Improving the Content of Chemical Elements from the Soil of Waste Heaps Influenced by Forest Vegetation—A Case Study of Moldova Nouă Waste Heaps, South-West Romania
Abstract
:1. Introduction
- Comparing the chemical composition of the sterile before planting with the chemical composition of the soil from forest plantations;
- Analyzing the variation of the soil’s chemical composition from forest plantations located on waste heaps;
- Establishing the influence of forest vegetation on the variation of the soil’s chemical composition in forest plantations located on waste heaps.
2. Materials and Methods
2.1. Study Area
2.2. Experimental Section
2.3. Sample Prelevation and Element Detection
2.4. Trees Measurements
- are the values of regression coefficients of the species;
- d is the tree diameter [cm];
- h is the tree height [m];
- V is the tree volume [m3].
2.5. Statistical Analysis
2.6. Experimental Design
3. Results
3.1. The Chemical Composition of the Sterile before Planting (1988) and of the Soil from Forest Plantations (2019)
3.2. The Variation of the Soil’s Chemical Compositions in Forest Plantations from Waste Heaps
3.3. The Influence of Forest Vegetation on the Soil’s Chemical Composition Variation in Forest Plantations from Waste Heaps
4. Discussion
4.1. The Chemical Composition of the Sterile as a Planting Substratum and of the Soil from Forest Plantations
4.2. Soil’s Chemical Composition in Forest Plantations from Waste Heaps and the Influence of Forest Vegetation on These Variations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Araujo, F.S.M.; Taborda-Llano, I.; Nunes, E.B.; Santos, R.M. Recycling and Reuse of Mine Tailings: A Review of Advancements and Their Implications. Geosciences 2022, 12, 319. [Google Scholar] [CrossRef]
- Chisăliţă, I. Cercetări Privind Stabilizarea Haldelor de Steril de la Moldova Nouă cu Ajutorul Vegetaţiei Forestiere şi Influenţa Acesteia Asupra Mediului; Universitatea Transilvania: Braşov, Romania, 2001; pp. 5–11. [Google Scholar]
- Crisan, V.; Dinca, L.; Enescu, R.; Onet, A.; Deca, S. Depolluting the slime deposit from Brasov, Romania—A case study. J. Environ. Prot. Ecol. 2020, 21, 579–587. [Google Scholar]
- Liu, Y.G.; Zhou, M.; Zeng, G.; Wang, X.; Li, X.; Fan, T.; Xu, W. Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: Effects of substrate concentration. Bioresour. Technol. 2008, 99, 4124–4129. [Google Scholar] [CrossRef] [PubMed]
- Edraki, M.; Baumgartl, T.; Manlapig, E.; Bradshaw, D.; Franks, D.M.; Moran, C.J. Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches. J. Clean. Prod. 2014, 84, 411–420. [Google Scholar] [CrossRef]
- Rodríguez, L.; Ruiz, E.; Alonso-Azcárate, J.; Rincón, J. Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. J. Environ. Manag. 2009, 90, 1106–1116. [Google Scholar] [CrossRef] [PubMed]
- Licsko, I.; Lois, L.; Szebenyi, G. Tailings as a source of environmental pollution. Water Sci. Technol. 1999, 39, 333–336. [Google Scholar] [CrossRef]
- Pierwoła, J.; Szuszkiewicz, M.; Cabala, J.; Jochymczyk, K.; Żogała, B.; Magiera, T. Integrated geophysical and geochemical methods applied for recognition of acid waste drainage (AWD) from Zn-Pb post-flotation tailing pile (Olkusz, southern Poland). Environ. Sci. Pollut. Res. 2020, 27, 16731–16744. [Google Scholar] [CrossRef]
- Triantafyllidis, S.; Skarpelis, N.; Komnitsas, K. Environmental characterization and geochemistry of Kirki, Thrace, NE Greece, abandoned flotation tailing dumps. Environ. Forensics 2007, 8, 351–359. [Google Scholar] [CrossRef]
- Benvenuti, M.; Mascaro, I.; Corsini, F.; Lattanzi, P.; Parrini, P.; Tanelli, G. Mine waste dumps and heavy metal pollution in abandoned mining district of Boccheggiano (Southern Tuscany, Italy). Environ. Geol. 1997, 3, 238–243. [Google Scholar] [CrossRef]
- Nouri, J.; Khorasani, N.; Lorestani, B.; Karami, M.; Hassani, H.; Yousefi, N. Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ. Earth Sci. 2009, 59, 315–323. [Google Scholar] [CrossRef]
- Băbău, A.M.; Micle, V.; Damian, G.E.; Varvara, S. Health risk assessment analysis in two highly polluted minig areas from Zlatna (Romania). J. Environ. Prot. Ecol. 2017, 18, 1416–1424. [Google Scholar]
- Michopoulos, P.; Kostakis, M.; Bourletsikas, A.; Kaoukis, K.; Pasias, I.; Grigoratos, T.; Thomaidis, N.; Samara, C. Concentrations of three rare elements in the hydrological cycle and soil of a mountainous fir forest. Ann. For. Res. 2022, 65, 155–164. [Google Scholar] [CrossRef]
- Deng, J.; Bai, X.; Zhou, Y.; Zhu, W.; Yin, Y. Variations of Soil Microbial Communities Accompanied by Different Vegetation Restoration in an Open-Cut Iron Mining Area. Sci. Total Environ. 2020, 704, 135243. [Google Scholar] [CrossRef] [PubMed]
- Băbău, A.M.C.; Micle, V.; Damian, G.E.; Sur, I.M. Sustainable Ecological Restoration of Sterile Dumps Using Robinia pseudoacacia. Sustainability 2021, 13, 14021. [Google Scholar] [CrossRef]
- Henry, H.F.; Burken, J.G.; Maier, R.M.; Newman, L.A.; Rock, S.; Schnoor, J.L.; Suk, W.A. Phytotechnologies—Preventing Exposures, Improving Public Health. Int. J. Phytorem. 2013, 15, 889–899. [Google Scholar] [CrossRef]
- Djokić, B.V.; Jović, V.; Jovanović, M.; Ćirić, A.; Jovanović, D. Geochemical behaviour of some heavy metals of the Grot flotation tailing, Southeast Serbia. Environ. Earth Sci. 2012, 66, 933–939. [Google Scholar] [CrossRef]
- Siebyła, M.; Hilszczanska, D. Next Generation Sequencing genomic analysis of bacteria from soils of the sites with naturally-occurring summer truffle (Tuber aestivum Vittad.). Ann. For. Res. 2022, 65, 97–110. [Google Scholar] [CrossRef]
- Błońska, E.; Piaszczyk, W.; Lasota, J. Emissions of CO2 from downed logs of different species and the surrounding soil in temperate forest. Ann. For. Res. 2022, 65, 47–56. [Google Scholar] [CrossRef]
- Romanian Map. Available online: https://harta-romaniei.org/harta-geografica-a-romaniei.html (accessed on 23 November 2023).
- Harta Rutieră a României. Available online: http://www.hartaromanieionline.ro/harta-judet-Caras-Severin/ (accessed on 23 November 2023).
- Google Earth. Available online: https://earth.google.com (accessed on 23 November 2023).
- Cântar, I.C.; Dincă, L.; Chisăliță, I. Chemical Properties Transformations of Copper Waste Heaps from Moldova Noua as a Result of their Afforestation. Rev. Chim. 2020, 71, 172–181. [Google Scholar] [CrossRef]
- ISO 18400-104; First edition 2018-10, Soil quality–Sampling–Part 104: Strategies. International Organization for Standardization: Geneva, Switzerland, 2018.
- SR EN 14082/2003; Determination of Trace Elements—Determination of Lead, Cadmium, Zinc, Copper, Iron and Chromium by Atomic Absorption Spectrometry (AAS) after Dry Ashing. Comite Europeen de Normalisation: Brussels, Belgium, 2003.
- Giurgiu, V.; Decei, I.; Drăghiciu, D. Metode și Tabele Dendrometrice; Editura Ceres: București, Romania, 2004. [Google Scholar]
- García-Giménez, R.; Jiménez-Ballesta, R. Mine tailings influencing soil contamination by potentially toxic elements. Environ. Earth Sci. 2017, 76, 51. [Google Scholar] [CrossRef]
- Hanfi, M.Y.; Mostafa, Y.A.; Zhukovsky, M.V. Heavy metal contamination in urban surface sediments: Sources, distribution, contamination control, and remediation. Environ. Monit. Assess. 2020, 192, 32. [Google Scholar] [CrossRef] [PubMed]
- Nanos, N.; Martín, J.A.R. Multiscale analysis of heavy metal contents in soils: Spatial variability in the Duero river basin (Spain). Geoderma 2012, 189, 554–562. [Google Scholar] [CrossRef]
- Teng, Y.; Liu, L.; Zheng, N.; Liu, H.; Wu, L.; Yue, W. Application of Different Indices for Soil Heavy Metal Pollution Risk Assessment Comparison and Uncertainty: A Case Study of a Copper Mine Tailing Site. Minerals 2022, 12, 1074. [Google Scholar] [CrossRef]
- Solgi, E.; Esmaili-Sari, A.; Riyahi-Bakhtiari, A.; Hadipour, M. Soil Contamination of Metals in the Three Industrial Estates, Arak, Iran. Bull. Environ. Contam. Toxicol. 2012, 88, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Huang, J.; Lu, J.; Sun, Y. Study on the influence of soil microbial community on the long-term heavy metal pollution ofdifferent land use types and depth layers in mine. Ecotoxicol. Environ. Saf. 2019, 170, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi-Zanjani, A.; Saeedi, M. Multivariate analysis and geochemical approach for assessment of metal pollution state insediment cores. Environ. Sci. Pollut. Res. 2017, 24, 16289–16304. [Google Scholar] [CrossRef] [PubMed]
- Lashen, Z.M.; Shams, M.S.; El-Sheshtawy, H.S.; Slany, M.; Antoniadis, V.; Yang, X.; Sharma, G.; Rinklebe, J.; Shaheen, S.M.; Elmahdy, S.M. Remediation of Cd and Cu contaminated water and soil using novel nanomaterials derived from sugar beetprocessing- and clay brick factory-solid wastes. J. Hazard. Mater. 2022, 428, 128205. [Google Scholar] [CrossRef] [PubMed]
- Janaszek, A.; Kowalik, R. Analysis of Heavy Metal Contaminants and Mobility in Sewage sludge-soil Mixtures for Sustainable Agricultural Practices. Water 2023, 15, 3992. [Google Scholar] [CrossRef]
- Rees, F.; Simonnot, M.O.; Morel, J.L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur. J. Soil Sci. 2014, 65, 149–161. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Cui, Z. Evaluation and analysis of soil migration and distribution characteristics of heavy metals in irontailings. J. Clean. Prod. 2018, 172, 475–480. [Google Scholar] [CrossRef]
- Huang, J.; Guo, S.; Zeng, G.; Li, F.; Gu, Y.; Shi, Y.; Shi, L.; Liu, W.; Peng, S. A new exploration of health risk assessmentquantification from sources of soil heavy metals under different land use. Environ. Pollut. 2018, 243, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Chira, I.; Damian, G.; Chira, R. Spatial distribution of heavy metals in the soils of Băiuţ area, Maramureş county, Romania. Carpathian J. Earth Environ. Sci. 2014, 9, 269–278. [Google Scholar]
- Macdonald, S.E.; Landhäusser, S.M.; Skousen, J.; Franklin, J.; Frouz, J.; Hall, S.; Jacobs, D.F.; Quideau, S. Forest Restoration Following Surface Mining Disturbance: Challenges and Solutions. New For. 2015, 46, 703–732. [Google Scholar] [CrossRef]
- Nikolaidis, C.; Zafiriadis, I.; Mathioudakis, V.; Constantinidis, T. Heavy metal pollution associated with an abandoned lead–zinc mine in the Kirki Region, NE Greece. Bull. Environ. Contam. Toxicol. 2010, 85, 307–312. [Google Scholar] [CrossRef]
- Mleczek, M.; Rutkowski, P.; Niedzielski, P.; Goliński, P.; Gąsecka, M.; Kozubik, T.; Dąbrowski, J.; Budzyńska, S.; Pakuła, J. The role of selected tree species in industrial sewage sludge/flotation tailing management. Int. J. Phytorem. 2016, 18, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
- Dimitrijević, M.D.; Nujkić, M.M.; Alagić, S.Č.; Milić, S.M.; Tošić, S.B. Heavy metal contamination of topsoil and parts of peach-tree growing at different distances from a smelting complex. Int. J. Environ. Sci. Technol. 2016, 13, 615–630. [Google Scholar] [CrossRef]
- Klimko, T.; Lalinska, B.; Majzlan, J.; Chovan, M.; Kucerova, G.; Paul, C. Chemical composition of weathering products in neutral and acidic mine tailings from stibnite exploitation in Slovakia. J. Geosci. 2011, 56, 327–340. [Google Scholar] [CrossRef]
- Krupskaya, L.T.; Bubnova, M.B.; Zvereva, V.P.; Krupskiy, A.V. Characteristics of mining-ecological monitoring of environmental objects changing under the influence of toxic waste tailing dump (“Solnechny GOK” Company). Environ. Monit. Assess. 2012, 184, 2775. [Google Scholar] [CrossRef]
- Lee, K.Y.; Kim, K.W.; Kim, S.O. Geochemical and microbial effects on the mobilization of arsenic in mine tailing soils. Environ. Geochem. Health 2010, 32, 31–44. [Google Scholar] [CrossRef]
- Kalitina, E.G.; Kharitonova, N.A.; Kuzmina, T.V. Chemical and microbiological composition of technogenic waters in the tailing dumps of Krasnorechensk ore-dressing plant (Primorsky Krai, Russia). In Proceedings of the International Science and Technology Conference “Earth Science”, Russky Island, Russia, 4–6 March 2019; Volume 272. No. 3. [Google Scholar]
- Li, S.; Hao, J.; Yang, S.; Wang, Y.; Li, Y.; Tao, E. Alginate-based adsorbents with adjustable slit-shaped pore structure for selective removal of copper ions. Int. J. Biol. Macromol. 2024, 267, 131484. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, S.; Zhou, K.; Wang, J.; Cheng, Y.; Wang, Y.; Chen, L.; Li, Y.; Tao, E. Preparation of 1T/2H MoS2@ MMT with sphere structure: Study on selective adsorption of Pb2+. Sep. Purif. Technol. 2024, 343, 127152. [Google Scholar] [CrossRef]
- Krasavtseva, E.A.; Makarov, D.V.; Maksimova, V.V.; Selivanova, E.A.; Ikkonen, P.V. Studies of properties and composition of loparite ore mill tailings. J. Min. Sci. 2021, 57, 531–538. [Google Scholar] [CrossRef]
- Acosta, J.A.; Faz, A.; Kalbitz, K.; Jansen, B.; Martínez-Martínez, S. Partitioning of heavy metals over different chemical fraction in street dust of Murcia (Spain) as a basis for risk assessment. J. Geochem. Explor. 2014, 144, 298–305. [Google Scholar] [CrossRef]
- Villa, P.M.; Martins, S.V.; Pilocelli, A.; Kruschewsky, G.C.; Dias, A.A.; Nabeta, F.H. Attributes of stand-age-dependent forest determine technosol fertility of Atlantic forest re-growing on mining tailings in Mariana, Brazil. J. For. Res. 2022, 33, 103–116. [Google Scholar] [CrossRef]
- Gabarrón, M.; Faz, A.; Martínez-Martínez, S.; Acosta, J.A. Change in metals and arsenic distribution in soil and their bioavailability beside old tailing ponds. J. Environ. Manag. 2018, 212, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Larchevêque, M.; Desrochers, A.; Bussière, B.; Cartier, H.; David, J.S. Revegetation of Non-Acid-Generating, Thickened Tailings with Boreal Trees: A Greenhouse Study. J. Environ. Qual. 2013, 42, 351–360. [Google Scholar] [CrossRef]
- Wirth, C.; Schumacher, J.; Schulze, E.D. Generic biomass functions for Norway spruce in Central Europe–a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol. 2004, 24, 21–139. [Google Scholar] [CrossRef]
- Sghayar, S.; Ferri, A.; Lancilli, C.; Lucchini, G.; Abruzzese, A.; Porrini, M.; Ghnaya, T.; Nocito, F.F.; Abdelly, C.; Sacchi, G.A. Analysis of cadmium translocation, partitioning and tolerance in six barley (Hordeum vulgare L.) cultivars as a function of thiol metabolism. Biol. Ferti. Soils 2015, 51, 311–320. [Google Scholar] [CrossRef]
- Kabala, C.; Galka, B.; Jezierski, P. Assessment and monitoring of soil and plant contamination with trace elements around Europe’s largest copper ore tailings impoundment. Sci. Total Environ. 2020, 738, 139918. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, Y.; Peng, C.; Chen, L.; Wang, Y.; Li, Y.; Yang, S.; Tao, E. Mixed-crystalline-phase molybdenum disulfide-based adsorbents with high selectivity for Pb (II) capture: Crystal surface growth modulation and selectivity mechanisms. Sep. Purif. Technol. 2024, 30, 127872. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, S.; Zhou, K.; Zhao, J.; Wang, J.; Li, N.; Wang, Y.; Tao, E. Preparation of co-doped biochar to improve electron transfer and modulate 1O2 generation: Unraveling the radical-unradical mechanism. Chem. Eng. J. 2024, 491, 151985. [Google Scholar] [CrossRef]
- Li, W.; Tao, E.; Hao, X.; Li, N.; Li, Y.; Yang, S. MMT and ZrO2 jointly regulate the pore size of graphene oxide-based composite aerogel materials to improve the selective removal ability of Cu (II). Sep. Purif. Technol. 2024, 331, 125506. [Google Scholar] [CrossRef]
- Constandache, C.; Peticilă, A.; Dincă, L.; Vasile, D. The usage of Sea Buckthorn (Hippophae Rhamnoides L.) for improving Romania’s degraded lands. AgroLife Sci. J. 2016, 5, 50–58. [Google Scholar]
- Mitran, T.; Gunnam, J.R.S.; Gourigari, S.; Kandrika, S. Assessment of depth wise distribution, enrichment, contamination, ecological risk and sources of soil heavy metals over an Industrial area in Southern India. J. Geochem. Explor. 2024, 257, 107379. [Google Scholar] [CrossRef]
- Schwab, P.; Zhu, D.; Banks, M.K. Heavy metal leaching from mine tailings as affected by organic amendments. Bioresour. Technol. 2007, 98, 2935–2941. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sun, Z.; Hu, Y.; Cheng, H. Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact. Sci. Total Environ. 2019, 695, 133893. [Google Scholar] [CrossRef]
- Lim, M.; Han, G.C.; Ahn, J.W.; You, K.S.; Kim, H.S. Leachability of arsenic and heavy metals from mine tailings of abandoned metal mines. Int. J. Environ. Res. Public Health 2009, 6, 2865–2879. [Google Scholar] [CrossRef]
Sampling Point | Chemical Elements, wt.% of Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fe | S | V | Pb | Zn | Cd | Ra | CaO | SiO2 | Al2O3 | TIO2 | |
V1 | 7.230 | 2.260 | 0.0170 | 0.100 | 0.090 | 0.001 | 0.104 | 20 | 31.310 | 0.0 | 0.150 |
V2 | 5.470 | 1.790 | 0.030 | 0.100 | 0.050 | 0.010 | 0.0 | 24 | 31.560 | 0.0 | 0.230 |
V3 | 5.560 | 3.800 | 0.0 | 0.0 | 0.120 | 0.010 | 0.100 | 18 | 33.750 | 0.0 | 0.770 |
V4 | 6.400 | 0.450 | 0.020 | marks | 0.010 | 0.001 | 0.002 | 15 | 32.650 | 0.0 | 0.370 |
V5 | 3.830 | 0.610 | 0.020 | 0.010 | 0.060 | marks | 0.003 | 24 | 32.700 | 0.0 | 0.310 |
V6 | 4.400 | 0.710 | 0.0 | 0.001 | 0.060 | 0.010 | 0.0 | 4 | 30.390 | 0.0 | 0.240 |
V7 | 4.400 | 0.710 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 30.390 | 4.320 | 0.240 |
Average | 5.327 | 1.478 | 0.012 | 0.030 | 0.056 | 0.005 | 0.029 | 15 | 31.821 | 0.617 | 0.330 |
Sampling Point | Chemical Elements, as wt.% of Total | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PAL * | KAL * | Cu | Cd | Cr | Ni | Pb | Zn | Fe | Mn | CaO | Mg | |
V8 | 0.00101 | 0.015 | 0.063 | 0.00021 | 0.0013 | 0.0016 | 0.0057 | 0.015 | 8.594 | 0.048 | 2.019 | 1.037 |
V9 | 0.00004 | 0.026 | 0.056 | 0.00020 | 0.0025 | 0.0028 | 0.0025 | 0.017 | 8.217 | 0.060 | 29.557 | 1.187 |
V10 | 0.00002 | 0.027 | 0.063 | 0.00024 | 0.0017 | 0.0019 | 0.0029 | 0.017 | 9.706 | 0.077 | 37.248 | 1.499 |
V11 | 0.00014 | 0.034 | 0.048 | 0.00014 | 0.0022 | 0.0025 | 0.0065 | 0.016 | 6.629 | 0.072 | 25.207 | 1.225 |
V12 | 0.00130 | 0.036 | 0.021 | 0.00005 | 0.0032 | 0.0036 | 0.0046 | 0.012 | 5.137 | 0.063 | 7.825 | 0.988 |
V13 | 0.00042 | 0.022 | 0.0690 | 0.00022 | 0.0023 | 0.0026 | 0.0034 | 0.016 | 7.893 | 0.053 | 14.506 | 1.219 |
V14 | 0.00002 | 0.007 | 0.083 | 0.00040 | 0.0016 | 0.0015 | 0.0070 | 0.019 | 9.617 | 0.043 | 21.117 | 0.998 |
Average | 0.00042 | 0.0240 | 0.058 | 0.00021 | 0.0021 | 0.0023 | 0.0046 | 0.016 | 7.970 | 0.059 | 19.640 | 1.165 |
Macro elements, Micro elements, and Potentially Toxic Elements | 1998 | 2019 | p Values (ANOVA Test) for Testing Differences in Concentrations of Elements between 1988 and 2019 | ||||
---|---|---|---|---|---|---|---|
Average (% from Total) | Standard Deviation | Variation Coefficient | Average (% from Total) | Standard Deviation | Variation Coefficient | ||
Fe | 5.328 | 1.212 | 0.227 | 7.970 | 1.633 | 0.205 | 0.005 ** |
Pb | 0.030 | 0.048 | 1.588 | 0.005 | 0.002 | 0.385 | 0.184 |
Zn | 0.056 | 0.002 | 0.133 | 0.016 | 0.042 | 0.753 | 0.028 * |
Cd | 0.005 | 0.005 | 1.114 | 0.0002 | 0.0001 | 0.519 | 0.043 * |
CaO | 15.000 | 9.504 | 0.634 | 19.640 | 12.369 | 0.630 | 0.447 |
p Values between Pairs of Tested Values of Sampling Points/ Differences between Tested Values in Pairs of Samplings (%)—2019 (V8–V14) and 1988 (V1–V7) | |||||||
---|---|---|---|---|---|---|---|
Sampling point and Fe percentage | V8 (8.5940) | V9 (8.2165) | V10 (9.7062) | V11 (6.6290) | V12 (5.1370) | V13 (7.8926) | V14 (9.6169) |
V1 (7.230) | 0.01038 */ 1.364 | 0.00777 **/ 0.986 | 0.00062 ***/ 2.476 | 0.02727 */ −0.601 | 0.00089 ***/ −2.093 | 0.02216 */ 0.663 | 0.00152 **/ 2.387 |
V2 (5.470) | 0.0019 **/ 3.124 | 0.00031 ***/ 2.747 | 0.00031 ***/ 4.236 | 0.00252 **/ 1.159 | 0.13455/ −0.333 | 0.00048 ***/ 2.423 | 0.0007 ***/ 4.147 |
V3 (5.560) | 0.00272 **/ 3.034 | 0.00025 ***/ 2.657 | 0.00048 ***/ 4.146 | 0.00331 **/ 1.069 | 0.0785/ −0.423 | 0.00061 ***/ 2.333 | 0.00118 ***/ 4.057 |
V4 (6.400) | 0.00747 **/ 2.194 | 0.00031 ***/ 1.817 | 0.00103 **/ 3.306 | 0.1718/ 0.229 | 0.00747 **/ −1.263 | 0.00266 **/ 1.493 | 0.00259 **/ 3.217 |
V5 (3.803) | 0.0019 **/ 4.764 | 0.000065 ***/ 4.387 | 0.00061 ***/ 5.876 | 0.0007 ***/ 2.799 | 0.00747 **/ 1.307 | 0.00061 ***/ 4.063 | 0.00117 **/ 5.787 |
V6 (4.400) | 0.00152 **/ 4.194 | 0.000065 ***/ 3.817 | 0.00306 **/ 5.306 | 0.00061 ***/ 2.229 | 0.0209 */ 0.737 | 0.00038 ***/ 3.493 | 0.0007 ***/ 5.217 |
V7 (4.400) | 0.00252 **/ 4.194 | 0.000065 ***/ 3.817 | 0.000613 ***/ 5.306 | 0.00132 **/ 2.229 | 0.0272 */ 0.737 | 0.0007 ***/ 3.493 | 0.00145 **/ 5.217 |
p Values between Pairs of Tested Values on Sampling Points/ Differences between Tested Values in Pairs of Samplings (%)—2019 (V8–V14) and 1988 (V1–V7) | |||||||
---|---|---|---|---|---|---|---|
Sampling point and Cd percentage | V8 (0.0002129) | V9 (0.0001985) | V10 (0.0002427) | V11 (0.0001383) | V12 (0.0000484) | V13 (0.000222) | V14 (0.00021) |
V1 (0.001) | 0.2710/ −0.0008 | 0.2710/ −0.0008 | 0.2746/ −0.0008 | 0.2528/ −0.0009 | 0.2247/ −0.0010 | 0.2710/ −0.0008 | 0.3570/ −0.0006 |
V2 (0.010) | 0.0059 **/ −0.0098 | 0.0059 **/ −0.0098 | 0.0059 **/ −00098 | 0.0059 **/ −0.0099 | 0.0059 **/ −0.0100 | 0.0059 **/ −0.0098 | 0.0059 **/ −0.0096 |
V3 (0.010) | 0.0059 **/ −0.0098 | 0.0059 **/ −0.0098 | 0.0059 **/ −0.0098 | 0.0059 **/ −0.0099 | 0.0059 **/ −0.0100 | 0.0059 **/ −0.0098 | 0.0059 **/ −0.0096 |
V4 (0.001) | 0.0585/ −0.0008 | 0.0585/ −0.0008 | 0.0594/ −0.0008 | 0.0532/ −0.0009 | 0.0442 */ −0.0010 | 0.0593/ −0.0008 | 0.0909/ −0.0006 |
V5 (marks) | 0.0074 **/ 0.0002 | 0.0056 **/ 0.0002 | 0.0074 **/ 0.0002 | 0.0056 **/ 0.0001 | 0.1099/ 0.0000 | 0.0056 ***/ 0.0002 | 0.0056 **/ 0.0004 |
V6 (0.010) | 0.0056 **/ −0.0098 | 0.0056 **/ −0.0098 | 0.0056 **/ −0.0098 | 0.0056 **/ −0.0099 | 0.0056 **/ −0.0100 | 0.0056 **/ −0.0098 | 0.0056 **/ −0.0096 |
V7 (0.0) | 0.0074 **/ 0.0002 | 0.0056 **/ 0.0002 | 0.0074 **/ 0.0002 | 0.0056 **/ 0.0001 | 0.1099/ 0.0000 | 0.0056 ***/ 0.0002 | 0.0056 **/ 0.0004 |
Chemical Element | χ2 Values | Confidence Level | Degree of Freedom | Critical Values of χ2 |
---|---|---|---|---|
Fe | 8.091 | 95% | 28 | 27.336 |
Cd | 2.375 | 95% | 28 | 27.336 |
Tested Variable | Mean | Standard Deviation | Shapiro–Wilk (S-W) Test | Kolmogorov–Smirnov (K-S) Test | ||
---|---|---|---|---|---|---|
S-W Test Value | p-Value | K-S Maximum Values | Critical Values (n = 7, alfa = 0.05) | |||
Number of trees | 80.429 | 17.194 | 0.900015 | 0.3756 | 0.18999 | 0.483 |
Height of trees (m) | 5.057 | 0.976 | 0.7897 | 0.40721 | 0.19307 | 0.483 |
Diameter of trees (cm) | 4.579 | 0.635 | 0.843857 | 0.126031 | 0.19077 | 0.483 |
Chemical Element | Sampling Points Where Biometric Characteristics Were Measured | ||||||
---|---|---|---|---|---|---|---|
V8 | V9 | V10 | V11 | V12 | V13 | V14 | |
Fe | 3.2669 | 2.8894 | 4.3791 | 1.4807 | −0.1150 | 2.5655 | 4.2898 |
Zn | −0.0527 | −0.0503 | −0.0503 | −0.0513 | −0.0555 | −0.0511 | −0.0488 |
Cd | −0.0042 | −0.0043 | −0.0042 | −0.0043 | −0.0077 | −0.0042 | −0.0071 |
Sampling Points | No of Trees/Plot | Percent of Oleaster (%) | Percent of Black Locust and Other Species (%) | Average Height of the Trees (m) | Average Diameter of the Trees (cm) | Consistency—Percentage of Canopy Cover at Soil (1 to 10) | Wood Mass Volume (m3) |
---|---|---|---|---|---|---|---|
V8 | 75 | 44 | 56 | 5.232 | 5.7067 | 9 | 1.1733 |
V9 | 91 | 53 | 47 | 4.6121 | 4.0824 | 10 | 0.6518 |
V10 | 79 | 22 | 78 | 4.3899 | 4.5633 | 9 | 0.6922 |
V11 | 73 | 33 | 67 | 4.211 | 4.244 | 9 | 0.5042 |
V12 | 73 | 36 | 64 | 7.1247 | 5.1863 | 9 | 0.9706 |
V13 | 59 | 47 | 53 | 4.9949 | 4.0237 | 8 | 0.4295 |
V14 | 113 | 19 | 81 | 4.8345 | 4.2478 | 10 | 0.9544 |
Pearson Correlation Coefficients Value (r) for Different Stand Characteristics and Differences on Chemical Element Content | |||||||
---|---|---|---|---|---|---|---|
Chemical Element | Number of Trees | Average Height of Trees | Average Diameter of Trees | Consistency—Percentage of Canopy Cover at Soil | Wood Mass Volume | Percentage of Oleaster | Percentage of Black Locust and Other Species |
Fe | 0.5 * | −0.67 ** | −0.2 | 0.29 | 0.07 | −0.34 | 0.34 |
Zn | 0.56 * | −0.84 *** | −0.68 ** | 0.38 | −0.34 | −0.29 | 0.29 |
Cd | −0.20 | −0.72 ** | −0.19 | −0.31 | −0.48 * | −0.42 * | −0.42 * |
Chemical Element | Average Height of Trees | Average Diameter of Trees | Wood Mass Volume |
---|---|---|---|
P | 0.87 ** | 0.81 *** | 0.57 * |
Cu | −0.66 ** | −0.36 | −0.06 |
Mg | −0.61 ** | −0.38 | −0.62 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cântar, I.-C.; Alexa, E.; Poșta, D.S.; Crişan, V.E.; Cadar, N.; Berbecea, A.; Rózsa, S.; Gocan, T.-M.; Borsai, O. Improving the Content of Chemical Elements from the Soil of Waste Heaps Influenced by Forest Vegetation—A Case Study of Moldova Nouă Waste Heaps, South-West Romania. Appl. Sci. 2024, 14, 5221. https://doi.org/10.3390/app14125221
Cântar I-C, Alexa E, Poșta DS, Crişan VE, Cadar N, Berbecea A, Rózsa S, Gocan T-M, Borsai O. Improving the Content of Chemical Elements from the Soil of Waste Heaps Influenced by Forest Vegetation—A Case Study of Moldova Nouă Waste Heaps, South-West Romania. Applied Sciences. 2024; 14(12):5221. https://doi.org/10.3390/app14125221
Chicago/Turabian StyleCântar, Ilie-Cosmin, Ersilia Alexa, Daniela Sabina Poșta, Vlad Emil Crişan, Nicolae Cadar, Adina Berbecea, Sándor Rózsa, Tincuța-Marta Gocan, and Orsolya Borsai. 2024. "Improving the Content of Chemical Elements from the Soil of Waste Heaps Influenced by Forest Vegetation—A Case Study of Moldova Nouă Waste Heaps, South-West Romania" Applied Sciences 14, no. 12: 5221. https://doi.org/10.3390/app14125221
APA StyleCântar, I. -C., Alexa, E., Poșta, D. S., Crişan, V. E., Cadar, N., Berbecea, A., Rózsa, S., Gocan, T. -M., & Borsai, O. (2024). Improving the Content of Chemical Elements from the Soil of Waste Heaps Influenced by Forest Vegetation—A Case Study of Moldova Nouă Waste Heaps, South-West Romania. Applied Sciences, 14(12), 5221. https://doi.org/10.3390/app14125221