Socially Assistive Robots in Smart Environments to Attend Elderly People—A Survey
Abstract
:1. Introduction
1.1. Ambient Assisted Living
1.2. Socially Assistive Robots
1.3. Organization of the Manuscript
2. Methodology
2.1. Article Selection Criteria
- For the theme TS = Ambient Assistive Living NOT TS = robot, we obtain 2833 results in the range 2009 to 2023. The graph shows a relatively steep upward slope until 2015 and a gentle downward slope thereafter. It seems to imply that the issue created a significant expectation and that we are now at the point where realistic deployments are expected.
- The topic TS = Assistive Robot AND TS = social NOT TS = Ambient Assistive Living has its most relevant point in 2021, with a much lower interest than that generated by the previous topic, and with a clear reduction in these last two years.
- Both topics, especially the former, far exceed the interest in the topic TS = Ambient Assistive Living AND TS = Assistive Robot. Only a total of 68 articles were published in the period between 2009 and 2023.
2.2. Relevant Parameters for the Study
3. The Use of SAR in AAL Ecosystems
- They usually offer very simple functionalities, mainly associated with supervision, with a gap between these functionalities and those required by end users, which would require the design of more complex but equally robust robot performance planning and control schemes.
- The deployment of these robots in a real intelligent environment requires the maintenance of a unique representation that brings benefits to both the robot and the environment. This is still in its early stages, with few projects showing evaluations obtained from actual long-term deployment [22].
3.1. Robotic Platforms
3.2. Expected Services
3.3. Temporal Duration of Deployments
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ribeiro, O.; Araújo, L.; Figueiredo, D.; Paúl, C.; Teixeira, L. The Caregiver Support Ratio in Europe: Estimating the Future of Potentially (Un)Available Caregivers. Healthcare 2022, 10, 11. [Google Scholar] [CrossRef]
- Moriyama, T. Why Does the Older Population in Japan Work So Much? Jpn. Labor Issues 2022, 6, 20–26. [Google Scholar]
- Ide, H.; Kodate, N.; Suwa, S.; Tsujimura, M.; Shimamura, A.; Ishimaru, M. The ageing ‘care crisis’ in Japan: Is there a role for robotics-based solutions? Int. J. Care Caring 2021, 5, 165–171. [Google Scholar] [CrossRef]
- SPARC: The Partnership for Robotics in Europe. Robotics 2020 Multi-Annual Roadmap for Robotics in Europe. The EU Framework Programme for Research and Innovation. Technical Report. Available online: https://eu-robotics.net/wp-content/uploads/H2020_Robotics_Multi-Annual_Roadmap_ICT-2017B-1.pdf (accessed on 13 May 2024).
- World Health Organization. Active Ageing: A Policy Framework. Aging Male 2002, 5, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Osawa, E.; Sasaki, Y.; Hsu, H.; Miura, H. Attitudes toward active aging and their association with social determinants and views on older adults in Japan: A cross-sectional study. BMC Geriatr. 2024, 24, 140. [Google Scholar] [CrossRef]
- Blackman, S.; Matlo, C.; Bobrovitskiy, C.; Waldoch, A.; Fang, M.L.; Jackson, P.; Mihailidis, A.; Nygård, L.; Astell, A.; Sixsmith, A. Ambient Assisted Living Technologies for Aging Well: A Scoping Review. J. Intell. Syst. 2016, 25, 55–69. [Google Scholar] [CrossRef]
- Hall, A.; Wilson, C.B.; Stanmore, E.; Todd, C. Implementing monitoring technologies in care homes for people with dementia: A qualitative exploration using Normalization Process Theory. Int. J. Nurs. Stud. 2017, 72, 60–70. [Google Scholar] [CrossRef]
- Abdi, J.; Al-Hindawi, A.; Ng, T.; Vizcaychipi, M.P. Scoping review on the use of socially assistive robot technology in elderly care. BMJ Open 2018, 8, e018815. [Google Scholar] [CrossRef]
- Feil-Seifer, D.; Mataric, M.J. Defining Socially Assistive Robotics. In Proceedings of the 9th International Conference on Rehabilitation Robotics (ICORR), Chicago, IL, USA, 28 June–1 July 2005; pp. 465–468. [Google Scholar]
- Romero-Garcés, A.; Bandera, J.P.; Marfil, R.; González-García, M.; Bandera, A. CLARA: Building a Socially Assistive Robot to Interact with Elderly People. Designs 2022, 6, 125. [Google Scholar] [CrossRef]
- Gallego, J.; Lohse, M.; Evers, V. D6.3: Acceptability of a home companion robot. Accompany Project. Final Report v 1.3. Technical Report. 2014. Available online: https://cordis.europa.eu/docs/projects/cnect/4/287624/080/deliverables/001-ACCOMPANYD63Acceptabilityofhomerobotfinal.pdf (accessed on 13 May 2024).
- Reinhardt, D.; Ben Bachouch, R.; Reinke, S.; Parmantier, Y. Deploying Robots in Ambient Assisted Living Environments: Potential Benefits, Challenges, and Future Research Directions. In Proceedings of the Colloque en TéléSANté et dispositifs biomédicaux, Université Paris 8, CNRS, Paris Saint Denis, France, 1–2 June 2023. [Google Scholar]
- Trainum, K.; Tunis, R.; Xie, B.; Hauser, E. Robots in Assisted Living Facilities: Scoping Review. JMIR Aging 2023, 6, e42652. [Google Scholar] [CrossRef]
- Luperto, M.; Monroy, J.; Renoux, J.; Lunardini, F.; Basilico, N.; Bulgheroni, M.; Cangelosi, A.; Cesari, M.; Cid, M.; Ianes, A.; et al. Integrating Social Assistive Robots, IoT, Virtual Communities and Smart Objects to Assist at-Home Independently Living Elders: The MoveCare Project. Int. J. Soc. Robot. 2023, 15, 1–31. [Google Scholar] [CrossRef]
- Web of Science Platform. Available online: https://clarivate.com/webofsciencegroup/solutions/web-of-science/ (accessed on 17 November 2023).
- Kolstad, M.; Yamaguchi, N.; Babic, A.; Nishihara, Y. Integrating Socially Assistive Robots into Japanese Nursing Care. In The Importance of Health Informatics in Public Health during a Pandemic; Studies in Health Technology and Informatics; IOS Press: Amsterdam, The Netherlands, 2020; Volume 272, pp. 183–186. [Google Scholar] [CrossRef]
- Broadbent, E.; Tamagawa, R.; Patience, A.; Knock, B.; Kerse, N.; Day, K.; MacDonald, B.A. Attitudes towards health-care robots in a retirement village. Australas. J. Ageing 2012, 31, 115–120. [Google Scholar] [CrossRef]
- Gross, H.M.; Scheidig, A.; Debes, K.; Einhorn, E.; Eisenbach, M.; Müller, S.; Schmiedel, T.; Trinh, T.; Weinrich, C.; Wengefeld, T.; et al. ROREAS: Robot coach for walking and orientation training in clinical post-stroke rehabilitation—Prototype implementation and evaluation in field trials. Auton. Robot. 2017, 41, 679–698. [Google Scholar] [CrossRef]
- Seibt, J.; Damholdt, M.F.; Vestergaard, C. Integrative social robotics, value-driven design, and transdisciplinarity. Interact. Stud. 2020, 21, 111–144. [Google Scholar] [CrossRef]
- Wada, K.; Shibata, T.; Saito, T.; Tanie, K. Effects of robot assisted activity to elderly people who stay at a health service facility for the aged. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), Las Vegas, NV, USA, 27–31 October 2003; Volume 3, pp. 2847–2852. [Google Scholar] [CrossRef]
- Ozdemir, D.; Cibulka, J.; Stepankova, O.; Holmerova, I. Design and implementation framework of social assistive robotics for people with dementia—A scoping review. Health Technol. 2021, 11, 367–378. [Google Scholar] [CrossRef]
- Broxvall, M.; Gritti, M.; Saffiotti, A.; Seo, B.S.; Cho, Y.J. PEIS Ecology: Integrating robots into smart environments. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, Orlando, FL, USA, 15–19 May 2006; pp. 212–218. [Google Scholar] [CrossRef]
- Rasch, R.; Sprute, D.; Pörtner, A.; Battermann, S.; König, M. Tidy up My Room: Multi-Agent Cooperation for Service Tasks in Smart Environments. J. Ambient Intell. Smart Environ. 2019, 11, 261–275. [Google Scholar] [CrossRef]
- Coradeschi, S.; Cesta, A.; Cortellessa, G.; Coraci, L.; Galindo, C.; Gonzalez, J.; Karlsson, L.; Forsberg, A.; Frennert, S.; Furfari, F.; et al. GiraffPlus: A System for Monitoring Activities and Physiological Parameters and Promoting Social Interaction for Elderly. In Human-Computer Systems Interaction: Backgrounds and Applications 3; Hippe, Z.S., Kulikowski, J.L., Mroczek, T., Wtorek, J., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 261–271. [Google Scholar] [CrossRef]
- Bajones, M.; Fischinger, D.; Weiss, A.; Wolf, D.; Vincze, M.; de la Puente, P.; Körtner, T.; Weninger, M.; Papoutsakis, K.; Michel, D.; et al. Hobbit: Providing Fall Detection and Prevention for the Elderly in the Real World. J. Robot. 2018, 1754657. [Google Scholar] [CrossRef]
- Grieco, L.; Rizzo, A.; Colucci, S.; Sicari, S.; Piro, G.; Di Paola, D.; Boggia, G. IoT-aided robotics applications: Technological implications, target domains and open issues. Comput. Commun. 2014, 54, 32–47. [Google Scholar] [CrossRef]
- Grisetti, G.; Stachniss, C.; Burgard, W. Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters. IEEE Trans. Robot. 2007, 23, 34–46. [Google Scholar] [CrossRef]
- Hawes, N.; Burbridge, C.; Jovan, F.; Kunze, L.; Lacerda, B.; Mudrova, L.; Young, J.; Wyatt, J.; Hebesberger, D.; Kortner, T.; et al. The STRANDS Project: Long-Term Autonomy in Everyday Environments. IEEE Robot. Autom. Mag. 2017, 24, 146–156. [Google Scholar] [CrossRef]
- Gross, H.M.; Schroeter, C.; Mueller, S.; Volkhardt, M.; Einhorn, E.; Bley, A.; Langner, T.; Merten, M.; Huijnen, C.; Heuvel, H.v.d.; et al. Further progress towards a home robot companion for people with mild cognitive impairment. In Proceedings of the 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Seoul, Korea, 14–17 October 2012; pp. 637–644. [Google Scholar] [CrossRef]
- Gross, H.M.; Mueller, S.; Schroeter, C.; Volkhardt, M.; Scheidig, A.; Debes, K.; Richter, K.; Doering, N. Robot companion for domestic health assistance: Implementation, test and case study under everyday conditions in private apartments. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015; pp. 5992–5999. [Google Scholar] [CrossRef]
- Gross, H.M.; Scheidig, A.; Müller, S.; Schütz, B.; Fricke, C.; Meyer, S. Living with a Mobile Companion Robot in your Own Apartment—Final Implementation and Results of a 20-Weeks Field Study with 20 Seniors. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 2253–2259. [Google Scholar] [CrossRef]
- Salatino, C.; Gower, V.; Ghrissi, M.; Tapus, A.; Wieczorowska-Tobis, K.; Suwalska, A.; Barattini, P.; Rosso, R.; Munaro, G.; Bellotto, N.; et al. The EnrichMe Project—A Robotic Solution for Independence and Active Aging of Elderly People with MCI. In Computers Helping People with Special Needs, Proceedings of the 15th International Conference, ICCHP 2016, Linz, Austria, 13–15 July 2016; Proceedings, Part I; Lecture Notes in Computer Science; Miesenberger, K., Bühler, C., Penáz, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9758, pp. 326–334. [Google Scholar] [CrossRef]
- Sae-jin, P. S. Korean Care Robot Company Hyodol Nominated for Innovative Connected Health Tech Award at MWC. Available online: https://www.ajupress.com/view/20240220162826673 (accessed on 3 June 2024).
- Som Care. Available online: https://som-care.com/en/ (accessed on 8 April 2024).
- Vivir en Casa. Available online: https://vivirencasa.org/ (accessed on 18 April 2024).
- Torta, E.; Oberzaucher, J.; Werner, F.; Cuijpers, R.; Juola, J. Attitudes Towards Socially Assistive Robots in Intelligent Homes: Results From Laboratory Studies and Field Trials. J. Hum.-Robot Interact. 2013, 1, 76–99. [Google Scholar] [CrossRef]
- Carolis, B.; Ferilli, S.; Palestra, G. Simulating empathic behavior in a social assistive robot. Multimed. Tools Appl. 2017, 76, 5073–5094. [Google Scholar] [CrossRef]
- Görer, B.; Salah, A.; Akin, H.L. Gesture imitation for a robotic fitness coach. In Proceedings of the 2013 21st Signal Processing and Communications Applications Conference (SIU), Haspolat, Turkey, 24–26 April 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Vulpe, A.; Crăciunescu, R.; Drăgulinescu, A.M.; Kyriazakos, S.; Paikan, A.; Ziafati, P. Enabling Security Services in Socially Assistive Robot Scenarios for Healthcare Applications. Sensors 2021, 21, 6912. [Google Scholar] [CrossRef]
- Soldatos, J.; Kyriazakos, S.; Ziafati, P.; Mihovska, A. Securing IoT Applications with Smart Objects: Framework and a Socially Assistive Robots Case Study. Wirel. Pers. Commun. 2021, 117, 261–280. [Google Scholar] [CrossRef]
- Vulpe, A.; Paikan, A.; Craciunescu, R.; Ziafati, P.; Kyriazakos, S.; Hemmer, A.; Badonnel, R. IoT Security Approaches in Social Robots for Ambient Assisted Living Scenarios. In Proceedings of the 2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC), Lisbon, Portugal, 24–27 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Bui, H.D.; Pham, C.; Lim, Y.; Tan, Y.; Chong, N. Integrating a Humanoid Robot into ECHONET-Based Smart Home Environments. In Proceedings of the ICSR 2017, Salvador, Brazil, 29–31 May 2017; pp. 314–323. [Google Scholar] [CrossRef]
- Bui, H.D.; Chong, N.Y. An Integrated Approach to Human-Robot-Smart Environment Interaction Interface for Ambient Assisted Living. In Proceedings of the 2018 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), Genova, Italy, 27–28 September 2018; pp. 32–37. [Google Scholar] [CrossRef]
- Barber, R.; Ortiz, F.J.; Garrido, S.; Calatrava-Nicolás, F.M.; Mora, A.; Prados, A.; Vera-Repullo, J.A.; Roca-González, J.; Méndez, I.; Mozos, O.M. A Multirobot System in an Assisted Home Environment to Support the Elderly in Their Daily Lives. Sensors 2022, 22, 7983. [Google Scholar] [CrossRef]
- PAL Robotics’ TIAGo. Available online: https://pal-robotics.com/collaborative-projects/almi/ (accessed on 26 April 2024).
- Graf, B.; Hans, M.; Schraft, R.D. Care-O-bot II—Development of a Next Generation Robotic Home Assistant. Auton. Robot. 2004, 16, 193–205. [Google Scholar] [CrossRef]
- Ayari, N.; Chibani, A.; Amirat, Y.; Matson, E. A semantic approach for enhancing assistive services in ubiquitous robotics. Robot. Auton. Syst. 2016, 75, 17–27. [Google Scholar] [CrossRef]
- Zsiga, K.; Edelmayer, G.; Rumeau, P.; Péter, O.; Toth, A.; Fazekas, G. Home care robot for socially supporting the elderly: Focus group studies in three European countries to screen user attitudes and requirements. Int. J. Rehabil. Research. Int. Z. Für Rehabilitationsforschung. Rev. Int. De Rech. De Réadaptation 2013, 36, 375–378. [Google Scholar] [CrossRef]
- Mayer, P.; Panek, P. A Social Assistive Robot in an Intelligent Environment. Biomed. Tech. Biomed. Eng. 2013. [Google Scholar] [CrossRef]
- Wengefeld, T.; Schuetz, B.; Girdziunaite, G.; Scheidig, A.; Gross, H.M. The MORPHIA Project: First Results of a Long-Term User Study in an Elderly Care Scenario from Robotic Point of View. In Proceedings of the International Symposium on Robotics (ISR Europe), Munich, Germany, 20–21 June 2022; pp. 1–8. [Google Scholar]
- Zielstellung des Projekts MORPHIA. Available online: https://www.morphia-projekt.de/ (accessed on 9 April 2024).
- Marques, G.; Pires, I.M.; Miranda, N.; Pitarma, R. Air Quality Monitoring Using Assistive Robots for Ambient Assisted Living and Enhanced Living Environments through Internet of Things. Electronics 2019, 8, 1375. [Google Scholar] [CrossRef]
- Spournias, A.; Antonopoulos, C.; Keramidas, G.; Voros, N.; Stojanovic, R. Enhancing Visual Recognition for Door Status Identification in AAL Robots via Machine Learning. In Proceedings of the 2020 9th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 8–11 June 2020. [Google Scholar] [CrossRef]
- Linner, T.; Güttler, J.; Bock, T.; Georgoulas, C. Assistive robotic micro-rooms for independent living. Autom. Constr. 2015, 51, 8–22. [Google Scholar] [CrossRef]
- Anastasiou, D. A Speech and Gesture Spatial Corpus in Assisted Living. In Proceedings of the 8th International Conference on Language Resources and Evaluation 2012 (LREC-2012), Istanbul, Turkey, 21–27 May 2012; pp. 2351–2354. [Google Scholar]
- Nazemzadeh, P.; Moro, F.; Fontanelli, D.; Macii, D.; Palopoli, L. Indoor Positioning of a Robotic Walking Assistant for Large Public Environments. IEEE Trans. Instrum. Meas. 2015, 64, 2965–2976. [Google Scholar] [CrossRef]
- García-Soler, Á.; Facal, D.; Díaz-Orueta, U.; Pigini, L.; Blasi, L.; Qiu, R. Inclusion of service robots in the daily lives of frail older users: A step-by-step definition procedure on users’ requirements. Arch. Gerontol. Geriatr. 2018, 74, 191–196. [Google Scholar] [CrossRef]
- Portugal, D.; Alvito, P.; Christodoulou, E.; Samaras, G.; Dias, J. A Study on the Deployment of a Service Robot in an Elderly Care Center. Int. J. Soc. Robot. 2019, 11, 317–341. [Google Scholar] [CrossRef]
- Daniele, K.; Marcucci, M.; Cattaneo, C.; Borghese, N.A.; Zannini, L. How Prefrail Older People Living Alone Perceive Information and Communications Technology and What They Would Ask a Robot for: Qualitative Study. J. Med. Internet. Res. 2019, 21, e13228. [Google Scholar] [CrossRef]
- Pino, M.; Boulay, M.; Jouen, F.; Rigaud, A. “Are we ready for robots that care for us?” Attitudes and opinions of older adults toward socially assistive robots. Front. Aging Neurosci. 2015, 7, 141. [Google Scholar] [CrossRef]
- Wu, Y.H.; Cristancho-Lacroix, V.; Fassert, C.; Faucounau, V.; Rotrou, J.; Rigaud, A.S. The Attitudes and Perceptions of Older Adults With Mild Cognitive Impairment Toward an Assistive Robot. J. Appl. Gerontol. Off. J. South. Gerontol. Soc. 2014, 35, 3–17. [Google Scholar] [CrossRef]
- Fischinger, D.; Einramhof, P.; Papoutsakis, K.; Wohlkinger, W.; Mayer, P.; Panek, P.; Hofmann, S.; Koertner, T.; Weiss, A.; Argyros, A.; et al. Hobbit, a care robot supporting independent living at home: First prototype and lessons learned. Robot. Auton. Syst. 2016, 75, 60–78. [Google Scholar] [CrossRef]
- Koceski, S.; Koceska, N. Evaluation of an Assistive Telepresence Robot for Elderly Healthcare. J. Med. Syst. 2016, 40, 121. [Google Scholar] [CrossRef]
- Calderita, L.V.; Vega, A.; Barroso-Ramírez, S.; Bustos, P.; Núñez, P. Designing a Cyber-Physical System for Ambient Assisted Living: A Use-Case Analysis for Social Robot Navigation in Caregiving Centers. Sensors 2020, 20, 4005. [Google Scholar] [CrossRef]
- Meyer, S.; Fricke, C. Autonomous assitive robots for older people at home: An exploratory study: “He is always there for me-and I for him too”. Z. Fur Gerontol. Geriatr. 2020, 53, 620–629. [Google Scholar] [CrossRef]
- Antonello, M.; Carraro, M.; Pierobon, M.; Menegatti, E. Fast and robust detection of fallen people from a mobile robot. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 4159–4166. [Google Scholar] [CrossRef]
- Hanheide, M.; Hebesberger, D.; Krajnik, T. The When, Where, and How: An Adaptive Robotic Info-Terminal for Care Home Residents—A Long-Term Study. In Proceedings of the 2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Vienna, Austria, 6–9 March 2017; pp. 341–349. [Google Scholar]
- Gulzar, H.; Shakeel, M.; Itoyama, K.; Nakadai, K.; Nishida, K.; Amano, H.; Eda, T. FPGA based Power-Efficient Edge Server to Accelerate Speech Interface for Socially Assistive Robotics. In Proceedings of the 2023 IEEE/SICE International Symposium on System Integration (SII), Atlanta, GA, USA, 17–20 January 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Do, H.M.; Pham, M.; Sheng, W.; Yang, D.; Liu, M. RiSH: A robot-integrated smart home for elderly care. Robot. Auton. Syst. 2018, 101, 74–92. [Google Scholar] [CrossRef]
- Mojarad, R.; Chibani, A.; Attal, F.; Khodabandelou, G.; Amirat, Y. A hybrid and context-aware framework for normal and abnormal human behavior recognition. Soft Comput. 2023, 28, 4821–4845. [Google Scholar] [CrossRef]
- Qin, C.; Song, A.; Wei, L.; Zhao, Y. A multimodal domestic service robot interaction system for people with declined abilities to express themselves. Intell. Serv. Robot. 2023, 4, 1–20. [Google Scholar] [CrossRef]
- Fracasso, F.; Buchweitz, L.; Theil, A.; Cesta, A.; Korn, O. Social robots acceptance and marketability in italy and germany: A cross-national study focusing on assisted living for older adults. Int. J. Soc. Robot. 2022, 14, 1463–1480. [Google Scholar] [CrossRef]
- Calatrava-Nicolás, F.M.; Gutiérrez-Maestro, E.; Bautista-Salinas, D.; Ortiz, F.J.; González, J.R.; Vera-Repullo, J.A.; Jiménez-Buendía, M.; Méndez, I.; Ruiz-Esteban, C.; Mozos, O.M. Robotic-based well-being monitoring and coaching system for the elderly in their daily activities. Sensors 2021, 21, 6865. [Google Scholar] [CrossRef]
- Gessl, A.S.; Schlögl, S.; Mevenkamp, N. On the perceptions and acceptance of artificially intelligent robotics and the psychology of the future elderly. Behav. Inf. Technol. 2019, 38, 1068–1087. [Google Scholar] [CrossRef]
- Salatino, C.; Pigini, L.; Kol, M.M.E.V.; Gower, V.; Andrich, R.; Munaro, G.; Rosso, R.; Castellani, A.P.; Farina, E. A Robotic Solution for Assisting People with MCI at Home: Preliminary Tests of the ENRICHME System. Stud. Health Technol. Inform. 2017, 242, 484–491. [Google Scholar]
- Ferland, F.; Tapus, A. The ENRICHME Project: Validation of the Human-Machine Interface. In Proceedings of the MoRobAE—A Workshop on Mobile Robot Assistants for the Elderly as part of ICRA 2019, Toronto, ON, Canada, 20–24 May 2019. [Google Scholar]
- Iglesias, A.; Viciana, R.; Pérez-Lorenzo, J.M.; Ting, K.L.H.; Tudela, A.; Marfil, R.; Qbilat, M.; Hurtado, A.; Jerez, A.; Bandera, J.P. The Town Crier: A Use-Case Design and Implementation for a Socially Assistive Robot in Retirement Homes. Robotics 2024, 13, 61. [Google Scholar] [CrossRef]
- Ting, K.L.H.; Voilmy, D.; Iglesias, A.; Pulido, J.C.; García, J.; Romero-Garcés, A.; Bandera, J.; Mafil, R.; Duenas, A. Integrating the users in the design of a robot for making Comprehensive Geriatric Assessments (CGA) to elderly people in care centers. In Proceedings of the 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2017), Lisbon, Portugal, 28–31 August 2017; pp. 483–488. [Google Scholar]
- Sharkey, A.; Sharkey, N. Granny and the robots: Ethical issues in robot care for the elderly. Ethics Inf. Technol. 2012, 14, 27–40. [Google Scholar] [CrossRef]
- Lee, K.J.; Song, W.K. Innovative Smart Care Space Solutions: Integrating Technology and Universal Design for People with Significant Severe Disabilities. In Digital Health Transformation, Smart Ageing, and Managing Disability; Jongbae, K., Mokhtari, M., Aloulou, H., Abdulrazak, B., Seungbok, L., Eds.; Springer: Cham, Switzerland, 2023; pp. 261–268. [Google Scholar]
- Matarić, M. Socially assistive robotics: Human augmentation versus automation. Sci. Robot. 2017, 2, eaam5410. [Google Scholar] [CrossRef]
- Bandera, A.; Bandera, J.; Bustos, P.; Calderita, L.; Dueñas, A.; Fernández, F.; Fuentetaja, R.; Olaya, A.; García-Polo, F.; González Dorado, J.C.; et al. CLARC: A Robotic Architecture for Comprehensive Geriatric Assessment. In Proceedings of the 17th Workshop of Physical Agents (WAF), Malaga, Spain, 16–17 June 2016. [Google Scholar]
- Suwa, S.; Mayuko Tsujimura, H.I.; Kodate, N.; Ishimaru, M.; Shimamura, A.; Yu, W. Home-care Professionals’ Ethical Perceptions of the Development and Use of Home-care Robots for Older Adults in Japan. Int. J. Hum.-Comput. Interact. 2020, 36, 1295–1303. [Google Scholar] [CrossRef]
Type of Robot | Examples | Relevant Features |
---|---|---|
Humanoid robots | Misty-II | Emotional robots, designed for HRI |
Nao | ||
QTRobot | ||
Pepper | ||
Hyodol | ||
Autonomous Mobile Platforms | Robotnik RB-1 | Objects manipulation |
Kompaï-2 robot | Designed for HRI | |
Morphia | Social navigation | |
TIAGo | Objects manipulation | |
Giraffe-X | Telepresence robot | |
Temi | Social navigation | |
Care-o-Bot | Objects manipulation | |
Customized Platforms | iAirBot | Indoor air quality monitoring |
TurtleBot | Intuitive user–machine interface | |
Robotic wheeled walker | Help people to move in crowed scenarios | |
Rolland | Smart wheel-chair robot |
Study | Year | Implication | Number of Users | Duration |
---|---|---|---|---|
[15] | 2023 | deploy at home, unattended | 25 | 10 weeks |
[72] | 2023 | experiments at nursing institution | 10 | 2 days |
[73] | 2022 | survey | 197 | |
[45] | 2022 | capture data from bracelet | 2 | 47/114 days |
[74] | 2021 | capture data from bracelet | 4 | 15 days |
[66] | 2020 | deploy at home, unattended | 20 | 5 days |
[75] | 2019 | survey | 188 | |
[38] | 2017 | demonstration and survey | 18 | |
[48] | 2016 | experiments at home | 1 | |
[55] | 2015 | experiments in laboratory | 6 | 1 session |
[37] | 2013 | experiments at senior citizen homes | 16 | 2 sessions |
[49] | 2013 | focus group | 32 | 1 session |
[56] | 2012 | capture data in a controlled environment | 20 (young) | 20 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruces, A.; Jerez, A.; Bandera, J.P.; Bandera, A. Socially Assistive Robots in Smart Environments to Attend Elderly People—A Survey. Appl. Sci. 2024, 14, 5287. https://doi.org/10.3390/app14125287
Cruces A, Jerez A, Bandera JP, Bandera A. Socially Assistive Robots in Smart Environments to Attend Elderly People—A Survey. Applied Sciences. 2024; 14(12):5287. https://doi.org/10.3390/app14125287
Chicago/Turabian StyleCruces, Alejandro, Antonio Jerez, Juan Pedro Bandera, and Antonio Bandera. 2024. "Socially Assistive Robots in Smart Environments to Attend Elderly People—A Survey" Applied Sciences 14, no. 12: 5287. https://doi.org/10.3390/app14125287
APA StyleCruces, A., Jerez, A., Bandera, J. P., & Bandera, A. (2024). Socially Assistive Robots in Smart Environments to Attend Elderly People—A Survey. Applied Sciences, 14(12), 5287. https://doi.org/10.3390/app14125287