Major and Trace Element Accumulation in Soils and Crops (Wheat, Corn, Sunflower) around Steel Industry in the Lower Danube Basin and Associated Ecological and Health Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Plant Collection
2.3. Soil and Plant Analysis
2.4. Pollution and Health Risk Assessment
2.4.1. Pollution Indices
2.4.2. Plant Bioaccumulation of Major and Trace Elements
3. Results and Discussion
3.1. Assessment of Soil Main Parameters That Influence the Elemental Bioavailability
3.2. Major and Trace Element Assessment in Soil
3.2.1. Heavy Metals in Soil
3.2.2. Other Major and Trace Elements in Soil
3.3. Mineralogical and Microstructural Analyses of Soil
3.4. Assessment of Soil Contamination
3.5. Major and Trace Element Assessment in Crops
3.5.1. Heavy Metals in Plants
3.5.2. Other Trace Elements in Plants
3.6. The Organic Compounds Found in Crops
3.7. The Bioaccumulation of Elements in Crops
3.8. Health Risk Assessment
4. Conclusions
- − Implementation of comprehensive soil testing and continuous monitoring to proactively identify and address soil-to-plant contamination, preventing potential escalation;
- − Research on the contamination levels of other plant species grown for humans and animals feed in the steel industrial area;
- − Encouragement of farmers and stakeholders to prioritize the use of environmentally friendly fertilizers and pest control methods, while ensuring proper dosage according to soil properties and plant needs to mitigate potential risks associated with pollution;
- − Implementation of ongoing information and education programs for the population to prevent and combat ecosystem pollution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Elements | Tulucesti (TUL) | Sendreni (SEN) | Vadeni (VAD) | |||
---|---|---|---|---|---|---|
0–5 cm | 5–30 cm | 0–5 cm | 5–30 cm | 0–5 cm | 5–30 cm | |
Average Concentration (wt%) | ||||||
C | 10.86 | 9.96 | 10.63 | 11.88 | 10.14 | 14.82 |
N | 1.50 | * | * | * | * | 0.87 |
O | 41.63 | 39.75 | 38.17 | 39.17 | 36.10 | 28.84 |
Na | 0.45 | 0.38 | 0.58 | 0.39 | 0.40 | 0.62 |
Mg | 1.32 | 1.54 | 1.31 | 1.46 | 1.07 | 1.03 |
Al | 6.33 | 7.77 | 6.02 | 6.74 | 7.06 | 10.74 |
Si | 23.83 | 22.60 | 22.44 | 20.84 | 25.28 | 26.27 |
P | 0.26 | 0.24 | 0.10 | 0.15 | 0.26 | 0.16 |
S | 0.09 | 0.02 | 0.09 | 0.10 | 0.19 | 0.04 |
Cl | 0.07 | * | * | * | * | * |
K | 2.59 | 3.33 | 1.63 | 1.77 | 3.57 | 3.43 |
Ca | 3.58 | 3.64 | 4.67 | 6.26 | 1.69 | 2.69 |
Ti | 0.55 | 0.55 | 0.43 | 0.55 | 0.65 | 0.88 |
V | * | * | * | 0.20 | * | * |
Cr | 0.23 | * | 0.35 | 0.19 | 0.49 | * |
Mn | 0.27 | 0.47 | 0.40 | 0.51 | 0.67 | * |
Gd | * | 1.46 | 1.33 | 0.87 | 1.59 | * |
Fe | 4.04 | 5.08 | 4.02 | 5.07 | 5.52 | 8.35 |
Co | 0.66 | 0.75 | 0.63 | 0.61 | 0.97 | 1.27 |
Ni | 0.63 | 0.81 | 0.65 | 0.48 | 0.56 | * |
Cu | * | * | 1.08 | 0.78 | 1.05 | * |
Zn | 1.14 | 0.56 | 0.97 | 1.00 | 1.36 | * |
Ga | * | 1.09 | 1.14 | 1.03 | 1.42 | * |
Hg | * | * | 3.40 | * | * | * |
Elements | Triticum vulgare Vill. | Zea mays L. | Helianthus annuus L. |
---|---|---|---|
Average Concentration (wt%) | |||
C | 59.76 | 65.65 | 74.61 |
N | 3.50 | 2.60 | * |
O | 24.80 | 23.18 | 18.49 |
Na | 0.10 | 0.08 | 0.16 |
Mg | 0.20 | 0.22 | * |
Al | 0.20 | 0.27 | 0.06 |
Si | 0.10 | 0.07 | * |
P | 0.60 | 0.48 | * |
S | 0.40 | 0.33 | * |
Cl | 0.10 | 0.03 | * |
K | * | 0.04 | 0.15 |
Ca | 0.40 | 0.21 | 1.93 |
Ti | * | 0.04 | 1.46 |
V | * | 0.03 | * |
Cr | 0.10 | 0.03 | 0.16 |
Mn | 0.10 | 0.14 | * |
Fe | 0.20 | 0.27 | * |
Co | 0.30 | 0.18 | * |
Ni | 0.30 | 0.60 | 0.19 |
Cu | 0.90 | 1.18 | 0.17 |
Zn | 0.80 | 0.66 | 0.09 |
Pb | 6.18 | 3.71 | 2.57 |
Hg | 1.24 | * | * |
References
- Arbanas (Moraru), S.-S. Research on Iron and Steel Works Industry Impact on Soil Edaphic and Vegetal Potential in the Adjacent Areas (Cercetări Privind Impactul Activităţilor Industriei Siderurgice Asupra Potenţialului Edafic and Vegetal al Solurilor Din Zonele Adiacente—In Romanian). Ph.D. Thesis, Dunarea de Jos University of Galati, Galati, Romania, 2022. [Google Scholar]
- Wang, Y.; Xu, W.; Wang, Z.; Zhu, Y. The Impact of Vegetation Roots on Shallow Stability of Expansive Soil Slope under Rainfall Conditions. Appl. Sci. 2023, 13, 11619. [Google Scholar] [CrossRef]
- Blum, W.E.H. Functions of Soil for Society and the Environment. Rev. Environ. Sci. Bio/Technol. 2005, 4, 75–79. [Google Scholar] [CrossRef]
- Trap, J.; Bonkowski, M.; Plassard, C.; Villenave, C.; Blanchart, E. Ecological importance of soil bacterivores for ecosystem functions. Plant Soil 2016, 398, 1–24. [Google Scholar] [CrossRef]
- Jakubus, M.; Bakinowska, E. The Effect of Immobilizing Agents on Zn and Cu Availability for Plants in Relation to Their Potential Health Risks. Appl. Sci. 2022, 12, 6538. [Google Scholar] [CrossRef]
- Costa, C.; Lia, F. Temporal Variations of Heavy Metal Sources in Agricultural Soils in Malta. Appl. Sci. 2022, 12, 3120. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, T.; Wang, F. Microbial-Based Heavy Metal Bioremediation: Toxicity and Eco-Friendly Approaches to Heavy Metal Decontamination. Appl. Sci. 2023, 13, 8439. [Google Scholar] [CrossRef]
- Zhou, H.; Ouyang, T.; Guo, Y.; Peng, S.; He, C.; Zhu, Z. Assessment of Soil Heavy Metal Pollution and Its Ecological Risk for City Parks, Vicinity of a Landfill, and an Industrial Area within Guangzhou, South China. Appl. Sci. 2022, 12, 9345. [Google Scholar] [CrossRef]
- Ene, A.; Sloată, F.; Frontasyeva, M.V.; Duliu, O.G.; Sion, A.; Gosav, S.; Persa, D. Multi-elemental Characterization of Soils in the Vicinity of Siderurgical Industry: Levels, Depth Migration and Toxic Risk. Minerals 2024, 14, 559. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Pizzorno, J.; Pizzorno, L. Environmental Toxins Are a Major Cause of Bone Loss. Integr. Med. 2021, 20, 10–17. [Google Scholar]
- Pizzorno, J. Strategies for Protecting Mitochondria From Metals and Chemicals. Integr. Med. 2022, 21, 8–13. [Google Scholar] [PubMed]
- Alavanja, M.C.R.; Dosemeci, M.; Samanic, C.; Lubin, J.; Lynch, C.F.; Knott, C.; Barker, J.; Hoppin, J.A.; Sandler, D.P.; Coble, J.; et al. Pesticides and Lung Cancer Risk in the Agricultural Health Study Cohort. Am. Epidemiol. 2004, 160, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Lamas, G.A.; Bhatnagar, A.; Jones, M.R.; Mann, K.K.; Nasir, K.; Tellez-Plaza, M.; Ujueta, F.; Navas-Acien, A. Contaminant Metals as Cardiovascular Risk Factors: A Scientific Statement from the American Heart Association. J. Am. Heart Assoc. JAHA 2023, 12, e029852. [Google Scholar] [CrossRef] [PubMed]
- Order of the Minister of Water, Forest and Environmental Protection No. 184/21.09.1997 for the Approval of the Procedure for the elaboration of Environmental Assessment, Official Monitor of Romania No. 303bis from 6.11.1997. (In Romanian). Available online: https://legislatie.just.ro/Public/DetaliiDocument/11971 (accessed on 25 May 2024).
- Benton Jones, J., Jr. Chapter 2. Field Sampling Procedures for Conducting a Plant Analysis. In Handbook of Reference Methods for Plant Analysis. Tissue Tests. Let Plant Speak; Kalra, Y.P., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 25–36. [Google Scholar]
- SR ISO 11466:1999; Soil Quality. Extraction of Trace Elements Soluble in Aqua Regia. International Organization for Standardization: Geneva, Switzerland, 1999.
- SR 7184/13:2001; Soils. Determination of pH in Water and Saline Suspensions (Mass/Volume) and in Saturated Paste. International Organization for Standardization: Geneva, Switzerland, 2001.
- STAS 7184/21-82; Soils. Determination of Humus Content. Engage in the European Research Infrastructures System: Bucharest, Romania, 1982.
- SR EN ISO 10693:2014; Soil Quality. Determination of Carbonate Content. Volumetric Method. International Organization for Standardization: Geneva, Switzerland, 2014.
- Borlan, Z.; Rauta, C. (Eds.) Methodology for Agrochemical Analysis of Soils to Establish the Need for Amendments and Fertilizers. Methods of Chemical Analysis of Soils; Methods, Guidance Reports Series; ICPA: Bucharest, Romania, 1981; Volume I, Part I. (In Romanian) [Google Scholar]
- SR ISO 11265+A1:1998; Soil Quality. Determination of the Specific Electrical Conductivity. International Organization for Standardization: Geneva, Switzerland, 1998.
- STAS 7184/7-87; Soils. Determination of Mineral Salts of 1:5 Aqueous Extract. Engage in the European Research Infrastructures System: Bucharest, Romania, 1987.
- STAS 7184/10-79; Soils. Determination of Granulometric Composition. Engage in the European Research Infrastructures System: Bucharest, Romania, 1979.
- SR ISO 11465:1998; Soil Quality. Determination of Dry Matter and Water Content on a Mass Basis. Gravimetric Method. International Organization for Standardization: Geneva, Switzerland, 1998.
- Caprita, F.-C.; Ene, A.; Cantaragiu Ceoromila, A. Valorification of Ulva rigida Algae in Pulp and Paper Industry for Improved Paper Characteristics and Wastewater Heavy Metal Filtration. Sustainability 2021, 13, 10763. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Biersack, J.P. SRIM-2013 The Stopping and Range of Ions in Matter. 2013. Available online: http://srim.org/SRIM/SRIMLEGL.htm (accessed on 25 May 2024).
- Tesmer, J.R.; Nastasi, M. Handbook of Modern Ion Beam Materials Analysis; Materials Research Society: Pittsburg, PA, USA, 1995. [Google Scholar]
- GammaW Software. W. Westmeier, Version 2.70; Ebsdorfergrund-Mölln: Sprockhövel, Germany, 2015.
- Gomez, S.; Garcia, A.; Landete-Castillejos, T.; Gallego, L.; Pantelica, D.; Pantelica, A.; Preoteasa, E.A.; Scafes, A.; Straticiuc, M. Potential of the Bucharest 3 MV Tandetron™ for IBA studies of deer antler mineralization. Nucl. Instrum. Methods Phys. Res. 2016, B371, 413–418. [Google Scholar] [CrossRef]
- Wang, C.; Xu, D.; Li, Y.; Zhou, W.; Bian, P.; Zhang, S. Source and Migration Pathways of Heavy Metals in Soils from an Iron Mine in Baotou City, China. Minerals 2024, 14, 506. [Google Scholar] [CrossRef]
- Wu, C.; Sun, B.; Tian, M.; Cheng, X.; Liu, D.; Zhou, Y. Enrichment Characteristics and Ecological Risk Assessment of Heavy Metals in a Farmland System with High Geochemical Background in the Black Shale Region of Zhejiang, China. Minerals 2024, 14, 375. [Google Scholar] [CrossRef]
- Jaskuła, J.; Sojka, M.; Fiedler, M.; Wróżyński, R. Analysis of Spatial Variability of River Bottom Sediment Pollution with Heavy Metals and Assessment of Potential Ecological Hazard for the Warta River, Poland. Minerals 2021, 11, 327. [Google Scholar] [CrossRef]
- Dou, C.; Cui, H.; Zhang, W.; Yu, W.; Sheng, X.; Zheng, X. Copper and Cadmium Accumulation and Phytorextraction Potential of Native and Cultivated Plants Growing around a Copper Smelter. Agronomy 2023, 13, 2874. [Google Scholar] [CrossRef]
- Yang, L.-Y.; Jiao, S.-L.; Wang, L.; Li, Y.-J.; Yang, M.; Feng, Y.-L.; Li, J.; Wei, Z.-X. Characteristics and Release Risk of Phosphorus from Sediments in a Karst Canyon Reservoir, China. Appl. Sci. 2024, 14, 2482. [Google Scholar] [CrossRef]
- Ahmed, F.; Fakhruddin, A.N.M.; Toufick Imam, M.D.; Khan, N.; Khan, T.A.; Rahman, M.M.; Abdulah, A.T.M. Spatial distribution and source identification of heavy metals pollution in roadside surface soil: A study of Dhaka Aricha highway, Bangladesh. Ecol. Process. 2016, 5, 2. [Google Scholar] [CrossRef]
- Caeiro, S.; Costa, M.H.; Ramos, T.B.; Fernandes, F.; Silveira, N.; Coimbra, A.; Medeiros, G.; Painho, M. Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecol. Indic. 2005, 5, 151–169. [Google Scholar] [CrossRef]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Awadh, S.M.; Al-Hamdani, J.A.J.M.Z. Urban geochemistry assessment using pollution indices: A case study of urban soil in Kirkuk, Iraq. Environ. Earth Sci. 2019, 78, 587. 1–12. [Google Scholar] [CrossRef]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination-A review. Environ. Geochem. Health 2018, 4, 2395–2420. [Google Scholar] [CrossRef] [PubMed]
- Műller, G. Index of geoaccumulation in sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Nikolaidis, C.; Zafiriadis, I.; Constantinidis, T. Heavy Metal Pollution Associated with an Abandoned Lead-Zinc Mine in the Kirki Region, NE Greece. Bull. Environ. Contam. Toxicol. 2010, 85, 307–312. [Google Scholar] [CrossRef]
- Håkanson, L. An Ecological Risk Index for Aquatic Pollution Control: A Sedimentological Approach. Water Res. 1980, 14, 975–1101. [Google Scholar] [CrossRef]
- Pejman, A.; Bidhendi, G.N.; Ardestani, M.; Saeedi, M.; Baghvand, A. A new index for assessing heavy metals contamination in sediments: A case study. Ecol. Indic. 2015, 58, 365–373. [Google Scholar] [CrossRef]
- El-Alfy, M.A.; El-Amier, Y.A.; El-Eraky, T.E. Land use/cover and eco-toxicity indices for identifying metal contamination in sediments of drains, Manzala Lake, Egypt. Heliyon 2020, 6, e03177. [Google Scholar] [CrossRef]
- Long, E.R.; MacDonald, D.D.; Smith, S.; Calder, F.D. Incidence of Adverse Biological Effects Within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. Environ. Manage. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Olowoyo, J.O.; van Heerden, E.; Fischer, J.L.; Baker, C. Trace elements in soil and leaves of Jacaranda mimosifolia in Tshwane area, South Africa. Atmos. Environ. 2010, 44, 1826–1830. [Google Scholar] [CrossRef]
- Mirecki, N.; Rukie Agič, R.; Šunić, L.; Milenković, L.; Ilić, Z.S. Transfer factor as indicator of heavy metals content in plants. Fresenius Environ. Bull. 2015, 24, 4212–4219. [Google Scholar]
- USEPA, California Department of Toxic Substances Control (DRSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 1: Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities. 9 April 2019. Available online: https://dtsc.ca.gov/wp-content/uploads/sites/31/2022/02/HHRA-Note-1-April-2019-21A.pdf (accessed on 25 May 2024).
- Miletić, A.; Lučić, M.; Onjia, A. Exposure Factors in Health Risk Assessment of Heavy Metal(loid)s in Soil and Sediment. Metals 2023, 13, 1266. [Google Scholar] [CrossRef]
- Ackah, M. Soil elemental concentrations, geoaccumulation index, non-carcinogenic and carcinogenic risks in functional areas of an informal e-waste recycling area in Accra, Ghana. Chemosphere 2019, 235, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhao, W.; Yan, X.; Shu, T.; Xiong, Q.; Chen, F. Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations. Int. J. Environ. Res. Public Health 2015, 12, 9658–9671. [Google Scholar] [CrossRef] [PubMed]
- Praveena, S.M.; Pradhan, B.; Aris, A.Z. Assessment of bioavailability and human health exposure risk to heavy metals in surface soils (Klang district, Malaysia). Toxin Rev. 2017, 37, 196–205. [Google Scholar] [CrossRef]
- Slaboch, J.; Malý, M. Land Valuation Systems in Relation to Water Retention. Agronomy 2023, 13, 2978. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Qin, X.; Xu, C.; Yan, X. Effects of Soil pH on the Growth and Cadmium Accumulation in Polygonum hydropiper (L.) in Low and Moderately Cadmium-Contaminated Paddy Soil. Land 2023, 12, 652. [Google Scholar] [CrossRef]
- Xu, F.; Vaziriyeganeh, M.; Zwiazek, J.J. Effects of pH and Mineral Nutrition on Growth and Physiological Responses of Trembling Aspen (Populus tremuloides), Jack Pine (Pinus banksiana), and White Spruce (Picea glauca) Seedlings in Sand Culture. Plants 2020, 9, 682. [Google Scholar] [CrossRef]
- Adamczyk-Szabela, D.; Wolf, W.M. The Impact of Soil pH on Heavy Metals Uptake and Photosynthesis Efficiency in Melissa officinalis, Taraxacum officinalis, Ocimum basilicum. Molecules 2022, 27, 4671. [Google Scholar] [CrossRef] [PubMed]
- Pikuła, D.; Stępień, W. Effect of the Degree of Soil Contamination with Heavy Metals on Their Mobility in the Soil Profile in a Microplot Experiment. Agronomy 2021, 11, 878. [Google Scholar] [CrossRef]
- Ahmad, I.; Malik, S.A.; Saeed, S.; Rehman, A.-u.; Munir, T.M. Phytoextraction of Heavy Metals by Various Vegetable Crops Cultivated on Different Textured Soils Irrigated with City Wastewater. Soil Syst. 2021, 5, 35. [Google Scholar] [CrossRef]
- Arbanas (Moraru), S.-S.; Ene, A. Nutrient stocks study in agroecosystems located near the steel industry, Galati, Romania. Ann. “Dunarea Jos” Univ. Galati Math. Phys. Theor. Mech. Fascicle II 2020, 43, 82–93. [Google Scholar] [CrossRef]
- Moraru, S.-S.; Ene, A.; Badila, A. Physical and Hydro-physical Characteristics of Soil in the Context of Climate Change. A Case Study in Danube River Basin, SE Romania. Sustainability 2020, 12, 9174. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Chapter 3. Soils and Soils Processes. In Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 37–63. [Google Scholar]
- Salminen, R.; Demetriades, A.; Reeder, S. Geochemical Atlas of Europe, Part I—Background Information, Methodology and Maps, FOREGS. Salminen, R., Ed.; 2005. Available online: http://www.gtk.fi/publ/foregsatlas (accessed on 25 May 2024).
- Dumitru, M.; Dumitru, S.; Tanase, V.; Mocanu, V.; Manea, A.; Vrânceanu, N.; Preda, M.; Eftene, M.; Ciobanu, C.; Calciu, I.; et al. Soil Quality Monitoring in Romania; Sitech: Craiova, Romania, 2011; pp. 51–59. [Google Scholar]
- Manea, A.; Dumitru, M.; Vrinceanu, N.; Eftene, A.; Anghel, A.; Vrinceanu, A.; Ignat, P.; Dumitru, S.; Mocanu, V. Soil heavy metal status from Maramureș county, Romania. In Proceedings of the GLOREP 2108 Conference, Timisoara, Romania, 15–17 November 2018. [Google Scholar]
- Pantelica, A.; Freitas, M.d.C.; Ene, A.; Steinnes, E. Soil pollution with trace elements at selected sites in Romania studied by instrumental neutron activation analysis. Radiochim. Acta 2013, 101, 45–50. [Google Scholar] [CrossRef]
- Order of the Minister of Water, Forest and Environmental Protection No. 756/3.11.1997 for the Approval of the Regulation Regarding the Assessment of the Environmental Pollution, Official Monitor of Romania No. 303bis from 06.11.1997. (In Romanian). Available online: https://legislatie.just.ro/Public/DetaliiDocument/13572 (accessed on 25 May 2024).
- Cullen, J.T.; Maldonado, M.T. Chapter 2. Biogeochemistry of Cadmium and Its Release to the Environment. In Cadmium: From Toxicity to Essentiality; Sigel, A., Sigel, H., Sigel, R.K.O., Eds.; Metal Ions in Life Science series; Spinger: Berlin/Heidelberg, Germany, 2013; Volume 11, pp. 31–62. [Google Scholar] [CrossRef]
- City of Hope. Available online: https://www.cancercenter.com/risk-factors/fluoride (accessed on 14 April 2024).
- Kumar, K.; Giri, A.; Vivek, P.; Kalaiyarasan, T.; Kumar, B. Effects of Fluoride on Respiration and Photosynthesis in Plants: An Overview. J. Res. Environ. Sci. Toxicol. JREST 2017, 2, 043–047. [Google Scholar] [CrossRef]
- Bhat, N.; Jain, S.; Asawa, K.; Tak, M.; Shinde, K.; Singh, A.; Gandhi, N.; Gupta, V.V. Assessment of Fluoride Concentration of Soil and Vegetables in Vicinity of Zinc Smelter, Debari, Udaipur, Rajasthan. J. Clin. Diagn. Res. 2015, 9, ZC63–ZC66. [Google Scholar] [CrossRef] [PubMed]
- WHO—World Health Organization. Preventing Disease through Healthy Environments. Inadequate or Excess Fluoride: A Major Public Health Concern, WHO/CED/PHE/EPE/19.4.5 (2019). Available online: https://apps.who.int/iris/handle/10665/329484 (accessed on 14 April 2024).
- Bulgariu, D.; Scarlat, A.A.; Bulgariu, L.; Astefanei, D.; Ciobanu, S.C. Chapter VIII. Considerations for carbonate analysis in soils. In Studies and Research in Geosciences; Rusu, C., Bulgariu, D., Eds.; “Al. I. Cuza” University: Iasi, Romania, 2018; Volume 2. (In Romanian) [Google Scholar]
- Moraru, S.-S.; Ene, A.; Gosav, S. Study of the correlativity between parameters and mineralogy of contaminated agricultural soils. In Proceedings of the 19th International Multidisciplinary Scientific Conference on Earth & Planetary Science—SGEM Geoconference, Albena, Bulgaria, 28 June–7 July 2019. [Google Scholar]
- Volkov, D.S.; Rogova, O.B.; Proskurnin, M.A. Organic matter and mineral composition of silicate soils: FTIR comparison study by photoacoustic, diffuse reflectance, and attenuated total reflection modalities. Agronomy 2021, 11, 1879. [Google Scholar] [CrossRef]
- Stoica, E.; Rauta, C.; Florea, N. (Eds.) Methods of Soil Chemical Analysis; The Agricultural Technical Propaganda Office: Bucharest, Romania, 1986; pp. 412–418. (In Romanian)
- Madejova, J.; Komadel, P. Baseline Studies of the Clay Minerals Society Source Clays: Infrared Methods. Clays Clay Miner. 2001, 49, 410–432. [Google Scholar] [CrossRef]
- Müller, C.M.; Pejcic, B.; Esteban, L.; Delle Piane, C.; Raven, M.; Mizaikoff, B. Infrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems. Sci. Rep. 2014, 4, 6764. [Google Scholar] [CrossRef] [PubMed]
- Gosav, S.; Ene, A.; Aflori, M. Characterization and discrimination of plant fossils by ATR-FTIR, XRD and chemometric methods. Rom. J. Phys. 2019, 64, 806. [Google Scholar]
- Craciun, C. The study of some normal and abnormal montmorillonites by thermal analysis and infrared spectroscopy. Thermochim. Acta 1987, 117, 25–36. [Google Scholar] [CrossRef]
- Palacio, S.; Aitkenhead, M.; Escudero, A.; Montserrat-M, G.; Maestro, M.; Robertson, A.H.J. Gypsophile chemistry unveiled: Fourier Transform Infrared (FTIR) Spectroscopy provides new insight into plant adaptations to gypsum soils. PLoS ONE 2014, 9, e107285. [Google Scholar] [CrossRef] [PubMed]
- Mroczkowska-Szerszeń, M.; Orzechowski, M. Infrared spectroscopy methods in reservoir rocks analysis - semiquantitative approach for carbonate rocks. Nafta-Gaz 2018, 74, 802–812. [Google Scholar] [CrossRef]
- Sion, A.; Gosav, S.; Ene, A. ATR-FTIR qualitative mineralogical analysis of playground soils from Galati city, SE Romania. Ann. “Dunarea Jos” Univ. Galati Math.Phys. Theor. Mech. Fasc. II 2020, 43, 141–145. [Google Scholar] [CrossRef]
- Available online: https://ptable.com/#Properties/Series (accessed on 26 May 2024).
- Greger, M.; Landberg, T.; Vaculik, M. Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants 2018, 7, 41. [Google Scholar] [CrossRef]
- Tubana, B.S.; Babu, T.; Datnoff, L.E. A Review of Silicon in Soils and Plants and Its Role in US Agriculture: History and Future Perspectives. Soil Sci. 2016, 181, 393–411. [Google Scholar] [CrossRef]
- Smical, A.I.; Hotea, V.; Oros, V.; Juhasz, J.; Pop, E. Studies on transfer and bioaccumulation of heavy metals from soil into lettuce. Environ. Eng. Manag. J. EEMJ 2008, 7, 609–615. [Google Scholar] [CrossRef]
- Krystofova, O.; Shestivska, V.; Galiova, M.; Novotny, K.; Kaiser, J.; Zehnalek, J.; Babula, P.; Opatrilova, R.; Adam, V.; Kizek, R. Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions. Sensors 2009, 9, 5040–5058. [Google Scholar] [CrossRef]
- Gopal, R.; Khurana, N. Effect of heavy metal pollutants on sunflower. Afr. J. Plant Sci. 2011, 5, 531–536. [Google Scholar]
- Dhiman, S.S.; Zhao, X.; Li, J.; Kim, D.; Kalia, V.C.; Kim, I.-W.; Kim, J.Y.; Lee, J.-K. Metal accumulation by sunflower (Helianthus annuus L.) and the efficacy of its biomass in enzymatic saccharification. PLoS ONE 2017, 12, e0175845. [Google Scholar] [CrossRef] [PubMed]
- Mani, D.; Sharma, B.; Kumar, C.; Pathak, N. Phytoremediation potential of Helianthus annuus L. in sewage-irrigated Indo-Gangetic alluvial soils. Int. J. Phytoremediation 2012, 14, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC) No. 1181/2006 of 19 December 2006 Setting Maximum Levels of Certain Contaminants in Foodstuffs, Official Journal of European Union. L364 20.12.2006. p. 5. Available online: https://eur-lex.europa.eu/homepage.html (accessed on 25 May 2024).
- FAO/WHO, Codex Alimentarius—General Standard for Contaminants and Toxins in Food and feed, CXS 193-1995, (1995). Available online: https://www.fao.org/fao-who-codexalimentarius (accessed on 19 May 2024).
- Al-Othman, Z.A.; Ali, R.; Al-Othman, A.M.; Ali, J.; Habila, M.A. Assessment of toxic metals in wheat crops grown on selected soils, irrigated by different water sources. Arab. J. Chem. 2016, 9, S1555–S1562. [Google Scholar] [CrossRef]
- Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on Undesirable Substances in Animal Feed—Council statement, Official Journal of European Union, Official Journal of the European Communities, Chapter 3, Volume 42. L140/10 30.5.2002. Available online: http://data.europa.eu/eli/dir/2002/32/oj (accessed on 19 May 2024).
- Yang, Y.; Nan, Z.; Zhao, Z. Bioaccumulation and translocation of cadmium in wheat (Triticum aestivum L.) and maize (Zea mays L.) from the polluted oasis soil of Northwestern China. Chem. Spec. Bioavailab. 2014, 26, 1. [Google Scholar] [CrossRef]
- Alaboudi, K.A.; Ahmed, B.; Brodie, G. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Ann. Agric. Sci. 2018, 63, 123–127. [Google Scholar] [CrossRef]
- Tegegne, W.A. Assessment of some heavy metals concentration in selected cereals collected from local markets of Ambo City, Ethiopia. J. Cereals Oilseeds 2015, 6, 8–13. [Google Scholar] [CrossRef]
- Shobha, N.; Kalshetty, B.M. Assessment of heavy metals in green vegetables and cereals collected from Jamkhandi local market, Bagalkot, India. Rasayan J. Chem. 2017, 10, 124–135. [Google Scholar] [CrossRef]
- Antoniadis, V.; Golia, E.E.; Lin, Y.-T.; Wang, S.-L.; Shaeen, S.M. Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environ. Int. 2019, 124, 79–88. [Google Scholar] [CrossRef]
- Liang, J.; Chen, C.; Song, X.; Han, Y.; Liang, Z. Assessment of heavy metal pollution in soil and plants from Dunhua sewage irrigation area. Int. J. Electrochem. Sci. 2011, 6, 5314–5324. [Google Scholar] [CrossRef]
- Zehra, A.; Sahito, Z.A.; Tong, W.; Tang, L.; Hamid, Y.; Khan, M.B.; Ali, Z.; Naqi, B.; Yang, X. Assessment of sunflower germplasm for phytoremediation of lead-polluted soil and production of seed oil and seed meal for human and animal consumption. J. Environ. Sci. 2020, 87, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://specac.com/infrared-frequency-lookup/#frequencytool (accessed on 19 May 2024).
- Demir, P.; Onde, S.; Severcan, F. Phylogeny f cultivated and wild wheat species using ATR-FTIR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 135, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Utami, S.N.H.; Suswati, D. Chemical and spectroscopy of peat from West and Central Kalimantan, Indonesia in relation to peat properties. Int. J. Environ. Agric. Res. IJOEAR 2016, 2, 45–52. [Google Scholar]
- Gorgulu, S.T.; Dogan, M.; Severcan, F. The characterization and differentiation of higher plants by Fourier Transform Infrared Spectroscopy. Appl. Spectrosc. 2007, 61, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Heneen, W.K.; Brismar, K. Scanning electron microscopy of nature grains of rye, wheat and triticale with emphasis on grain shrivelling. Hereditas 1987, 107, 147–162. [Google Scholar] [CrossRef]
- Shorstkii, I.A.; Zherlicin, A.G.; Li, P. Impact of pulse electric field and pulsed microwave treatment on morphological and structural characteristics on sunflower seed. Oilseeds Fats Crops Lipids OCL 2019, 26, 47. [Google Scholar] [CrossRef]
- Scheuer, P.M.; de Francisco, A.; de Miranda, M.Z.; Ogliari, P.J.; Torres, G.; Limberger, V.; Montenegro, F.M.; Ruffi, C.R.; Biondi, S. Characterization of Brazilian wheat cultivars for specific technological applications. Food Sci. Technol. 2011, 31, 816–826. [Google Scholar] [CrossRef]
Sample ID | Sampling Location | Longitude | Latitude | Altitude (m) |
---|---|---|---|---|
I-1a/1b | E of Sivita | 45°36′40.02″ | 28°03′53.05″ | 4 |
I-2a/2b | V of Sivita, Tatarca Hill | 45°36′35.00″ | 28°02′19.00″ | 97 |
I-3a/3b | NV of Tulucesti, right side of Tartacuta Valley | 45°35′08.02″ | 28°01′35.95″ | 120 |
I-4a/4b | NV of Tulucesti, left side of Tartacuta Valley | 45°35′11.98″ | 28°01′56.00″ | 113 |
I-5a/5b | NV of Ghilanu Sasa Forest | 45°37′29.01″ | 28°01′08.01″ | 142 |
I-6a/6b | Ghilanu Hill | 45°37′34.00″ | 28°01′42.00″ | 106 |
II-1a/1b | on the right side of Malina Valley | 45°25′05.00″ | 27°56′36.00″ | 21 |
II-2a/2b | between Serbestii Noi and Sendreni villages | 45°25′21.33″ | 27°53′37.05″ | 28 |
III-1a/1b | V of Pietroiu | 45°19′19.91″ | 27°52′11.00″ | 7 |
III-2a/2b | on the left side of Paslaru Valley | 45°23′30.02″ | 27°54′56.00″ | 5 |
III-3a/3b | on the left side of Sendreni-Baldovinesti road | 45°23′38.62″ | 27°55′17.90″ | 5 |
Metal | Wt [40] | ERLi [46] | ERMi [46] |
---|---|---|---|
Cu | 0.075 | 34 | 270 |
Zn | 0.075 | 150 | 410 |
Cr | 0.134 | 81 | 370 |
Ni | 0.215 | 20.9 | 51.6 |
Pb | 0.251 | 46.7 | 218 |
Cd | 0.250 | 1.2 | 9.6 |
Parameter | Unit | Residential | Reference | ||
---|---|---|---|---|---|
Adult | Children | ||||
BW | body weight | kg | 80 | 15 | [49] |
ATnc | averaging time for non-carcinogens | days | 365 × 20 | 365 × 6 | [49] |
IngR | ingestion rate of soil | mg kg−1 | 100 | 200 | [49] |
EF | exposure frequency | days years−1 | 350 | 350 | [49] |
ED | exposure duration | year | 20 | 6 | [49] |
CF | conversion factor | kg mg−1 | 10−6 | 10−6 | [50] |
SA | skin exposed area | cm2 | 6032 | 2373 | [49] |
AF | soil-to-skin adherence factor | mg cm−2 | 0.07 | 0.2 | [49] |
ABS | absorption factor | unitless | [49] | ||
ABSCd | absorption factor for Cd | 0.01 | 0.01 | ||
ABSom | absorption factor for other metals | 0.001 | 0.001 | ||
InhR | inhalation rate | m3 day−1 | 20 | 10 | [49] |
ET | exposure time | hours day−1 | 24 | 24 | [49] |
PEF | particle emission factor | m3 kg−1 | 1.36 × 109 | 1.36 × 109 | [49] |
References | Cd | Co | Cr | Cu | Mn | Ni | Pb | Zn | F | Cl | Ti | Si | Na | Mg | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg kg−1) | (%) | ||||||||||||||
Continental crust [62] | 0.08 *– 0.10 | 10 | 100 | 55 | 900 | 20 | 15 | 70 | 625 | 640 | 4400 | - | - | - | 5 |
World soils [62] | 0.06 *– 0.41 | 11.3 | 59.5 | 38.9 | 488 | 29 | 27 | 70 | 321 | 300 | 7038 | - | - | - | 3.5 |
European soils 1 [63] | 0.284 | 8.91 | 32.6 | 16.4 | 524 | 30.7 | 23.9 | 60.9 | - | - | 6090 | 65.4 | 1.15 | 1.18 | 2.17 |
Romanian soils [64] | 0.43 | 13.0 | - | 26.7 | 175– 1820 | 35.0 | 21.3 | 87 | - | - | - | - | - | - | - |
Romania (Maramures county) [65] | 0.75 | 11 | 23 | 20 | 554 | 22 | 57 | 78 | - | - | - | - | - | - | - |
Romania (Galati) [66] | <2.5 | 13.1 | 84 | - | 538 | 67 | - | 106 | - | - | 2900 | - | 0.83 | 0.76 | 3.15 |
Reference values (land with sensitive use of soils) [67] | |||||||||||||||
NV | 1 | 15 | 30 | 20 | 900 | 20 | 20 | 100 | - | - | - | - | - | - | - |
AT | 3 | 30 | 100 | 100 | 1500 | 75 | 50 | 300 | 150 | ||||||
IT | 5 | 50 | 300 | 200 | 2500 | 150 | 100 | 600 | 300 |
Mineral Type | Absorption Band (cm−1) | Band Assignment 1 | References |
---|---|---|---|
Clay minerals | |||
Montmorillonite | 830 | β(Al-OH-Mg) | 840–830 cm−1 β(Al-OH-Mg) [75] |
912 | β(Al-Al-OH) | 930–910 cm−1 β(OH) [75] 915 cm−1 β(OH) [76] 916 cm−1 β(OH) [77] | |
1633 | β(OH) | 1635 cm−1 β(OH) [78] | |
3390 | ν(OH) | 3392 cm−1 [79] | |
3620 | inner surface ν(OH) | 3700–3600 cm−1 inner surface ν(OH) [78] 3610–3621 cm−1 abnormal montmorillonite [80] 3620 cm−1 ν(OH) [75] 3627 cm−1 [79] | |
Kaolinite | 419 | β(Si-O-Si) | 430–420 cm−1 β(Si-O) [75] |
912 | β(Al-OH-Al) | 930–910 cm−1 (β(OH) [75] 915 cm−1 (β(OH) [76,77,78] | |
1032 | νas(Si-O-Si) | 1034 cm−1 [79] 1037 cm−1 νas(Al-O) [75] 1038 cm−1 νas(Si-O-Si) [76] | |
3620 | inner ν(OH) | 3620 cm−1 ν(OH) [75,76,77,78] | |
3695 | inner surface ν(OH) | 3690–3680 cm−1 ν(Si-OH) [75] 3694 cm−1 inner surface ν(OH) [77] 3695 cm−1 (ν(OH)) [76,78] | |
Non-clay minerals | |||
Quartz | 457 | β(Si-O-Si) | 450 cm−1 β(O-Si-O) [75]; 452 cm−1 [79] |
517 | β(O-Si-O) | 517–513 cm−1 β(O-Si-O) [75] 512 cm−1 SiO2 [76] | |
692 | β(Si-O-Si) | 697–696 cm−1 β(Si-O-Si) [75] 693 cm−1 SiO2 [76] | |
778 | ν(Si-O) | 774 cm−1 α-SiO2, Si-O-Si [75] 778 cm−1 SiO2 [76] 779 cm−1 ν(Si-O) [77] | |
796 | νsim(Si-O-Si) | 796 cm−1 νsim(Si-O-Si) [75] 797 cm−1 ν(Si-O) [77] 798 cm−1 SiO2 [76] | |
1001 | ν(Si-O) | 1010–995 cm−1 ν(Si-O) [75]; 1100–950 cm−1 ν(Si-O) [81] | |
1111 | νas(Si-O-Si) | 1115–1105 cm−1 amorphous silica [75] | |
1168 | νas(Si-O-Si) | 1165–1153 cm−1 specific SiO2 structure [75] 1166 cm−1 SiO2—cristobalite [76] | |
Orthoclase and albite | 646 | β(O-Si(Al)-O) | 645–640 cm−1 β(Si-O) [75] |
989 | ν(Si-O) | 1200–900 cm−1 [78] | |
Calcite | 712 | β(C-O) | 713–710 cm−1 CaCO3 [73] 712 cm−1 CaCO3 [76] 715 cm−1 β(C-O) in plane [81] |
874 | β(C-O) | 881–873 cm−1 CaCO3 [73] 874 cm−1 β(C-O) in plane [81] 875 cm−1 CaCO3 [75,78] 877 cm−1 CaCO3 [76] | |
1433 | νas(C-O) | 1400 cm−1 νas(C-O) [78] 1410–1435 cm−1 CaCO3 [73] 1435 cm−1 CaCO3 [76] 1450–1410 cm−1 νas(C-O) [81] | |
Dolomite | 1433 | νas(C-O) | 1450–1430 cm−1 CaMg(CO3)2 [73] 1432 cm−1 CaMg(CO3)2 [76] 1433 cm−1 νas(CO32-) [82] |
Gypsum | 646 | β(S-O) | 645–640 cm−1 β(S-O) [75] 680–610 cm−1 β(S-O) [81] |
1111 | ν(S-O) | 1140–1080 cm−1 ν(S-O) [81] 1111 cm−1 CaSO4 ∙ 2 H2O [76] |
Sample Site | Depth (cm) | IgeoCd | IgeoCo | IgeoCr | IgeoCu | IgeoNi | IgeoPb | IgeoZn |
---|---|---|---|---|---|---|---|---|
T-1a | 0–5 | −2.67 | −2.97 | 3.09 | 0.55 | 0.31 | −1.23 | −0.14 |
T-1b | 5–30 | −2.73 | −1.62 | 1.73 | 0.33 | 0.36 | −0.59 | −0.29 |
T-2a | 0–5 | −3.89 | −1.96 | 1.12 | −0.26 | 0.49 | −3.16 | −0.52 |
T-2b | 5–30 | −3.74 | −2.05 | 0.89 | −0.26 | 0.26 | −2.34 | −0.61 |
T-3a | 0–5 | −4.65 | −1.44 | 1.20 | −0.53 | 0.57 | −2.61 | −1.04 |
T-3b | 5–30 | −4.88 | −1.47 | 1.23 | −0.63 | 0.47 | −2.61 | −1.20 |
T-4a | 0–5 | −4.15 | −2.08 | 1.26 | −0.81 | 0.23 | −3.23 | −1.31 |
T-4b | 5–30 | −4.04 | −2.06 | 1.31 | −0.75 | 0.29 | −2.94 | −1.17 |
T-5a | 0–5 | −4.63 | −1.58 | 1.18 | −0.78 | 0.42 | −2.47 | −1.11 |
T-5b | 5–30 | −4.85 | −1.50 | 1.29 | −0.81 | 0.22 | −2.14 | −1.16 |
T-6a | 0–5 | −2.66 | −1.46 | 1.79 | 1.03 | 0.25 | −1.75 | −0.94 |
T-6b | 5–30 | −2.52 | −1.39 | 1.96 | 1.18 | 0.22 | −2.21 | −0.98 |
S-1a | 0–5 | −3.09 | −1.35 | 2.09 | −0.66 | 0.47 | −0.99 | −1.11 |
S-1b | 5–30 | −3.46 | −1.35 | 2.03 | −0.66 | 0.47 | −1.02 | −1.24 |
S-2a | 0–5 | −3.40 | −1.35 | 2.26 | −0.39 | 0.24 | −1.14 | −0.92 |
S-2b | 5–30 | −3.52 | −1.25 | 2.19 | −0.60 | 0.27 | −1.17 | −1.07 |
V-1a | 0–5 | −3.25 | −2.09 | 1.38 | −0.36 | 0.06 | −1.41 | −1.04 |
V-1b | 5–30 | −3.27 | −2.21 | 1.46 | −0.29 | 0.01 | −1.62 | −1.03 |
V-2a | 0–5 | −3.47 | −1.01 | 2.62 | −0.02 | 0.62 | −1.07 | −0.71 |
V-2b | 5–30 | −3.36 | −1.16 | 2.96 | 0.19 | 0.89 | −1.17 | −0.53 |
V-3a | 0–5 | −3.57 | −1.72 | 2.33 | 0.07 | 0.55 | −1.53 | −0.55 |
V-3b | 5–30 | −3.79 | −1.98 | 2.27 | −0.26 | 0.51 | −2.25 | −0.74 |
Legend | ||||||||
Igeoi | Class 0 Igeoi ≤ 0 | Class 1 0< Igeoi <1 | Class 2 1< Igeoi < 2 | Class 3 2< Igeoi < 3 | Class 4 3 <Igeoi <4 | Class 5 4 <Igeoi <5 | Class 6 Igeoi > 5 |
Sample Site | Depth (cm) | EFCd | EFCo | EFCr | EFCu | EFNi | EFPb | EFZn | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T-1a | 0–5 | 0.60 | 0.49 | 32.46 | 5.59 | 4.73 | 1.62 | 3.47 | ||||||||||||||||||||||||||||
T-1b | 5–30 | 0.53 | 1.15 | 11.66 | 4.43 | 4.51 | 2.34 | 2.88 | ||||||||||||||||||||||||||||
T-2a | 0–5 | 0.26 | 0.98 | 8.24 | 3.17 | 5.34 | 0.43 | 2.65 | ||||||||||||||||||||||||||||
T-2b | 5–30 | 0.30 | 0.95 | 7.30 | 3.30 | 4.72 | 0.78 | 2.58 | ||||||||||||||||||||||||||||
T-3a | 0–5 | 0.16 | 1.44 | 8.99 | 2.71 | 5.80 | 0.64 | 1.90 | ||||||||||||||||||||||||||||
T-3b | 5–30 | 0.15 | 1.63 | 10.56 | 2.92 | 6.27 | 0.74 | 1.96 | ||||||||||||||||||||||||||||
T-4a | 0–5 | 0.29 | 1.21 | 12.24 | 2.92 | 6.01 | 0.55 | 2.06 | ||||||||||||||||||||||||||||
T-4b | 5–30 | 0.31 | 1.24 | 12.83 | 3.08 | 6.33 | 0.67 | 2.31 | ||||||||||||||||||||||||||||
T-5a | 0–5 | 0.16 | 1.37 | 9.26 | 2.38 | 5.47 | 0.74 | 1.89 | ||||||||||||||||||||||||||||
T-5b | 5–30 | 0.15 | 1.50 | 10.39 | 2.43 | 4.96 | 0.96 | 1.90 | ||||||||||||||||||||||||||||
T-6a | 0–5 | 0.37 | 0.85 | 8.04 | 4.73 | 2.76 | 0.69 | 1.21 | ||||||||||||||||||||||||||||
T-6b | 5–30 | 0.44 | 0.96 | 9.83 | 5.72 | 2.93 | 0.54 | 1.28 | ||||||||||||||||||||||||||||
S-1a | 0–5 | 0.42 | 1.40 | 15.12 | 2.25 | 4.94 | 1.79 | 1.65 | ||||||||||||||||||||||||||||
S-1b | 5–30 | 0.34 | 1.46 | 15.24 | 2.37 | 5.16 | 1.84 | 1.58 | ||||||||||||||||||||||||||||
S-2a | 0–5 | 0.36 | 1.47 | 17.95 | 2.87 | 4.44 | 1.70 | 1.99 | ||||||||||||||||||||||||||||
S-2b | 5–30 | 0.32 | 1.53 | 16.56 | 2.40 | 4.38 | 1.61 | 1.73 | ||||||||||||||||||||||||||||
V-1a | 0–5 | 0.50 | 1.13 | 12.51 | 3.74 | 5.02 | 1.81 | 2.34 | ||||||||||||||||||||||||||||
V-1b | 5–30 | 0.48 | 1.01 | 12.81 | 3.82 | 4.70 | 1.52 | 2.29 | ||||||||||||||||||||||||||||
V-2a | 0–5 | 0.31 | 1.71 | 21.24 | 3.40 | 5.31 | 1.64 | 2.11 | ||||||||||||||||||||||||||||
V-2b | 5–30 | 0.29 | 1.35 | 23.44 | 3.44 | 5.60 | 1.34 | 2.09 | ||||||||||||||||||||||||||||
V-3a | 0–5 | 0.25 | 0.90 | 14.81 | 309 | 4.31 | 1.02 | 2.01 | ||||||||||||||||||||||||||||
V-3b | 5–30 | 0.23 | 0.81 | 15.50 | 2.68 | 4.58 | 0.67 | 1.92 | ||||||||||||||||||||||||||||
Legend | ||||||||||||||||||||||||||||||||||||
EFi | Class 1 EFi < 2 | Class 2 2 < EFi < 5 | Class 3 5 < EFi < 20 | Class 4 20 < EFi < 40 | Class 5 EFi > 40 |
SampleSite | Depth(cm) | PICd | PICo | PICr | PICu | PINi | PIPb | PIZn | |
---|---|---|---|---|---|---|---|---|---|
T-1a | 0–5 | 0.24 | 0.19 | 12.77 | 2.20 | 1.86 | 0.64 | 1.37 | |
T-1b | 5–30 | 0.23 | 0.49 | 4.96 | 1.89 | 1.92 | 1.00 | 1.23 | |
T-2a | 0–5 | 0.10 | 0.39 | 3.25 | 1.25 | 2.11 | 0.17 | 1.05 | |
T-2b | 5–30 | 0.11 | 0.36 | 2.78 | 1.26 | 1.79 | 0.30 | 0.98 | |
T-3a | 0–5 | 0.06 | 0.55 | 3.45 | 1.04 | 2.22 | 0.25 | 0.73 | |
T-3b | 5–30 | 0.05 | 0.54 | 3.51 | 0.97 | 2.08 | 0.24 | 0.65 | |
T-4a | 0–5 | 0.08 | 0.36 | 3.59 | 0.86 | 1.76 | 0.16 | 0.60 | |
T-4b | 5–30 | 0.09 | 0.36 | 3.71 | 0.89 | 1.83 | 0.20 | 0.67 | |
T-5a | 0–5 | 0.06 | 0.50 | 3.40 | 0.88 | 2.01 | 0.27 | 0.69 | |
T-5b | 5–30 | 0.05 | 0.53 | 3.66 | 0.86 | 1.75 | 0.34 | 0.67 | |
T-6a | 0–5 | 0.24 | 0.55 | 5.19 | 3.05 | 1.78 | 0.45 | 0.78 | |
T-6b | 5–30 | 0.26 | 0.57 | 5.85 | 3.41 | 1.74 | 0.32 | 0.76 | |
S-1a | 0–5 | 0.18 | 0.59 | 6.37 | 0.95 | 2.08 | 0.75 | 0.69 | |
S-1b | 5–30 | 0.14 | 0.59 | 6.12 | 0.95 | 2.07 | 0.74 | 0.63 | |
S-2a | 0–5 | 0.14 | 0.59 | 7.18 | 1.15 | 1.78 | 0.68 | 0.80 | |
S-2b | 5–30 | 0.13 | 0.63 | 6.84 | 0.99 | 1.81 | 0.67 | 0.71 | |
V-1a | 0–5 | 0.16 | 0.35 | 3.90 | 1.17 | 1.57 | 0.57 | 0.73 | |
V-1b | 5–30 | 0.16 | 0.33 | 4.11 | 1.23 | 1.51 | 0.49 | 0.73 | |
V-2a | 0–5 | 0.14 | 0.75 | 9.25 | 1.48 | 2.31 | 0.71 | 0.92 | |
V-2b | 5–30 | 0.15 | 0.67 | 11.65 | 1.71 | 2.78 | 0.67 | 1.04 | |
V-3a | 0–5 | 0.13 | 0.46 | 7.54 | 1.58 | 2.20 | 0.52 | 1.03 | |
V-3b | 5–30 | 0.11 | 0.38 | 7.25 | 1.25 | 2.14 | 0.32 | 0.90 | |
Legend | |||||||||
PIi | Class 1 PIi < 1 | Class 2 1 < PIi < 2 | Class 3 2 < PIi < 3 | Class 4 3 < PIi < 5 | Class 5 PIi > 5 |
Sample Site | Depth (cm) | ErCd | ErCr | ErCu | ErNi | ErPb | ErZn | PERI | |||
---|---|---|---|---|---|---|---|---|---|---|---|
T-1a | 0–5 | 7.07 | 25.54 | 10.99 | 9.30 | 3.19 | 2.73 | 58.82 | |||
T-1b | 5–30 | 6.79 | 9.93 | 9.43 | 9.60 | 4.99 | 2.45 | 43.19 | |||
T-2a | 0–5 | 3.04 | 6.51 | 6.26 | 10.54 | 0.84 | 2.09 | 29.27 | |||
T-2b | 5–30 | 3.37 | 5.55 | 6.28 | 8.97 | 1.48 | 1.96 | 27.61 | |||
T-3a | 0–5 | 1.80 | 6.89 | 5.19 | 11.11 | 1.23 | 1.46 | 27.67 | |||
T-3b | 5–30 | 1.53 | 7.01 | 4.85 | 10.42 | 1.22 | 1.30 | 26.33 | |||
T-4a | 0–5 | 2.53 | 7.18 | 4.28 | 8.82 | 0.80 | 1.21 | 24.82 | |||
T-4b | 5–30 | 2.73 | 7.43 | 4.46 | 9.16 | 0.98 | 1.34 | 26.08 | |||
T-5a | 0–5 | 1.82 | 6.80 | 4.38 | 10.05 | 1.35 | 1.39 | 25.79 | |||
T-5b | 5–30 | 1.56 | 7.33 | 4.28 | 8.75 | 1.70 | 1.34 | 24.95 | |||
T-6a | 0–5 | 7.14 | 10.38 | 15.27 | 8.90 | 2.23 | 1.57 | 45.49 | |||
T-6b | 5–30 | 7.86 | 11.70 | 17.04 | 8.72 | 1.62 | 1.52 | 48.46 | |||
S-1a | 0–5 | 5.27 | 12.73 | 4.74 | 10.39 | 3.77 | 1.39 | 38.30 | |||
S-1b | 5–30 | 4.10 | 12.23 | 4.75 | 10.36 | 3.69 | 1.27 | 36.40 | |||
S-2a | 0–5 | 4.27 | 14.36 | 5.73 | 8.89 | 3.41 | 1.59 | 38.25 | |||
S-2b | 5–30 | 3.91 | 13.69 | 4.96 | 9.05 | 3.33 | 1.43 | 36.36 | |||
V-1a | 0–5 | 4.72 | 7.81 | 5.84 | 7.83 | 2.83 | 1.46 | 30.49 | |||
V-1b | 5–30 | 4.66 | 8.23 | 6.13 | 7.54 | 2.44 | 1.47 | 30.47 | |||
V-2a | 0–5 | 4.06 | 18.49 | 7.41 | 11.55 | 3.56 | 1.83 | 46.91 | |||
V-2b | 5–30 | 4.38 | 23.31 | 8.55 | 13.91 | 3.33 | 2.08 | 55.56 | |||
V-3a | 0–5 | 3.80 | 15.09 | 7.88 | 10.98 | 2.59 | 2.05 | 42.39 | |||
V-3b | 5–30 | 3.24 | 14.51 | 6.27 | 10.71 | 1.58 | 1.80 | 38.11 | |||
Legend | |||||||||||
PERI | low potential risk PERI < 150 | moderate potential risk 150 < PERI < 300 | high potential risk 300 < PERI < 600 | very high potential risk PERI > 600 | |||||||
Eri | low risk Eri < 40 | medium risk 40 < Eri < 80 | considerable risk 80 < Eri < 160 | high risk 160 < Eri < 320 | very high risk Eri >320 |
Sample Site | Depth (cm) | CSICd | CSICr | CSICu | CSINi | CSIPb | CSIZn | CSI | mERMQ | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T-1a | 0–5 | 0.11 | 0.44 | 0.09 | 0.40 | 0.13 | 0.08 | 1.24 | 0.39 | |||
T-1b | 5–30 | 0.11 | 0.20 | 0.08 | 0.41 | 0.17 | 0.07 | 1.04 | 0.28 | |||
T-2a | 0–5 | 0.07 | 0.16 | 0.06 | 0.45 | 0.07 | 0.07 | 0.88 | 0.24 | |||
T-2b | 5–30 | 0.08 | 0.14 | 0.07 | 0.39 | 0.09 | 0.06 | 0.82 | 0.22 | |||
T-3a | 0–5 | 0.06 | 0.16 | 0.06 | 0.47 | 0.08 | 0.05 | 0.89 | 0.24 | |||
T-3b | 5–30 | 0.05 | 0.16 | 0.06 | 0.44 | 0.08 | 0.05 | 0.85 | 0.23 | |||
T-4a | 0–5 | 0.07 | 0.17 | 0.05 | 0.38 | 0.07 | 0.05 | 0.78 | 0.20 | |||
T-4b | 5–30 | 0.07 | 0.17 | 0.05 | 0.39 | 0.07 | 0.05 | 0.81 | 0.21 | |||
T-5a | 0–5 | 0.06 | 0.16 | 0.05 | 0.43 | 0.09 | 0.05 | 0.84 | 0.22 | |||
T-5b | 5–30 | 0.05 | 0.17 | 0.05 | 0.38 | 0.10 | 0.05 | 0.80 | 0.21 | |||
T-6a | 0–5 | 0.11 | 0.21 | 0.10 | 0.38 | 0.11 | 0.06 | 0.98 | 0.27 | |||
T-6b | 5–30 | 0.12 | 0.23 | 0.11 | 0.38 | 0.09 | 0.06 | 0.98 | 0.27 | |||
S-1a | 0–5 | 0.10 | 0.24 | 0.06 | 0.44 | 0.14 | 0.05 | 1.03 | 0.27 | |||
S-1b | 5–30 | 0.08 | 0.23 | 0.06 | 0.44 | 0.14 | 0.05 | 1.01 | 0.27 | |||
S-2a | 0–5 | 0.09 | 0.26 | 0.06 | 0.38 | 0.14 | 0.06 | 0.99 | 0.27 | |||
S-2b | 5–30 | 0.08 | 0.25 | 0.06 | 0.39 | 0.13 | 0.05 | 0.97 | 0.26 | |||
V-1a | 0–5 | 0.09 | 0.17 | 0.06 | 0.34 | 0.12 | 0.05 | 0.85 | 0.21 | |||
V-1b | 5–30 | 0.09 | 0.18 | 0.06 | 0.33 | 0.12 | 0.05 | 0.84 | 0.21 | |||
V-2a | 0–5 | 0.08 | 0.32 | 0.07 | 0.49 | 0.14 | 0.06 | 1.17 | 0.34 | |||
V-2b | 5–30 | 0.09 | 0.40 | 0.08 | 0.60 | 0.13 | 0.07 | 1.36 | 0.41 | |||
V-3a | 0–5 | 0.08 | 0.27 | 0.07 | 0.47 | 0.12 | 0.07 | 1.08 | 0.32 | |||
V-3b | 5–30 | 0.08 | 0.27 | 0.07 | 0.46 | 0.09 | 0.06 | 1.02 | 0.30 | |||
Legend | ||||||||||||
CSI | Class 1 CSI < 0.5 | Class 2 0.5 < CSI < 1 | Class 3 1 < CSI < 1.5 | Class 4 1.5 < CSI < 2 | Class 5 2 < CSI < 2.5 | Class 6 2.5 < CSI < 3 | Class 7 3 < CSI < 4 | Class 8 4 < CSI < 5 | Class 9 CSI > 5 | |||
mERMQ | Low risk mERMQ < 0.1 | Medium risk 0.1 < mERMQ < 0.5 | High risk 0.5 < mERMQ < 1.5 | Very high risk mERMQ > 1.5 |
Plant Sample | Plant Species | Element Concentration (mg kg−1 ± σ) | ||||||
---|---|---|---|---|---|---|---|---|
Cd | Co | Cr | Cu | Ni | Pb | Zn | ||
T-1-l 1 | wheat | 0.007 ± 0.001 | 0.161 ± 0.010 | 0.649 ± 0.055 | 29.911 ± 0.209 | 4.130 ± 0.235 | 0.799 ± 0.057 | 66.389 ± 1.129 |
T-1-c | 0.033 ± 0.001 | 0.057 ± 0.005 | 0.485 ± 0.033 | 50.806 ± 1.575 | 1.159 ± 0.079 | 0.499 ± 0.033 | 69.420 ± 0.417 | |
T-2-l | wheat | 0.040 ± 0.003 | 0.030 ± 0.002 | 2.707 ± 0.093 | 5.825 ± 0.115 | 0.771 ± 0.047 | 0.962 ± 0.011 | 62.613 ± 0.771 |
T-2-c | 0.046 ± 0.003 | 0.009 ± 0.001 | 0.801 ± 0.050 | 8.218 ± 0.177 | 0.680 ± 0.019 | 0.640 ± 0.059 | 66.211 ± 0.357 | |
T-3-l | corn | 0.093 ± 0.001 | 0.038 ± 0.001 | 2.386 ± 0.071 | 20.539 ± 0.270 | 0.885 ± 0.094 | 0.774 ± 0.035 | 69.307 ± 0.875 |
T-3-c | 0.012 ± 0.001 | 0.008 ± 0.001 | 0.547 ± 0.052 | 3.076 ± 0.017 | 0.718 ± 0.034 | 0.217 ± 0.015 | 22.385 ± 1.244 | |
T-4-l | corn | 0.056 ± 0.002 | 0.050 ± 0.003 | 2.501 ± 0.011 | 22.779 ± 0.307 | 1.147 ± 0.001 | 1.461 ± 0.039 | 78.468 ± 0.233 |
T-4-c | 0.003 ± 0.001 | 0.003 ± 0.001 | 0.246 ± 0.016 | 1.268 ± 0.074 | 0.094 ± 0.065 | 0.051 ± 0.003 | 19.672 ± 0.493 | |
T-5-l | sunflower | 0.180 ± 0.006 | 0.021 ± 0.002 | 0.641 ± 0.006 | 11.859 ± 0.073 | 0.511 ± 0.023 | 0.955 ± 0.030 | 28.243 ± 0.934 |
T-5a | 0.400 ± 0.004 | 0.010 ± 0.001 | 0.103 ± 0.010 | 28.958 ± 0.230 | 6.816 ± 0.144 | 0.372 ± 0.034 | 84.504 ± 0.149 | |
T-6-l | sunflower | 0.171 ± 0.005 | 0.022 ± 0.001 | 0.714 ± 0.039 | 86.089 ± 0.863 | 0.929 ± 0.075 | 0.805 ± 0.036 | 30.439 ± 0.537 |
T-6a | 0.132 ± 0.002 | 0.012 ± 0.001 | 2.095 ± 0.055 | 54.319 ± 0.363 | 3.869 ± 0.087 | 0.314 ± 0.014 | 74.133 ± 1.469 | |
S-1-l | wheat | 0.004 ± 0.001 | 0.563 ± 0.015 | 2.702 ± 0.024 | 13.536 ± 0.122 | 3.401 ± 0.024 | 1.413 ± 0.008 | 40.903 ± 1.595 |
S-1-c | 0.000 ± 0.000 | 0.020 ± 0.001 | 0.100 ± 0.004 | 20.224 ± 0.263 | 0.400 ± 0.034 | 0.026 ± 0.002 | 47.584 ± 1.570 | |
S-2-l | sunflower | 0.174 ± 0.007 | 0.076 ± 0.005 | 0.443 ± 0.017 | 535.348 ± 0.535 | 2.020 ± 0.125 | 0.007 ± 0.001 | 56.720 ± 0.397 |
S-2a | 0.114 ± 0.001 | 0.047 ± 0.004 | 0.711 ± 0.033 | 120.146 ± 8.290 | 5.471 ± 0.350 | 0.645 ± 0.40 | 69.433 ± 1.180 | |
V-1-l | wheat | 0.001 ± 0.001 | 0.195 ± 0.016 | 1.623 ± 0.067 | 25.968 ± 1.195 | 3.670 ± 0.194 | 0.714 ± 0.052 | 31.842 ± 0.318 |
V-1-c | 0.001 ± 0.001 | 0.062 ± 0.005 | 0.332 ± 0.009 | 58.397 ± 0.467 | 1.164 ± 0.115 | 0.383 ± 0.022 | 51.620 ± 0.723 | |
V-2-l | sunflower | 0.320 ± 0.023 | 0.128 ± 0.011 | 0.042 ± 0.002 | 318.245 ± 8.911 | 1.187 ± 0.078 | 0.009 ± 0.001 | 131.596 ± 2.106 |
V-2a | 0.224 ± 0.007 | 0.038 ± 0.004 | 1.333 ± 0.041 | 80.496 ± 0.724 | 3.797 ± 0.106 | 1.282 ± 0.054 | 81.263 ± 0.975 | |
V-3-l | sunflower | 0.361 ± 0.007 | 0.119 ± 0.009 | 0.428 ± 0.001 | 235.947 ± 6.842 | 5.005 ± 0.445 | 0.011 ± 0.001 | 144.851 ± 2.028 |
V-3a | 0.246 ± 0.002 | 0.030 ± 0.002 | 0.832 ± 0.007 | 89.742 ± 1.346 | 4.653 ± 0.167 | 1.542 ± 0.140 | 95.135 ± 0.856 |
Products | Element Concentrations (mg kg−1) | References | ||||||
---|---|---|---|---|---|---|---|---|
Cd | Co | Cr | Cu | Ni | Pb | Zn | ||
Wheat and corn grains | 0.10 | - | - | - | - | 0.20 | - | [92] |
Sunflower seeds | 0.50 | - | - | - | - | 0.10 | - | [93] |
Crops | 0.20 | - | 2.30 | 73.30 | 67.90 | 0.30 | 99.40 | [94] |
Plant Sample | Plant Species | Element Concentration (mg kg−1 ± σ) | |||||||
---|---|---|---|---|---|---|---|---|---|
F | Na | Mg | Al | Si | P | Cl | Fe | ||
T-1-l 1 | wheat | 17 ± 6 | 830 ± 20 | 9870 ± 867 | 748 ± 48 | 61300 ± 5500 | 3870 ± 220 | n.d. | 3940 ± 1110 |
T-1-c | <18 | 120 ± 20 | 4441 ± 1314 | <140 | <16,900 | 4750 ± 490 | n.d. | <4420 | |
T-2-l | wheat | 270 ± 3 | 1440 ± 26 | 8019 ± 632 | 2850 ± 90 | 155,000 ± 9800 | 2070 ± 190 | <1300 | 4990 ± 930 |
T-2-c | <16 | 290 ± 30 | 4251 ± 1675 | <140 | <15,800 | 2290 ± 290 | n.d. | <4280 | |
T-3-l | corn | 23 ± 4 | 1156 ± 30 | 8249 ± 806 | 2543 ± 100 | 110190 ± 7284 | 2234 ± 174 | <1205 | 5463 ± 1012 |
T-3-c | <10 | 26 ± 10 | <2222 | <78 | <9022 | 2287 ± 293 | n.d. | 3871 ± 1382 | |
T-4-l | corn | 30 ± 5 | 616 ± 28 | 21,802 ± 1859 | 2530 ± 98 | 122,881 ± 7820 | 6436 ± 300 | <1215 | 6302 ± 1289 |
T-4-c | 10 ± 4 | 21 ± 8 | 4481 ± 2008 | 460 ± 74 | <8634 | 3438 ± 264 | n.d. | <2418 | |
T-5-l | sunflower | 9 ± 3 | 241 ± 16 | 66761 ± 3379 | 1159 ± 73 | 22,276 ± 3640 | 6862 ± 306 | <1380 | 5472 ± 1094 |
T-6-l | sunflower | 15 ± 3 | 228 ± 13 | 30,532 ± 2015 | 855 ± 62 | 35,195 ± 4448 | 4629 ± 263 | 3071 ± 703 | 4879 ± 1003 |
S-1-l | wheat | 18 ± 3 | 741 ± 30 | 5043 ± 642 | 1693 ± 76 | 77,847 ± 7695 | 695 ± 131 | n.d. | <2109 |
S-1-c | <10 | 20 ± 6 | 1812 ± 198 | 120 ± 31 | <10031 | 1041 ± 139 | n.d. | <2381 | |
S-2-l | sunflower | <12 | 71 ± 13 | 19,701 ± 2699 | 245 ± 83 | 19,500 ± 5967 | 2486 ± 356 | 18,915 ± 1495 | 6347 ± 2317 |
V-1-l | wheat | <13 | 1342 ± 42 | 4029 ± 1078 | 1122 ± 102 | 80,858 ± 15,848 | 1517 ± 320 | 4029 ± 1078 | 3521 ± 1556 |
V-1-c | 10 ± 4 | 47 ± 14 | <1977 | <90 | <11532 | 1623 ± 261 | <1977 | <3107 | |
V-2-l | sunflower | 13 ± 4 | 124 ± 19 | 17,414 ± 2155 | 286 ± 60 | 12,678 ± 3410 | 2431 ± 294 | 19,254 ± 1240 | 10,133 ± 1900 |
V-3-l | sunflower | 19 ± 6 | 192 ± 25 | 24,557 ± 2701 | 383 ± 84 | <17,525 | 1686 ± 403 | 29,102 ± 1647 | 7952 ± 1606 |
Absorption Band (cm−1) | Band Assignment 1 | Reference | |
---|---|---|---|
Wheat Leaves | Sunflower Leaves | ||
3293 | 3273 | ν (≡C-H): alchine ν(-(C)O-H): alcohols, phenols ν (-(C)-N-H): amine I | 3270–3330 cm−1 ν (≡C-H) [103] 3200–3550 cm−1 ν(-(C)O-H) [103] 3200–3500 cm−1 ν (-(C)-N-H) [103] |
2918, 2850 | 2918, 2850 | νas/sym(CH2): lipids, together with proteins, carbohydrates, and nucleic acids ν(-(C)O-H): carboxylic acids ν(-(C-H): alkane | 2959–2852 cm−1 νas(CH2) [104] 2920 cm−1 νsym(CH2) [105] 2852 cm−1 νsym(CH2) [106] 2500–3300 cm−1 ν(-(C)O-H) [103] 2800–3000 cm −1 ν(-(C-H) [103] |
1729 | 1731 | ν(-C=O): carboxylic acids ν(C=O) of esters: phospholipids, cholesterol esters, hemicellulose, and pectin | 1680–1760 cm−1 ν(-C=O) [103,105] 1733 cm−1 ν(C=O) [106] |
1637 | 1597 | νas(C=O): proteins, lignins ν(-C=C-): phenols β (-(C)-N-H): amine I | 1650–1600 cm−1 νas(C=O) [105] 1550–1700 cm−1 ν(-C=C-) [103] 1500–1650 cm−1 β (-(C)-N-H) [103] |
1419 | 1403 | β(OH): polysaccharides, alcohols, carboxylic acids β(-C-H): alkane | 1414 cm−1 β(OH) [104] 1395–1440 cm−1 β(-(C)O-H) [103] 1400–1470 cm−1 β(-C-H) [103] 1415 cm−1 β(OH) [106] |
1374 | - | β(CH2): hemicellulose, xyloglucans, phenols, and aliphatic structures β(-(H)2C-H): alkane | 1350–1380 cm−1 β(-(H2C-H) [103] 1371 cm−1 β(C-H) [105] |
1317 | 1322 | β(CH2): cellulose ν(-C-OH): carboxylic acids ν(C-OH): phenols | 1369, 1335, 1315, 1280 cm−1 β(CH2) [104] 1210–1320 cm−1 ν(-C-OH) [103] 1310–1390 cm−1 ν(C-OH) [103] |
- | 1240 | amine III ν(C-N); ν(N-H): proteins ν(-C-OH): carbohylic acid ν(-C-F): akyl fluoride ν(-S=O): sulfoxide | 1239 cm−1 ν(C-N); ν(N-H) [104] 1235 cm−1 ν(C-N); ν(N-H) [106] 1210–1320 cm−1 ν(-C-OH) [103] 1000–1400 cm−1 ν(-C-F) [103] 1030–1372 cm−1 ν(-S=O) [103] |
1033 | 1025 | ν(C-O); β(OH): polysaccharides, xyloglucans ν(-C-N-): amine I, II, III ν(-C=S): thioketone | 1035 cm−1 ν(-C-N-) [106] 1020–1200 cm−1 ν(-C-N-) [103,104] 1000–1250 cm−1 ν(-C=S) [103] |
784 | - | β(-(C)-N-H): amine I, II β(C-H): phenols | 660–900 cm−1 β(-(C)-N-H) [103] 680–860 cm−1 β(C-H) [103] |
- | 535 | ν(-C-I), ν(-C-Br): alkyl iodide and alkyl bromide | 500–600 cm−1 ν(-C-I) [103] 515–690 cm−1 ν(-C-Br) [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ene, A.; Moraru, S.S.; Moraru, D.I.; Pantelica, A.; Gosav, S.; Ceoromila, A.M. Major and Trace Element Accumulation in Soils and Crops (Wheat, Corn, Sunflower) around Steel Industry in the Lower Danube Basin and Associated Ecological and Health Risks. Appl. Sci. 2024, 14, 5616. https://doi.org/10.3390/app14135616
Ene A, Moraru SS, Moraru DI, Pantelica A, Gosav S, Ceoromila AM. Major and Trace Element Accumulation in Soils and Crops (Wheat, Corn, Sunflower) around Steel Industry in the Lower Danube Basin and Associated Ecological and Health Risks. Applied Sciences. 2024; 14(13):5616. https://doi.org/10.3390/app14135616
Chicago/Turabian StyleEne, Antoaneta, Sorina Simona Moraru, Dana Iulia Moraru, Ana Pantelica, Steluta Gosav, and Alina Mihaela Ceoromila. 2024. "Major and Trace Element Accumulation in Soils and Crops (Wheat, Corn, Sunflower) around Steel Industry in the Lower Danube Basin and Associated Ecological and Health Risks" Applied Sciences 14, no. 13: 5616. https://doi.org/10.3390/app14135616
APA StyleEne, A., Moraru, S. S., Moraru, D. I., Pantelica, A., Gosav, S., & Ceoromila, A. M. (2024). Major and Trace Element Accumulation in Soils and Crops (Wheat, Corn, Sunflower) around Steel Industry in the Lower Danube Basin and Associated Ecological and Health Risks. Applied Sciences, 14(13), 5616. https://doi.org/10.3390/app14135616