Multi-Feature-Enhanced Academic Paper Recommendation Model with Knowledge Graph
Abstract
:1. Introduction
2. Related Work
2.1. Traditional Academic Paper Recommendation Methods
2.2. Graph-Based Academic Paper Recommendation Methods
3. Approach of This Paper
3.1. Acquisition of Temporal Information
3.2. Text Vector Representation
3.3. Knowledge Graph Information
3.3.1. Knowledge Graph Construction
3.3.2. Utilization of Edge Information
3.4. Recommendation Module
4. Experiments
4.1. Experimental Dataset
4.2. Baseline Models
4.3. Evaluation Metrics
4.4. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kurek, J.; Latkowski, T.; Bukowski, M.; Świderski, B.; Łępicki, M.; Baranik, G.; Nowak, B.; Zakowicz, R.; Dobrakowski, Ł. Zero-shot recommendation AI models for efficient job–candidate matching in recruitment process. Appl. Sci. 2024, 14, 2601. [Google Scholar] [CrossRef]
- Siet, S.; Peng, S.; Ilkhomjon, S.; Kang, M.; Park, D.-S. Enhancing sequence movie recommendation system using deep learning and kmeans. Appl. Sci. 2024, 14, 2505. [Google Scholar] [CrossRef]
- Gündoğlu, E.; Kaya, M.; Daud, A. Deep learning for journal recommendation system of research papers. Scientometrics 2023, 128, 461–481. [Google Scholar] [CrossRef]
- Bai, X.; Wang, M.; Lee, I.; Yang, Z.; Kong, X.; Xia, F. Scientific paper recommendation: A survey. IEEE Access 2019, 7, 9324–9339. [Google Scholar] [CrossRef]
- Tanner, W.; Akbas, E.; Hasan, M. Paper recommendation based on citation relation. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 3053–3059. [Google Scholar]
- Ali, Z.; Kefalas, P.; Muhammad, K.; Ali, B.; Imran, M. Deep learning in citation recommendation models survey. Expert Syst. Appl. 2020, 162, 113790. [Google Scholar] [CrossRef]
- Kreutz, C.K.; Schenkel, R. Scientific paper recommendation systems: A literature review of recent publications. Int. J. Digit. Libr. 2022, 23, 335–369. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhuang, F.; Qin, C.; Zhu, H.; Xie, X.; Xiong, H.; He, Q. A survey on knowledge graph-based recommender systems. IEEE Trans. Knowl. Data Eng. 2020, 34, 3549–3568. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, H.; Srivastava, G.; Li, S.; Khosravi, M.R.; Qi, L. Robust Collaborative Filtering Recommendation with User-Item-Trust Records. IEEE Trans. Comput. Soc. Syst. 2021, 9, 986–996. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, R.; Zhuang, F.; Ge, K.; Sun, Y.; Zhang, X.; Lin, L.; Cao, J. Learning to warm up cold item embeddings for cold-start recommendation with meta scaling and shifting networks. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA, 11–15 July 2021; pp. 1167–1176. [Google Scholar]
- Wu, J.; Wang, X.; Feng, F.; He, X.; Chen, L.; Lian, J.; Xie, X. Self-supervised graph learning for recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA, 11–15 July 2021; pp. 726–735. [Google Scholar]
- Jin, B.; Gao, C.; He, X.; Jin, D.; Li, Y. Multi-behavior recommendation with graph convolutional networks. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi’an, China, 25–30 July 2020; pp. 659–668. [Google Scholar]
- Naak, A.; Hage, H.; Aïmeur, E. A multi-criteria collaborative filtering approach for research paper recommendation in papyres. In Proceedings of the 4th International Conference on E-Technologies: Innovation in an Open World (MCETECH), Ottawa, ON, Canada, 4–6 May 2009; pp. 25–39. [Google Scholar]
- Liu, H.; Kong, X.; Bai, X.; Wang, W.; Bekele, T.M.; Xia, F. Context-based collaborative filtering for citation recommendation. IEEE Access 2015, 3, 1695–1703. [Google Scholar] [CrossRef]
- Sugiyama, K.; Kan, M.Y. Exploiting potential citation papers in scholarly paper recommendation. In Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries, Indianapolis, IN, USA, 22–26 July 2013; pp. 153–162. [Google Scholar]
- Philip, S.; Shola, P.; Ovye, A. Application of content-based approach in research paper recommendation system for a digital library. Int. J. Adv. Comput. Sci. Appl. 2014, 5. [Google Scholar] [CrossRef]
- Ma, X.; Wang, R. Personalized scientific paper recommendation based on heterogeneous graph representation. IEEE Access 2019, 7, 79887–79894. [Google Scholar] [CrossRef]
- Cai, X.; Zheng, Y.; Yang, L.; Dai, T.; Guo, L. Bibliographic network representation based personalized citation recommendation. IEEE Access 2018, 7, 457–467. [Google Scholar] [CrossRef]
- Liu, H.; Kou, H.; Yan, C.; Qi, L. Keywords-driven and popularity-aware paper recommendation based on undirected paper citation graph. Complexity 2020. [CrossRef]
- Pan, L.; Dai, X.; Huang, S.; Chen, J. Academic paper recommendation based on heterogeneous graph. In Proceedings of the China National Conference on Chinese Computational Linguistics, Guangzhou, China, 13–14 November 2015; Springer International Publishing: Cham, Seitzerland, 2015; pp. 381–392. [Google Scholar]
- Hao, L.; Liu, S.; Pan, L. Paper recommendation based on author-paper interest and graph structure. In Proceedings of the 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Dalian, China, 5–7 May 2021; pp. 256–261. [Google Scholar]
- Fan, Z.; Liu, Z.; Zhang, J.; Xiong, Y.; Zheng, L.; Yu, P.S. Continuous-time sequential recommendation with temporal graph collaborative transformer. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Virtual Event, 1–5 November 2021; pp. 433–442. [Google Scholar]
- Dhyani, M.; Kumar, R. An intelligent Chatbot using deep learning with Bidirectional RNN and attention model. Mater. Today Proc. 2021, 34, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. ALBERT: A Lite BERT for Self-Supervised Learning of Language Representations. In Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020; pp. 1–14. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Advances in Neural Information Processing Systems 30; Curran Associates, Inc.: Red Hook, NY, USA, 2017. [Google Scholar]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Pennington, J.; Socher, R.; Manning, C.D. Glove: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543. [Google Scholar]
- Imrana, Y.; Xiang, Y.; Ali, L.; Abdul-Rauf, Z. A Bidirectional LSTM Deep Learning Approach for Intrusion Detection. Expert Syst. Appl. 2021, 185, 115524. [Google Scholar] [CrossRef]
- Sharir, G.; Noy, A.; Zelnik-Manor, L. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning Entity and Relation Embeddings for Knowledge Graph Completion. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2022. [Google Scholar]
- He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural Collaborative Filtering. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182. [Google Scholar]
- Chen, Y.M.; Li, D.X.; Yan, Y.F.; Lü, C.J.; Chen, Z.H. Method for Recommending Academic Papers Combining Text and Implicit Feedback. J. Chin. Comput. Syst. 2023, 44, 2471–2476. [Google Scholar]
- Zheng, L.; Noroozi, V.; Yu, P.S. Joint Deep Modeling of Users and Items Using Reviews for Recommendation. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, Cambridge, UK, 6–10 February 2017. [Google Scholar]
- Wang, H.; Zhang, F.; Xie, X.; Guo, M. DKN: Deep Knowledge-Aware Network for News Recommendation. arXiv 2018, arXiv:1801.08284. [Google Scholar]
- Corso, G.; Cavalleri, L.; Beaini, D.; Liò, P.; Veličković, P. Principal neighbourhood aggregation for graph nets. Adv. Neural Inf. Process. Syst. 2020, 33, 13260–13271. [Google Scholar]
- Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; Van Den Berg, R.; Titov, I.; Welling, M. Modeling Relational Data with Graph Convolutional Networks. In Proceedings of the European Semantic Web Conference, Heraklion, Greece, 3–7 June 2018; Springer: Cham, Switzerland, 2018; pp. 593–607. [Google Scholar]
- Chen, J.; Chen, H. Edge-Featured Graph Attention Network. arXiv 2021, arXiv:2101.07671. [Google Scholar]
Specific Time | Year | Citations in Year | Cumulative Citations | Citation Growth Rate |
---|---|---|---|---|
2015 | 1 | 2 | 2 | / |
2016 | 2 | 1 | 3 | −50% |
2017 | 3 | 7 | 10 | +600% |
2018 | 4 | 5 | 15 | −28.57% |
2019 | 5 | 3 | 18 | −40% |
2020 | 6 | 5 | 23 | +66.67% |
Data Type | Quantity |
---|---|
Paper | 716,549 |
Author | 976,544 |
Year | 5 |
Publishing Institution | 4023 |
Author’s Affiliated Institution | 571,659 |
Model | HR | NDCG | Prec@10 | Rec@10 |
---|---|---|---|---|
CF | 0.386 | 0.245 | 0.197 | 0.238 |
NCF | 0.655 | 0.390 | 0.355 | 0.372 |
DeepCoNN | 0.714 | 0.431 | 0.423 | 0.455 |
DKN | 0.757 | 0.453 | 0.484 | 0.522 |
RGCN | 0.769 | 0.459 | 0.512 | 0.526 |
EGAT | 0.786 | 0.477 | 0.525 | 0.565 |
PNA | 0.791 | 0.481 | 0.534 | 0.551 |
MFPRKG | 0.812 | 0.497 | 0.553 | 0.589 |
Evaluation Metrics | HR | NDCG | Prec@10 | Rec@10 |
---|---|---|---|---|
MFPRKG-U | 0.739 | 0.440 | 0.492 | 0.523 |
MFPRKG-P | 0.716 | 0.427 | 0.478 | 0.507 |
MFPRKG | 0.812 | 0.497 | 0.553 | 0.589 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Du, W.; Chen, Z. Multi-Feature-Enhanced Academic Paper Recommendation Model with Knowledge Graph. Appl. Sci. 2024, 14, 5022. https://doi.org/10.3390/app14125022
Wang L, Du W, Chen Z. Multi-Feature-Enhanced Academic Paper Recommendation Model with Knowledge Graph. Applied Sciences. 2024; 14(12):5022. https://doi.org/10.3390/app14125022
Chicago/Turabian StyleWang, Le, Wenna Du, and Zehua Chen. 2024. "Multi-Feature-Enhanced Academic Paper Recommendation Model with Knowledge Graph" Applied Sciences 14, no. 12: 5022. https://doi.org/10.3390/app14125022
APA StyleWang, L., Du, W., & Chen, Z. (2024). Multi-Feature-Enhanced Academic Paper Recommendation Model with Knowledge Graph. Applied Sciences, 14(12), 5022. https://doi.org/10.3390/app14125022