - | - | x | x | x | x | - |
pH | x | x | x | x | x | x | x |
EC | x | x | x | x | x | x | x |
WEOC | x | x | x | x | x | x | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cárdenas-Aguiar, E.; Méndez, A.; Gascó, G.; Lado, M.; Paz-González, A. The Effects of Feedstock, Pyrolysis Temperature, and Residence Time on the Properties and Uses of Biochar from Broom and Gorse Wastes. Appl. Sci. 2024, 14, 4283. https://doi.org/10.3390/app14104283
Cárdenas-Aguiar E, Méndez A, Gascó G, Lado M, Paz-González A. The Effects of Feedstock, Pyrolysis Temperature, and Residence Time on the Properties and Uses of Biochar from Broom and Gorse Wastes. Applied Sciences. 2024; 14(10):4283. https://doi.org/10.3390/app14104283
Chicago/Turabian StyleCárdenas-Aguiar, Eliana, Ana Méndez, Gabriel Gascó, Marcos Lado, and Antonio Paz-González. 2024. "The Effects of Feedstock, Pyrolysis Temperature, and Residence Time on the Properties and Uses of Biochar from Broom and Gorse Wastes" Applied Sciences 14, no. 10: 4283. https://doi.org/10.3390/app14104283
APA StyleCárdenas-Aguiar, E., Méndez, A., Gascó, G., Lado, M., & Paz-González, A. (2024). The Effects of Feedstock, Pyrolysis Temperature, and Residence Time on the Properties and Uses of Biochar from Broom and Gorse Wastes. Applied Sciences, 14(10), 4283. https://doi.org/10.3390/app14104283