Prediction and Optimization of Open-Pit Mine Blasting Based on Intelligent Algorithms
Abstract
:1. Introduction
2. Project Overview
3. Data Collection
4. Methods
4.1. Least Squares Support Vector Machine
4.2. Optimization of LSSVM by Genetic Algorithm
4.3. Multi-Objective Particle Swarm Optimization
5. Results and Discussion
5.1. Modeling for Prediction
5.1.1. GA-LSSVM Model
5.1.2. Comparative Models
5.1.3. MOPSO Model
5.2. Performance Evaluation of Prediction Models
5.3. Blasting Parameters Optimization
6. Field Verification
7. Conclusions
- The GA-LSSVM model, compared with the RIME-LSSVM, PSO-LSSVM, unoptimized LSSVM, and Kuz–Ram empirical model, exhibited more accurate predictive performance in predicting ore blasting fragmentation. It had smaller error metrics and a larger fitting coefficient (RMSE = 1.947, MAE = 1.688, r = 0.962), significantly outperforming other prediction models;
- By using MOPSO to solve the two-objective optimization model of blasting fragmentation and blasting cost, the blasting parameters were optimized as follows: burden (B) = 4.3 m, spacing (S) = 5.5 m, specific charge (q) = 0.51 kg/m3, and subdrilling (H0) = 2.0 m. The reliability of the scheme was verified through on-site blasting tests, which improved the blasting effect of the mine while reducing the overall cost;
- There are many factors influencing blasting effects. To effectively carry out blasting prediction and optimization, in addition to increasing the necessary factors, the importance and relationships between different influencing factors should be considered. Furthermore, obtaining more sample data and finding better intelligent models are crucial for obtaining accurate data.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ke, B.; Pan, R.; Zhang, J.; Wang, W.; Hu, Y.; Lei, G.; Chi, X.; Ren, G.; You, Y. Parameter Optimization and Fragmentation Prediction of Fan-Shaped Deep Hole Blasting in Sanxin Gold and Copper Mine. Minerals 2022, 12, 788. [Google Scholar] [CrossRef]
- Song, J.W.; Xuan, B.Q.; Qin, T.; Zhang, Y.T.; Wang, X.S. Prediction of rock fragmentation based on IGWO-CatBoost model. Blasting Equip. 2024, 53, 56–64. [Google Scholar]
- Yilmaz, O. Rock factor prediction in the Kuz–Ram model and burden estimation by mean fragment size. Geomech. Energy Environ. 2023, 33, 100415. [Google Scholar] [CrossRef]
- Gheibie, S.; Aghababaei, H.; Hoseinie, S.H.; Pourrahimian, Y. Modified Kuz—Ram fragmentation model and its use at the Sungun Copper Mine. Int. J. Rock Mech. Min. Sci. 2009, 46, 967–973. [Google Scholar] [CrossRef]
- Ma, J.B.; Wang, Z.Q.; Yang, E. Study on accuracy assessment of mine blasting based on the modified KUZ-RAM model. China Saf. Sci. J. 2023, 19, 51–56. [Google Scholar]
- Murmu, S.; Maheshwari, P.; Verma, H.K. Empirical and probabilistic analysis of blast-induced ground vibrations. Int. J. Rock Mech. Min. Sci. 2018, 103, 267–274. [Google Scholar] [CrossRef]
- Matidza, M.I.; Zhang, J.; Huang, G.; Mwangi, A.D. Assessment of Blast-Induced Ground Vibration at Jinduicheng Molybdenum Open Pit Mine. Nat. Resour. Res. 2020, 29, 831–841. [Google Scholar] [CrossRef]
- Kuzu, C.; Fisne, A.; Ercelebi, S.G. Operational and geological parameters in assessing blast-induced airblast-overpressure in quarries. Appl. Acoust. 2009, 70, 404–411. [Google Scholar] [CrossRef]
- Ghasemi, E.; Sari, M.; Ataei, M. Development of an empirical model for predicting the effects of controllable blasting parameters on flyrock distance in surface mines. Int. J. Rock Mech. Min. Sci. 2012, 52, 163–170. [Google Scholar] [CrossRef]
- Lawal, A.I.; Aladejare, A.E.; Onifade, M.; Kwon, S. Development of soft computing based mathematical models for predicting mean fragment size coupled with their Monte Carlo simulation estimations. Arab. J. Geosci. 2022, 15, 282. [Google Scholar] [CrossRef]
- Wei, C.Q.; Li, A.; Cao, L.Z. Blasting fragmentation prediction based on support vector machine model. J. Appl. Funct. Anal. 2015, 17, 415–422. [Google Scholar]
- Shi, X.Z.; Zhou, J.; Wu, B.B.; Huang, D.; Wei, W. Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction. Trans. Nonferr. Met. Soc. 2012, 22, 432–441. [Google Scholar] [CrossRef]
- Duan, B.F.; Fei, H.L. Application of neural network model in predicting fragmentation of bench blasting. Eng. Blast. 1999, 4, 25–29. [Google Scholar]
- Dimitraki, L.; Christaras, B.; Marinos, V.; Vlahavas, I.; Arampelos, N. Predicting the average size of blasted rocks in aggregate quarries using artificial neural networks. Bull. Eng. Geol. Environ. 2019, 78, 2717–2729. [Google Scholar] [CrossRef]
- Lee, S.J.; Choi, S.O. Mean fragmentation size prediction in an open-pit mine using machine learning techniques and the Kuz-Ram model. Geomech. Eng. 2023, 34, 547–559. [Google Scholar]
- Chandrahas, N.S.; Choudhary, B.S.; Teja, M.V.; Venkataramayya, M.S.; Prasad, N.S.R.K. XG Boost Algorithm to Simultaneous Prediction of Rock Fragmentation and Induced Ground Vibration Using Unique Blast Data. Appl. Sci. 2022, 12, 5269. [Google Scholar] [CrossRef]
- Xue, X.H. Neuro-fuzzy based approach for prediction of blast-induced ground vibration. Appl. Acoust. 2019, 152, 73–78. [Google Scholar] [CrossRef]
- Faradonbeh, R.S.; Monjezi, M. Prediction and minimization of blast-induced ground vibration using two robust meta-heuristic algorithms. Eng. Comput. 2017, 33, 835–851. [Google Scholar] [CrossRef]
- Guan, F.L.; Wu, F.M.; Luo, Z. Prediction of rock fragmentation based on grey relational analysis and GA-BP model. Blasting Equip. 2021, 50, 40–47+53. [Google Scholar]
- Fang, Q.; Nguyen, H.; Bui, X.-N.; Nguyen-Thoi, T.; Zhou, J. Modeling of rock fragmentation by firefly optimization algorithm and boosted generalized additive model. Neural Comput. Appl. 2021, 33, 3503–3519. [Google Scholar] [CrossRef]
- Ye, H.W.; Hu, J.J.; Lei, T.; Li, N.; Wang, Q.Z. Prediction of rock fragmentation using LOO-XGboost model. Blasting 2022, 39, 16–21. [Google Scholar]
- Yari, M.; He, B.; Armaghani, D.J.; Abbasi, P.; Mohamad, E.T. A novel ensemble machine learning model to predict mine blasting-induced rock fragmentation. Bull. Eng. Geol. Environ. 2023, 82, 187. [Google Scholar] [CrossRef]
- Zheng, H.W.; Liu, J.; Zhuang, R.; Zhao, F.; Zhen, M.; Wang, Y.; Liu, Z. Enhancing the performance of LSSVM model in predicting rock fragmentation size via optimization algorithms. KSCE J. Civ. Eng. 2023, 27, 3765–3777. [Google Scholar] [CrossRef]
- Ding, X.; Bahadori, M.; Hasanipanah, M.; Abdullah, R.A. Predicting the rock fragmentation in surface mines using optimized radial basis function and cascaded forward neural network models. Geomech. Eng. 2023, 33, 567–581. [Google Scholar]
- Figueiredo, J.; Torres, V.; Cruz, R.; Moreira, D. Blasting Fragmentation Study Using 3D Image Analysis of a Hard Rock Mine. Appl. Sci. 2023, 13, 7090. [Google Scholar] [CrossRef]
- Hosseini, S.; Monjezi, M.; Bakhtavar, E. Minimization of blast-induced dust emission using gene-expression programming and grasshopper optimization algorithm: A smart mining solution based on blasting plan optimization. Clean Techn. Environ. Policy 2022, 24, 2313–2328. [Google Scholar] [CrossRef]
- Arthur, C.K.; Kaunda, R.B. A hybrid paretosearch algorithm and goal attainment method for maximizing production and reducing blast-induced ground vibration: A blast design parameter selection approach. Min. Technol. 2020, 129, 151–158. [Google Scholar] [CrossRef]
- Sadrossadat, E.; Basarir, H.; Luo, G.; Karrech, A.; Durham, R.; Fourie, A.; Elchalakani, M. Multi-objective mixture design of cemented paste backfill using particle swarm optimisation algorithm. Miner. Eng. 2020, 153, 106385. [Google Scholar] [CrossRef]
- Bakhtavar, E.; Abdollahisharif, J.; Ahmadi, M. Reduction of the undesirable bench-blasting consequences with emphasis on ground vibration using a developed multi-objective stochastic programming. Int. J. Min. Reclam. Environ. 2017, 315, 333–345. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, P.; Li, P. Prediction and Optimization of Blasting-Induced Ground Vibration in Open-Pit Mines Using Intelligent Algorithms. Appl. Sci. 2023, 13, 7166. [Google Scholar] [CrossRef]
- Syah, R.; Ahmadian, N.; Elveny, M.; Alizadeh, S.M.; Hosseini, M.; Khan, A. Implementation of artificial intelligence and support vector machine learning to estimate the drilling fluid density in high-pressure high-temperature wells. Energy Rep. 2021, 7, 4106–4113. [Google Scholar] [CrossRef]
- Chong, J.; Tjurin, P.; Niemelä, M.; Jämsä, T.; Farrahi, V. Machine-learning models for activity class prediction: A comparative study of feature selection and classification algorithms. Gait Posture 2021, 89, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Loosli, G.; Canu, S.; Ong, C.S. Learning SVM in Kreĭn Spaces. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1204–1216. [Google Scholar] [CrossRef] [PubMed]
- Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural. Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Li, N.N.; Xue, W. Improvement of PSO optimized LSSVM for liquid rocket engine fault detection. Comput. Simul. 2020, 37, 49–54. [Google Scholar]
- Yue, Z.W.; Wu, Y.X.; Wei, Z.; Wang, G.; Wang, Y.; Li, X.; Zhou, Y.S. Prediction of blasting vibration effects in open-pit mines based on PSO-LSSVM model. Eng. Blast. 2020, 26, 1–8. [Google Scholar]
- Komadja, G.C.; Rana, A.; Glodji, L.A.; Anye, V.; Jadaun, G.; Onwualu, P.A.; Sawmliana, C. Assessing ground vibration caused by rock blasting in surface mines using machine-learning approaches: A comparison of CART, SVR and MARS. Sustainability 2022, 14, 11060. [Google Scholar] [CrossRef]
- Nguyen, H.; Choi, Y.; Bui, X.-N.; Nguyen-Thoi, T. Predicting blast-induced ground vibration in open-pit mines using vibration sensors and support vector regression-based optimization algorithms. Sensors 2020, 20, 132. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Ding, R. Automatic generation system of path planning programs based on collective intelligence achievements. J. Intell. Sci. Technol. 2022, 4, 255–263. [Google Scholar]
- Xie, M.; Huang, T.L.; Zhu, X. A Novel Routing Algorithm for Energy-Efficient in Wireless Sensor Networks. In Proceedings of the Third International Conference on Genetic & Evolutionary Computing, Guilin, China, 2 February 2010. [Google Scholar]
- Mohd Yamin, M.N.; Ab. Aziz, K.; Siang, T.G.; Ab. Aziz, N.A. Particle Swarm Optimisation for Emotion Recognition Systems: A Decade Review of the Literature. Appl. Sci. 2023, 13, 7054. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Marto, A.; Noorani, S.A.; Hajihassani, M.; Mohamad, E.T. Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arab. J. Geosci. 2014, 7, 5383–5396. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 256–279. [Google Scholar] [CrossRef]
- Leng, Z.; Fan, Y.; Gao, Q.; Hu, Y. Evaluation and optimization of blasting approaches to reducing oversize boulders and toes in open-pit mine. Int. J. Min. Sci. Technol. 2020, 30, 373–380. [Google Scholar] [CrossRef]
- Su, H.; Zhao, D.; Heidari, A.A.; Liu, L.; Zhang, X.; Mafarja, M.; Chen, H. “RIME: A Physics-Based Optimization. Neurocomputing 2023, 532, 183–214. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, P.D.; Zhang, C. Study on optimization of blasting parameters based on MOPSO from the perspective of energy consumption control. Eng. Blast. 2022, 28, 9–16+51. [Google Scholar]
- Zhu, Z.H.; Yin, Y.J.; Chen, M.; Wei, D.; Lu, W.B.; Liu, J.C. Study on prediction of blasting fragmentation in Changjiushanshan limestone mine. Blasting 2021, 38, 17–23+31. [Google Scholar]
- Ghorbani, N.; Kasaeian, A.; Toopshekan, A.; Bahrami, L.; Maghami, A. Optimizing a Hybrid Wind-PV-Battery System Using GA-PSO and MOPSO for Reducing Cost and Increasing Reliability. Energy 2018, 154, 581–591. [Google Scholar] [CrossRef]
No. | S (m) | B (m) | q (kg/m3) | H0 (m) | T | P50 (cm) |
---|---|---|---|---|---|---|
1 | 5.8 | 4.3 | 0.45 | 0.8 | 1 | 35.77 |
2 | 5.8 | 4.3 | 0.49 | 1.2 | 1 | 31.43 |
3 | 5.8 | 4.3 | 0.49 | 2.2 | 1 | 31.80 |
4 | 5.8 | 4.3 | 0.47 | 2.0 | 1 | 32.43 |
5 | 5.8 | 4.8 | 0.41 | 1.5 | 1 | 39.74 |
6 | 5.8 | 4.8 | 0.38 | 2.0 | 2 | 45.05 |
7 | 5.8 | 4.3 | 0.46 | 0.5 | 1 | 34.95 |
8 | 5.8 | 4.3 | 0.48 | 2.5 | 1 | 31.74 |
9 | 5.8 | 4.3 | 0.36 | 1.5 | 2 | 48.06 |
10 | 5.8 | 4.8 | 0.33 | 1.5 | 1 | 53.07 |
11 | 5.5 | 4.3 | 0.48 | 1.5 | 1 | 32.14 |
12 | 5.8 | 4.3 | 0.51 | 1.5 | 1 | 29.82 |
13 | 4.3 | 5.5 | 0.36 | 1.5 | 2 | 44.36 |
14 | 5.5 | 4.5 | 0.35 | 0.5 | 1 | 45.8 |
15 | 5.8 | 4.3 | 0.40 | 2.5 | 1 | 40.63 |
16 | 5.8 | 4.8 | 0.32 | 0.5 | 1 | 55.78 |
17 | 5.5 | 4.3 | 0.40 | 2.5 | 1 | 39.87 |
18 | 5.8 | 4.3 | 0.42 | 1.0 | 1 | 39.12 |
19 | 5.5 | 4.3 | 0.40 | 1.0 | 2 | 40.17 |
20 | 5.8 | 4.5 | 0.39 | 1.5 | 2 | 44.76 |
21 | 5.8 | 4.5 | 0.37 | 1.5 | 1 | 50.55 |
22 | 5.5 | 4.3 | 0.42 | 20 | 2 | 38.84 |
23 | 5.5 | 4.5 | 0.39 | 2.0 | 1 | 44.13 |
24 | 5.5 | 4.3 | 0.45 | 2.0 | 1 | 35.05 |
25 | 5.8 | 4.3 | 0.42 | 1.5 | 1 | 39.50 |
26 | 5.8 | 4.3 | 0.37 | 1.5 | 1 | 48.63 |
27 | 5.8 | 4.3 | 0.41 | 1.5 | 1 | 40.24 |
28 | 5.5 | 4.3 | 0.49 | 2.0 | 2 | 30.87 |
29 | 5.5 | 4.3 | 0.47 | 1.5 | 1 | 49.56 |
30 | 5.8 | 4.5 | 0.37 | 2.0 | 1 | 51.60 |
31 | 5.5 | 4.5 | 0.36 | 1.5 | 1 | 48.90 |
32 | 5.5 | 4.3 | 0.39 | 1.5 | 1 | 43.16 |
33 | 5.5 | 4.5 | 0.40 | 1.5 | 1 | 39.66 |
34 | 5.5 | 4.3 | 0.39 | 1.5 | 2 | 43.37 |
35 | 5.8 | 4.8 | 0.39 | 1.5 | 1 | 46.47 |
36 | 5.0 | 4.0 | 0.54 | 2.0 | 1 | 29.54 |
37 | 5.5 | 4.3 | 0.40 | 2.0 | 1 | 40.90 |
Lm (CNY) | (t/m3) | Em (CNY) | ND (Per) | Dm (CNY) | R1 (CNY) | R2 (CNY) |
---|---|---|---|---|---|---|
31.78 | 3.3 | 10.5 | 1.13 | 35 | 0.042 | 0.165 |
Initial Parameters | nV | nP | nR | nG | c1 | c2 | wd | ω |
---|---|---|---|---|---|---|---|---|
value | 4 | 200 | 100 | 7 | 1 | 2 | 0.99 | 0.5 |
Models | Training Datasets | Test Datasets | ||||
---|---|---|---|---|---|---|
RMSE | MAE | r | RMSE | MAE | r | |
GA-LSSVM | 1.805 | 2.088 | 0.925 | 1.947 | 1.688 | 0.962 |
RIME-LSSVM | 2.067 | 1.639 | 0.904 | 2.967 | 2.344 | 0.958 |
PSO-LSSVM | 3.008 | 2.113 | 0.889 | 3.870 | 2.564 | 0.959 |
LSSVM | 3.324 | 2.656 | 0.876 | 3.869 | 2.584 | 0.921 |
Kuz–Ram | 4.240 | 3.646 | 0.751 | 4.800 | 3.871 | 0.833 |
No. | Characteristic Points | S (m) | B (m) | q (kg/m3) | H0 (m) | |
---|---|---|---|---|---|---|
1 | A | Variable Values | 1.000 | 0.447 | 0.848 | 0.529 |
Parameter Values | 5.800 | 4.800 | 0.450 | 1.200 | ||
2 | B | Variable Values | 0.782 | 0.643 | 1.000 | 0.338 |
Parameter Values | 5.500 | 4.300 | 0.510 | 2.000 | ||
3 | C | Variable Values | 0.457 | 0.515 | 1.000 | 0.936 |
Parameter Values | 5.000 | 4.000 | 0.550 | 2.500 |
D (mm) | S (m) | B (m) | q (kg/m3) | H0 (m) | H (m) |
---|---|---|---|---|---|
140 | 5.5 | 4.3 | 0.51 | 2.0 | 12 |
Areas | 584 | 596 | 608 |
---|---|---|---|
P50 (cm) | 34.27 | 33.66 | 35.34 |
Production Phases | Cost before Optimization (10,000 CNY) | Cost after Optimization (10,000 CNY) | Change in Monthly Cost (10,000 CNY) |
---|---|---|---|
Blasting | 149.92 | 156.68 | +6.76 |
Loading | 72.68 | 68.76 | −3.92 |
Transportation | 139.48 | 130.62 | −8.86 |
Crushing | 121.93 | 114.04 | −7.92 |
All phases | 484.01 | 470.07 | −13.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Zhao, Z.; Zhao, P.; Chen, J. Prediction and Optimization of Open-Pit Mine Blasting Based on Intelligent Algorithms. Appl. Sci. 2024, 14, 5609. https://doi.org/10.3390/app14135609
Guo J, Zhao Z, Zhao P, Chen J. Prediction and Optimization of Open-Pit Mine Blasting Based on Intelligent Algorithms. Applied Sciences. 2024; 14(13):5609. https://doi.org/10.3390/app14135609
Chicago/Turabian StyleGuo, Jiang, Zekun Zhao, Peidong Zhao, and Jingjing Chen. 2024. "Prediction and Optimization of Open-Pit Mine Blasting Based on Intelligent Algorithms" Applied Sciences 14, no. 13: 5609. https://doi.org/10.3390/app14135609
APA StyleGuo, J., Zhao, Z., Zhao, P., & Chen, J. (2024). Prediction and Optimization of Open-Pit Mine Blasting Based on Intelligent Algorithms. Applied Sciences, 14(13), 5609. https://doi.org/10.3390/app14135609