Spacecraft and Asteroid Thermal Image Generation for Proximity Navigation and Detection Scenarios
Abstract
:1. Introduction
- Thermal image datasets can be created to train and test navigation algorithms in all mission phases.
- Test software and hardware in the loop electronics, such as image processing boards.
- Simulate the scientific output of the mission.
2. Thermal Modeling
2.1. Finite Volume Thermal Model
2.2. Radiation Modeling
2.3. Thermal Camera Model
2.4. Radiometry
2.4.1. DN–Temperature Sensor Function
2.4.2. DN-Heat Flux Sensor Function
2.5. Detection
2.6. Method Implementation
3. Results
3.1. Spacecraft Case
3.1.1. Geometry and Materials
3.1.2. Results
3.1.3. Spacecraft Case Conclusions
3.2. Asteroid Case
3.2.1. Geometry and Materials
3.2.2. Results
3.2.3. Asteroid Case Conclusions
4. Applications
4.1. Image Fusion
4.2. Detection
4.3. Earth Background
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LPA | Lumped Parameter Approach |
TIR | Thermal Infrared |
FVM | Finite Volume Method |
CFD | Computational Fluid Dynamics |
ECSS | European Cooperation for Space Standardization |
HERMES | High Energy Rapid Modular Ensemble of Satellites |
GRB | Gamma Ray Burst |
TP | Technological Pathfinder |
SP | Scientific Pathfinder |
INAF | Istituto Nazionale di Astrofisica |
SM | Service Module |
PL | Payload |
SDD | Silicon Drift Detectors |
GMM | Geometrical Mathematical Model |
PCB | Printed Circuit Board |
GAGG | Gadolinium Aluminum Gallium Garnet |
CAD | Computer-Aided Design |
DM | Demonstration Model |
FM | Flight Model |
FVTM | Finite Volume Thermal Model |
TBT | Thermal Balance Test |
TVAC | Thermal Vacuum Chamber |
BEE | Back End Electronics |
FEE | Front End Electronics |
PSU | Power Supply Unit |
PDHU | Payload Data Handling Unit |
TC | Thermocouple |
FDIR | Fault Detection and Recovery |
BC | Boundary Condition |
ADU | Analog Digital Unit |
DN | Digital Number |
FOV | Field Of View |
Ph.D. | Philosophiae Doctor |
LWIR | Long Wavelength Infrared |
VIS | Visible |
References
- Okada, T. Thermography of Asteroid and Future Applications in Space Missions. Appl. Sci. 2020, 10, 2158. [Google Scholar] [CrossRef]
- Civardi, G.L.; Bechini, M.; Quirino, M.; Colombo, A.; Piccinin, M.; Lavagna, M. Generation of fused visible and thermal-infrared images for uncooperative spacecraft proximity navigation. Adv. Space Res. 2023, 73, 5501–5520. [Google Scholar] [CrossRef]
- Okada, T.; Fukuhara, T.; Tanaka, S.; Taguchi, M.; Arai, T.; Senshu, H.; Demura, H.; Ogawa, Y.; Kouyama, T.; Sakatani, N.; et al. Earth and moon observations by thermal infrared imager on Hayabusa2 and the application to detectability of asteroid 162173 Ryugu. Planet. Space Sci. 2018, 158, 46–52. [Google Scholar] [CrossRef]
- Yilmaz, O.B.; Aouf, N.; Majewski, L.; Sánchez-Gestido, M.; Ortega, G. Using infrared based relative navigation for active debris removal. In Proceedings of the 10th International ESA Conference on Guidance, Navigation and Control Systems, Salzburg, Austria, 29 May–2 June 2017. [Google Scholar]
- Jiang, J.; Chen, X.; Dai, W.; Gao, Z.; Zhang, Y. Thermal-Inertial SLAM for the Environments with Challenging Illumination. IEEE Robot. Autom. Lett. 2022, 7, 8767–8774. [Google Scholar] [CrossRef]
- Tao, J.; Cao, Y.; Ding, M.; Zhang, Z. Visible and Infrared Image Fusion-Based Image Quality Enhancement with Applications to Space Debris On-Orbit Surveillance. Int. J. Aerosp. Eng. 2022, 2022, 6300437. [Google Scholar] [CrossRef]
- Piccinin, M. Spacecraft Relative Navigation with Electro-Optical Sensors around Uncooperative Targets. Ph.D. Thesis, Politecnico di Milano, Milan, Italy, 2022. Available online: https://hdl.handle.net/10589/196597 (accessed on 21 March 2024).
- Quirino, M. Novel Thermal Images Generator for Autonomous Space Proximity operations. Ph.D. Thesis, Politecnico di Milano, Milan, Italy, 2023. Available online: https://hdl.handle.net/10589/213812 (accessed on 21 March 2024).
- Quirino, M.; Marocco, L.; Guilizzoni, M.; Lavagna, M. High Energy Rapid Modular Ensemble of Satellites Payload Thermal Analysis Using OpenFOAM. J. Thermophys. Heat Transf. 2021, 35, 715–725. [Google Scholar] [CrossRef]
- Bechini, M.; Civardi, G.L.; Quirino, M.; Colombo, A.; Lavagna, M. Robust Monocular Pose Initialization via Visual and Thermal Image Fusion. In Proceedings of the 73rd International Astronautical Congress (IAC), Paris, France, 18–22 September 2022. [Google Scholar]
- Colombo, A.; Civardi, G.L.; Bechini, M.; Quirino, M.; Lavagna, M. VIS-TIR cameras data fusion to enhance relative navigation during In Orbit Servicing operations. In Proceedings of the 73rd International Astronautical Congress (IAC), Paris, France, 18–22 September 2022. [Google Scholar]
- The Ultimate Infrared Handbook for R&D Professionals. 2023. Available online: https://www.flir.com/discover/rd-science/the-ultimate-infrared-handbook-for-rnd-professionals/ (accessed on 28 May 2023).
- Okada, T.; Fukuhara, T.; Tanaka, S.; Taguchi, M.; Imamura, T.; Arai, T.; Senshu, H.; Ogawa, Y.; Demura, H.; Kitazato, K.; et al. Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2. Space Sci. Rev. 2017, 208, 255–286. [Google Scholar] [CrossRef]
- Arai, T.; Nakamura, T.; Tanaka, S.; Demura, H.; Ogawa, Y.; Sakatani, N.; Horikawa, Y.; Senshu, H.; Fukuhara, T.; Okada, T. Thermal Imaging Performance of TIR Onboard the Hayabusa2 Spacecraft. Space Sci. Rev. 2017, 208, 239–254. [Google Scholar] [CrossRef]
- Brageot, E.; Groussin, O.; Lamy, P.; Reynaud, J.L. Experimental study of an uncooled microbolometer array for thermal mapping and spectroscopy of asteroids. Exp. Astron. 2014, 38, 381–400. [Google Scholar] [CrossRef]
- Lienhard, J.H., IV; Lienhard, J.H., V. A Heat Transfer Textbook, 5th ed.; Phlogiston Press: Cambridge, MA, USA, 2020; Available online: https://ahtt.mit.edu/ (accessed on 28 May 2023).
- Bianchi, L. Synthetic Thermal Image Generation towards Enhanced Close-Proximity Navigation in Space. Master’s Thesis, Politecnico di Milano, Milan, Italy, 2023. Available online: https://hdl.handle.net/10589/214838 (accessed on 21 March 2024).
- Bechini, M.; Lavagna, M.; Lunghi, P. Dataset generation and validation for spacecraft pose estimation via monocular images processing. Acta Astronaut. 2023, 204, 358–369. [Google Scholar] [CrossRef]
- Watanabe, S.; Hirabayashi, M.; Hirata, N.; Hirata, N.; Noguchi, R.; Shimaki, Y.; Ikeda, H.; Tatsumi, E.; Yoshikawa, M.; Kikuchi, S.; et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top–shaped rubble pile. Science 2019, 364, 268–272. [Google Scholar] [CrossRef] [PubMed]
- MacLennan, E.M.; Emery, J.P. Thermophysical Investigation of Asteroid Surfaces. II. Factors Influencing Grain Size. Planet. Sci. J. 2022, 3, 47. [Google Scholar] [CrossRef]
Part Name | Emissivity |
---|---|
Antennas | 0.86 |
Patch antennas | 0.90 |
Coil | 0.86 |
Support coil | 0.86 |
Panels | 0.40 |
Solar cell | 0.60 |
N Faces | Face Size [m] | Min [K] | Max [K] | Note |
---|---|---|---|---|
3.7M | 0.4 | −340 | 1280 | Oscillation |
4.3M | 0.36 | 77 | 800 | Oscillation |
5.7M | 0.33 | 40 | 418 | Stable |
6.4M | 0.31 | 40 | 416 | Stable |
8.9M | 0.26 | 42 | 419 | Stable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quirino, M.; Lavagna, M.R. Spacecraft and Asteroid Thermal Image Generation for Proximity Navigation and Detection Scenarios. Appl. Sci. 2024, 14, 5377. https://doi.org/10.3390/app14135377
Quirino M, Lavagna MR. Spacecraft and Asteroid Thermal Image Generation for Proximity Navigation and Detection Scenarios. Applied Sciences. 2024; 14(13):5377. https://doi.org/10.3390/app14135377
Chicago/Turabian StyleQuirino, Matteo, and Michèle Roberta Lavagna. 2024. "Spacecraft and Asteroid Thermal Image Generation for Proximity Navigation and Detection Scenarios" Applied Sciences 14, no. 13: 5377. https://doi.org/10.3390/app14135377
APA StyleQuirino, M., & Lavagna, M. R. (2024). Spacecraft and Asteroid Thermal Image Generation for Proximity Navigation and Detection Scenarios. Applied Sciences, 14(13), 5377. https://doi.org/10.3390/app14135377