Study of Diagnostic Accuracy: Fundus Photography vs. Optical Coherence Tomography
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Patients
2.2. Test Procedure
2.2.1. Assessment Step
- -
- Stage I: based on a conventional eye examination and FP.
- -
- Stage II: based on a conventional eye examination, FP, and OCT.
- (a)
- Not evaluable: images are of insufficient quality to categorize the state of the fundus of the eye.
- (b)
- Evaluable: images are of sufficient quality to categorize the state of the eye fundus. The evaluable cases could be healthy or have abnormalities. The eyes with abnormalities were classified in two groups depending on the severity of the alteration, referable or preferential referable (Figure 4).
- Healthy includes cases that have a normal appearance, which rules out any pathological alterations in its characteristics aside from those associated with age.
- Referable includes cases with physiognomic characteristics that lead to an alteration that must be assessed as minor or major, as measured by an ophthalmologist at any point in time. These cases include those that present an abnormal appearance that modifies the retinal morphology and a structure that shows deterioration in the ocular health of the posterior pole.
- Preferential referable includes cases with characteristics that suggest any alteration that must be evaluated by an ophthalmologist within a short period of time.
2.2.2. Statistical Analysis
2.3. Instrumentation
3. Results
3.1. Sample
3.2. Diagnostic Accuracy Values and Interobserver Agreement between Ophthalmologists and Optometrists
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Actual Values | |||
---|---|---|---|
Predicted Values | Altered eyes (gold standard) | Healthy eyes (gold standard) | |
Altered eyes (optometrist) | A = true positives (TP) | B = false positives (FP) | |
Healthy eyes (optometrist) | C = false negative (FN) | D = true negatives (TN) |
References
- World Health Organization. World Report on Vision; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Cesareo, M.; Ciuffoletti, E.; Martucci, A.; Sebastiani, J.; Sorge, R.P.; Lamantea, E.; Garavaglia, B.; Ricci, F.; Cusumano, A.; Nucci, C.; et al. Assessment of the retinal posterior pole in dominant optic atrophy by spectral-domain optical coherence tomography and microperimetry. PLoS ONE 2017, 12, e0174560. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Furtado, J.M.; Lansingh, V.C.; Carter, M.J.; Milanese, M.F.; Peña, B.N.; Ghersi, H.A.; Bote, P.L.; Nano, M.E.; Silva, J.C. Causes of Blindness and Visual Impairment in Latin America. Surv. Ophthalmol. 2012, 57, 149–177. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO); International Agency for Blindness Prevention (IAPB). Vision 2020: The Right to Sight. Action Plan (2006–2011); World Health Organization (WHO): Geneva, Switzerland; International Agency for Blindness Prevention (IAPB): London, UK, 2020. [Google Scholar]
- Marques, A.P.; Ramke, J.; Cairns, J.; Butt, T.; Zhang, J.H.; Muirhead, D.; Jones, I.; Tong, B.A.; Swenor, B.K.; Faal, H.; et al. Global economic productivity losses from vision impairment and blindness. eClinicalMedicine 2021, 35, 100852. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Keeler, C.R. Evolution of the British ophthalmoscope. Doc. Ophthalmol. 1997, 94, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Kniestedt, C.; Stamper, R.L. Visual acuity and its measurement. Ophtalmol. Clin. N. Am. 2003, 16, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Swanson, E.A.; Izatt, J.A.; Hee, M.R.; Huang, D.; Lin, C.P.; Schuman, J.S.; Puliafito, C.A.; Fujimoto, J.G. In vivo retinal imaging by optical coherence tomography. Opt. Lett. 1993, 18, 1864–1866. [Google Scholar] [CrossRef] [PubMed]
- De Fauw, J.; Ledsam, J.R.; Romera-Paredes, B.; Nikolov, S.; Tomasev, N.; Blackwell, S.; Askham, H.; Glorot, X.; O’donoghue, B.; Visentin, D.; et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 2018, 24, 1342–1350. [Google Scholar] [CrossRef]
- Ripandelli, G.; Coppé, A.M.; Capaldo, A.; Stirpe, M. Optica Coherence Tomography. Semin. Ophthalmol. 1998, 13, 199–202. [Google Scholar] [CrossRef]
- Watanabe, T.; Hiratsuka, Y.; Kita, Y.; Tamura, H.; Kawasaki, R.; Yokoyama, T.; Kawashima, M.; Nakano, T.; Yamada, M. Combining Optical Coherence Tomography and Fundus Photography to Improve Glaucoma Screening. Diagnostics 2022, 12, 1100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Midena, E.; Frizziero, L.; Torresin, T.; Todaro, P.B.; Miglionico, G.; Pilotto, E. Optical coherence tomography and color fundus photography in the screening of age-related macular degeneration: A comparative, population-based study. PLoS ONE 2020, 15, e0237352. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marques, A.P.; Ramke, J.; Cairns, J.; Butt, T.; Zhang, J.H.; Jones, I.; Jovic, M.; Nandakumar, A.; Faal, H.; Taylor, H.; et al. La economía de la discapacidad visual y sus principales causas: Una revisión sistemática. eClinicalMedicine 2022, 46, 101354. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Web Portal of the National Institute of Statistics of Spain (INE). Available online: https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177095&menu=ultiDatos&idp=1254735572981 (accessed on 9 January 2024).
- Li, S.; Ye, E.; Huang, J.; Wang, J.; Zhao, Y.; Niu, D.; Yue, S.; Huang, X.; Liu, J.; Hou, X.; et al. Global, regional, and national years lived with disability due to blindness and vision loss from 1990 to 2019: Findings from the Global Burden of Disease Study 2019. Front. Public Health 2022, 10, 1033495. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, C.; Li, S.; Ye, L.; Chen, C.; Liu, S.; Yang, H.; Zhuang, P.; Liu, Z.; Jiang, H.; Han, J.; et al. Visual impairment and blindness caused by retinal diseases: A nationwide register-based study. J. Glob. Health 2023, 13, 04126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Novo-García, C.; de Dios-Perrino, S.; Lafuente-López, C.; Romero-Arancón, C.; Herrero-Rubio, F. Retinography and tonometry in primary care: Techniques incorporated into routine nursing practice. Clin. Nurs. 2011, 21, 19–24. [Google Scholar]
- Bullen, J.A. Studies of Medical Tests Design and Analytical considerations. Chest 2020, 158, S103–S112. [Google Scholar] [CrossRef] [PubMed]
- Sounderajah, V.; Ashrafian, H.; Golub, R.M.; Shetty, S.; De Fauw, J.; Hooft, L.; Moons, K.; Collins, G.; Moher, D.; Bossuyt, P.M.; et al. Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: The STARD-AI protocol. BMJ Open 2021, 11, e047709. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; A Gatsonis, C.; Glasziou, P.P.; Irwig, L.M.; Lijmer, J.G.; Moher, D.; Rennie, D.; de Vet, H.C.W. Towards complete and accurate reporting of studies of diagnostic accuracy: The STARD initiative. BMJ 2003, 326, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.; Boring, J.R., III. Sensitivity, Specificity, and Predictive Value. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990; Chapter 6. [Google Scholar] [PubMed]
- Parikh, R.; Mathai, A.; Parikh, S.; Sekhar, G.C.; Thomas, R. Understanding and using sensitivity, specificity and predictive values. Indian J. Ophthalmol. 2008, 56, 45–50. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frérot, M.; Lefebvre, A.; Aho, S.; Callier, P.; Astruc, K.; Glélé, L.S.A. What is epidemiology? Changing definitions of epidemiology 1978–2017. PLoS ONE 2018, 13, e0208442. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Umemneku Chikere, C.M.; Wilson, K.; Graziadio, S.; Vale, L.; Allen, A.J. Diagnostic test evaluation methodology: A systematic review of methods employed to evaluate diagnostic tests in the absence of gold standard—An update. PLoS ONE 2019, 14, e0223832. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Franco, F.; Di Napoli, A. An Introduction to the Evaluation of a Diagnostic Test: Sensitivity, Specificity, Predictive Value. G. Tec. Nefrol. Dial. 2016, 28, 53–55. [Google Scholar] [CrossRef]
- Sørensen, H.T. Clinical Epidemiology—A fast new way to publish important research. Clin Epidemiol. 2009, 1, 17–18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Polnaszek, B.B.; Gilmore-Bykovskyi, A.R.; Hovanes, M.; Roiland, R.; Ferguson, P.M.; Brown, R.; Kind, A.J. Overcoming the Challenges of Unstructured Data in Multisite, Electronic Medical Record-based Abstraction. Med. Care 2016, 54, e65–e72. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cerdal, L.J.; Villarroel del, P.L. Evaluation of inter-observer concordance in paediatric research: Kappa co-efficient. Rev. Chil. Pediatr. 2008, 79, 54–58. [Google Scholar] [CrossRef]
- Eisenberg, D.M.; Kaptchuk, T.J.; Post, D.E.; Hrbek, A.L.; O’connor, B.B.; Osypiuk, K.; Wayne, P.M.; Buring, J.E.; Levy, D.B. Establishing an Integrative Medicine Program Within an Academic Health Center: Essential Considerations. Acad. Med. 2016, 91, 1223–1230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muchuchuti, S.; Viriri, S. Retinal Disease Detection Using Deep Learning Techniques: A Comprehensive Review. J. Imaging 2023, 9, 84. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ørskov, M.; Vorum, H.; Larsen, T.B.; Skjøth, F. Evaluation of Risk Scores as Predictive Tools for Stroke in Patients with Retinal Artery Occlusion: A Danish Nationwide Cohort Study. TH Open 2022, 6, e429–e436. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abraira, V.; Pérez de Vargas, A. Generalization of the kappa coefficient for ordinal categorical data, multiple observers and incomplete designs. Qüestiió 1999, 23, 561–571. [Google Scholar]
- Feinstein, A.R.; Cicchetti, D.V. High agreement but low kappa: I. The problems of two paradoxes. J. Clin. Epidemiol. 1990, 43, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Ehrlinger, L.; Wöß, W. A Survey of Data Quality Measurement and Monitoring Tools. Front. Big Data 2022, 5, 850611. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- List Publication_jun2023.pdf. Available online: www.sanidad.gob.es (accessed on 2 February 2024).
- García, L.C.R.; Villarreal, A.G.d.C.; Rivas, J.P.; González, J.J.M.; Álvarez, G.G.; Salazar, M.T.A. Implementation of diabetic retinopathy screening using digital retinography in primary care. Prim. Care 2013, 45, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Heussen, F.M.; Keane, P.A.; Sadda, S.R.; Walsh, A.C. The retinal disease screening study: Retrospective comparison of nonmydriatic fundus photography and three-dimensional optical coherence tomography for detection of retinal irregularities. Investig. Opthalmol. Vis. Sci. 2013, 54, 5694–5700. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Farsiu, S.; Khanifar, A.A.; Bearelly, S.; Smith, R.T.; Izatt, J.A.; Toth, C.A. Quantitative comparison of drusen segmented on SD-OCT versus drusen delineated on color fundus photographs. Investig. Opthalmol. Vis. Sci. 2010, 51, 4875–4883. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hao, Y.; Liu, S.; Yu, Z. Value of Combining Optical Coherence Tomography with Fundus Photography in Screening Retinopathy in Patients with High Myopia. J. Healthc. Eng. 2022, 2022, 6556867. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berkowitz, S.T.; Finn, A.P.; Parikh, R.; Kuriyan, A.E.; Patel, S. Ophthalmology workforce projections in the United States, 2020 to 2035. Ophthalmology 2024, 131, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Karri, S.P.K.; Chakraborty, D.; Chatterjee, J. Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration. Biomed. Opt. Express 2017, 8, 579–592. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karmel, M. Retinal Imaging: Choosing the Right Method. EyeNet Magazine, July 2014, 29–31. Available online: https://www.aao.org/eyenet/article/retinal-imaging-choosing-right-method (accessed on 28 January 2024).
Assessment | FP | FP + OCT | |
---|---|---|---|
Evaluable | Healthy | 817 (61.2%) | 963 (72.2%) |
Referable | 133 (10.0%) | 268 (20.1%) | |
Preferential Referable | 30 (2.3%) | 70 (5.2%) | |
Not Evaluable | 354 (26.5%) | 33 (2.5%) |
Positive | Negative | |
---|---|---|
Positive | 561 | 250 |
Negative | 11 | 152 |
Positive | Negative | |
---|---|---|
Positive | 681 | 272 |
Negative | 31 | 303 |
Variable (CI 95%) | FP | OCT + FP |
---|---|---|
Accuracy | 0.73 (0.70–0.76) | 0.76 (0.74–0.79) |
Sensitivity % | 98 (0.97–0.99) | 96 (0.94–0.97) |
Specificity % | 38 (0.33–0.43) | 53 (0.49–0.57) |
PPV | 0.69 (0.66–0.72) | 0.71 (0.69–0.74) |
NPV | 0.93 (0.88–0.97) | 0.91 (0.87–0.94) |
Likelihood (+) | 1.58 (1.46–1.70) | 2.02 (1.85–2.20) |
Likelihood (−) | 0.05 (0.03–0.09) | 0.08 (0.06–0.12) |
Kappa coefficient | 0.39 (0.34–0.45) | 0.50 (0.46–0.55) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moriche Carretero, M.; Sánchez Parejo, A.d.l.R.; Martínez Pérez, C.; Revilla Amores, R.; Pérez Gómez, Á.; Biarnés Pérez, M. Study of Diagnostic Accuracy: Fundus Photography vs. Optical Coherence Tomography. Appl. Sci. 2024, 14, 5314. https://doi.org/10.3390/app14125314
Moriche Carretero M, Sánchez Parejo AdlR, Martínez Pérez C, Revilla Amores R, Pérez Gómez Á, Biarnés Pérez M. Study of Diagnostic Accuracy: Fundus Photography vs. Optical Coherence Tomography. Applied Sciences. 2024; 14(12):5314. https://doi.org/10.3390/app14125314
Chicago/Turabian StyleMoriche Carretero, Manuel, Ana de los Reyes Sánchez Parejo, Clara Martínez Pérez, Remedios Revilla Amores, Ángel Pérez Gómez, and Marc Biarnés Pérez. 2024. "Study of Diagnostic Accuracy: Fundus Photography vs. Optical Coherence Tomography" Applied Sciences 14, no. 12: 5314. https://doi.org/10.3390/app14125314
APA StyleMoriche Carretero, M., Sánchez Parejo, A. d. l. R., Martínez Pérez, C., Revilla Amores, R., Pérez Gómez, Á., & Biarnés Pérez, M. (2024). Study of Diagnostic Accuracy: Fundus Photography vs. Optical Coherence Tomography. Applied Sciences, 14(12), 5314. https://doi.org/10.3390/app14125314