Red Beetroot and Red Capsicum Pepper Purees Boosted with Anise or Fennel Aqueous Extracts
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Sample Preparation
2.2.1. Preparation of the Aqueous Extracts of Fennel and Anise
2.2.2. Preparation of Vegetable Purees Enriched with Herbal Aqueous Extract
2.3. Impact of Processing over Raw Vegetables
2.4. Bioactive Content of Various RTE Purees
2.4.1. The Determination of Antioxidant Activity by DPPH-Free Radical Scavenging Assay
2.4.2. The Determination of Total Phenolic Content (TPC) by the Folin–Ciocâlteu Method
2.4.3. The Determination of Total Flavonoid Content (TFC)
2.4.4. The Determination of Beta-Carotene, Lycopene, and Total Carotenoids
2.5. Determination of the In Vitro Release of Phenols from Vegetable Purees
2.6. FT-IR Spectra of Different RTE Purees
2.7. Statistical Analysis of Data
3. Results and Discussion
3.1. Cooking Loss and Yield of Raw Vegetables
3.2. Bioactive Content of Various RTE Purees
3.3. Determination of the In Vitro Release of Remanent Phenolic Content from Vegetable Purees
3.4. FT-IR Spectra of Different RTE Purees
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koko, B.K.; Konan, A.B.; Kouacou, F.K.A.; Djétouan, J.M.K.; Amonkan, A.K. Galactagogue Effect of Euphorbia hirta (Euphorbiaceae) Aqueous Leaf Extract on Milk Production in Female Wistar Rats. J. Biosci. Med. 2019, 7, 51–65. [Google Scholar] [CrossRef]
- Bettaieb Rebey, I.; Bourgou, S.; Aidi Wannes, W.; Hamrouni Selami, I.; Saidani Tounsi, M.; Marzouk, B.; Fauconnier, M.L.; Ksouri, R. Comparative Assessment of Phytochemical Profiles and Antioxidant Properties of Tunisian and Egyptian Anise (Pimpinella anisum L.) Seeds. Plant Biosyst. 2018, 152, 971–978. [Google Scholar] [CrossRef]
- Tănase, L.-A.; Nistor, O.-V.; Andronoiu, D.-G.; Mocanu, D.-G.; Botez, E. Potential of Herbs as Galactogogues—A Review. Ann. Univ. Dunarea Galati 2021, 45, 199–210. [Google Scholar] [CrossRef]
- Tănase, L.-A.; Nistor, O.-V.; Andronoiu, D.-G.; Mocanu, G.-D.; Botez, E. Effects of Heat Treatments on Various Characteristics of Ready-to-Eat Zucchini Purees Enriched with Anise or Fennel. Molecules 2022, 27, 7964. [Google Scholar] [CrossRef] [PubMed]
- Tănase, L.-A.; Andronoiu, D.G.; Nistor, O.V.; Mocanu, G.D.; Botez, E.; Ștefănescu, B.I. Sweet Potatoes Puree Mixed with Herbal Aqueous Extracts: A Novel Ready-to-Eat Product for Lactating Mothers. Processes 2023, 11, 2219. [Google Scholar] [CrossRef]
- Anastasopoulou, E.; Graikou, K.; Ganos, C.; Calapai, G.; Chinou, I. Pimpinella anisum Seeds Essential Oil from Lesvos Island: Effect of Hydrodistillation Time, Comparison of Its Aromatic Profile with Other Samples of the Greek Market. Safe Use. Food Chem. Toxicol. 2020, 135, 110875. [Google Scholar] [CrossRef] [PubMed]
- Javan, R.; Javadi, B.; Feyzabadi, Z. Breastfeeding: A Review of Its Physiology and Galactogogue Plants in View of Traditional Persian Medicine. Breastfeed. Med. 2017, 12, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Sharopov, F.; Valiev, A.; Satyal, P.; Gulmurodov, I.; Yusufi, S.; Setzer, W.; Wink, M. Cytotoxicity of the Essential Oil of Fennel (Foeniculum vulgare) from Tajikistan. Foods 2017, 6, 73. [Google Scholar] [CrossRef]
- Rolnik, A.; Olas, B. Vegetables from the Cucurbitaceae Family and Their Products: Positive Effect on Human Health. Nutrition 2020, 78, 110788. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.M.; Uslu, N.; Efe, N.S.; Erdem, A.N.; Değerli, Z.; Kulluk, D.A.; Can Sağlık, N. Effect of Thermal Processing on the Bioactive Compounds and Color Parameters of Types of Three Sweet Pepper. J. Food Process. Preserv. 2021, 45, e15661. [Google Scholar] [CrossRef]
- Cui, R.; Fei, Y.; Zhu, F. Physicochemical, Structural and Nutritional Properties of Steamed Bread Fortified with Red Beetroot Powder and Their Changes during Breadmaking Process. Food Chem. 2022, 383, 132547. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Kaur, K. Effect of Processing on Color, Rheology and Bioactive Compounds of Different Sweet Pepper Purees. Plant Foods Hum. Nutr. 2020, 75, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Stephen, J.; Manoharan, D.; Radhakrishnan, M. Immune Boosting Functional Components of Natural Foods and Its Health Benefits. Food Prod. Process. Nutr. 2023, 5, 61. [Google Scholar] [CrossRef]
- Janiszewska-Turak, E.; Rybak, K.; Grzybowska, E.; Konopka, E.; Witrowa-Rajchert, D. The Influence of Different Pretreatment Methods on Color and Pigment Change in Beetroot Products. Molecules 2021, 26, 3683. [Google Scholar] [CrossRef]
- Jiao, Q.; Lin, B.; Mao, Y.; Jiang, H.; Guan, X.; Li, R.; Wang, S. Effects of Combined Radio Frequency Heating with Oven Baking on Product Quality of Sweet Potato. Food Control 2022, 139, 109097. [Google Scholar] [CrossRef]
- ElGamal, R.; Song, C.; Rayan, A.M.; Liu, C.; Al-Rejaie, S.; ElMasry, G. Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products: A Comprehensive Overview. Agronomy 2023, 13, 1580. [Google Scholar] [CrossRef]
- Mahanta, C. Effect of Steaming, Boiling and Microwave Cooking on the Total Phenolics, Flavonoids and Antioxidant Properties of Different Vegetables of Assam, India. Int. J. Food Nutr. Sci. 2012, 2, 9. [Google Scholar]
- Butnariu, L.T.; Nistor, O.; Andronoiu, D.; Mocanu, G.-D.; Botezatu Dediu, A.V.; Botez, E. Different Types of Meatballs Enriched with Wild Thyme/Lemon. Molecules 2022, 27, 3920. [Google Scholar] [CrossRef] [PubMed]
- Sengun, I.Y.; Yildiz Turp, G.; Icier, F.; Kendirci, P.; Kor, G. Effects of Ohmic Heating for Pre-Cooking of Meatballs on Some Quality and Safety Attributes. LWT-Food Sci. Technol. 2014, 55, 232–239. [Google Scholar] [CrossRef]
- Paja̧k, P.; Socha, R.; Gałkowska, D.; Rożnowski, J.; Fortuna, T. Phenolic Profile and Antioxidant Activity in Selected Seeds and Sprouts. Food Chem. 2014, 143, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Turturica, M.; Stənciuc, N.; Bahrim, G.; Râpeanu, G. Effect of Thermal Treatment on Phenolic Compounds from Plum (Prunus domestica) Extracts—A Kinetic Study. J. Food Eng. 2015, 171, 200–207. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Escoto, D.F.; Ramborger, B.P.; Gayer, M.C.; Rodrigues, D.T.; Gasparoto Denardin, E.L.; Roehrs, R.; Roehrs, M. Lycopene: Food Sources, Potential Role in Human Health and Antioxidant Effects; Bailey, J.R., Ed.; Nova Science Publishers: New York, NY, USA, 2015. [Google Scholar]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static In Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.G.; Shin, Y.J.; Lee, S.; Lee, J.; Yoo, S.M. Effects of Different Cooking Methods on the Antioxidant Properties of Red Pepper (Capsicum annuum L.). Prev. Nutr. Food Sci. 2012, 17, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Suresh, D.; Manjunatha, H.; Srinivasan, K. Effect of Heat Processing of Spices on the Concentrations of Their Bioactive Principles: Turmeric (Curcuma longa), Red Pepper (Capsicum annuum) and Black Pepper (Piper nigrum). J. Food Compos. Anal. 2007, 20, 346–351. [Google Scholar] [CrossRef]
- Ramos, J.A.; Furlaneto, K.A.; De Mendonça, V.Z.; De Carvalho Mariano-Nasser, F.A.; Lundgren, G.A.; Fujita, E.; Vieites, R.L. Influence of Cooking Methods on Bioactive Compounds in Beetroot. Semin. Agrar. 2017, 38, 1295–1302. [Google Scholar] [CrossRef]
- Paciulli, M.; Medina-Meza, I.G.; Chiavaro, E.; Barbosa-Cánovas, G.V. Impact of Thermal and High Pressure Processing on Quality Parameters of Beetroot (Beta vulgaris L.). LWT-Food Sci. Technol. 2016, 68, 98–104. [Google Scholar] [CrossRef]
- Ismail, N.; Revathi, R. Studies on the Effects of Blanching Time, Evaporation Time, Temperature and Hydrocolloid on Physical Properties of Chili (Capsicum annum var kulai) Puree. LWT-Food Sci. Technol. 2006, 39, 91–97. [Google Scholar] [CrossRef]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. The Effect of Cooking Methods on Total Phenolics and Antioxidant Activity of Selected Green Vegetables. Food Chem. 2005, 93, 713–718. [Google Scholar] [CrossRef]
- Sawicki, T.; Bączek, N.; Wiczkowski, W. Betalain Profile, Content and Antioxidant Capacity of Red Beetroot Dependent on the Genotype and Root Part. J. Funct. Foods 2016, 27, 249–261. [Google Scholar] [CrossRef]
- Mocanu, G.-D.; Chirilă, A.C.; Vasile, A.M.; Andronoiu, D.G.; Nistor, O.-V.; Barbu, V.; Stănciuc, N. Tailoring the Functional Potential of Red Beet Purées by Inoculation with Lactic Acid Bacteria and Drying. Foods 2020, 9, 1611. [Google Scholar] [CrossRef] [PubMed]
- Laib, I.; Kehal, F.; Haddad, N.E.; Boudjemia, T.; Barkat, M. Effect of In Vitro Gastrointestinal Digestion on Phenolic Compounds and the Antioxidant Activity of Aloe Vera. Acta Sci. Nat. 2020, 7, 11–25. [Google Scholar] [CrossRef]
- Velderrain-Roddríguez, G.; Quirós-Sauceda, A.; Mercadod-Mercadod, G.; Ayala-Zavala, J.F.; Astiazarán-García, H.; Rodbles-Sánchez, R.M.; Wall-Medranod, A.; Sayagod-Ayerdi, S.; Godnzález-Aguilar, G.A. Effect of Dietary Fiber on the Bioaccessibility of Phenolic Compounds of Mango, Papaya and Pineapple Fruits by an In Vitro Digestion Model. Food Sci. Technol. 2016, 36, 188–194. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Valese, A.C.; Daguer, H.; Bergamo, G.; Azevedo, M.S.; Nehring, P.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Effect of In Vitro Gastrointestinal Digestion on the Bioaccessibility of Phenolic Compounds, Minerals, and Antioxidant Capacity of Mimosa scabrella Bentham Honeydew Honeys. Food Res. Int. 2017, 99, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Lucas-González, R.; Viuda-Martos, M.; Pérez-Alvarez, J.A.; Fernández-López, J. In Vitro Digestion Models Suitable for Foods: Opportunities for New Fields of Application and Challenges. Food Res. Int. 2018, 107, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Wootton-Beard, P.C.; Moran, A.; Ryan, L. Stability of the Total Antioxidant Capacity and Total Polyphenol Content of 23 Commercially Available Vegetable Juices before and after In Vitro Digestion Measured by FRAP, DPPH, ABTS and Folin-Ciocalteu Methods. Food Res. Int. 2011, 44, 217–224. [Google Scholar] [CrossRef]
- Baker, I.; Chohan, M.; Opara, E.I. Impact of Cooking and Digestion, In Vitro, on the Antioxidant Capacity and Anti-Inflammatory Activity of Cinnamon, Clove and Nutmeg. Plant Foods Hum. Nutr. 2013, 68, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Las Heras, R.; Pinazo, A.; Heredia, A.; Andrés, A. Evaluation Studies of Persimmon Plant (Diospyros kaki) for Physiological Benefits and Bioaccessibility of Antioxidants by In Vitro Simulated Gastrointestinal Digestion. Food Chem. 2017, 214, 478–485. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, Z.; Tang, Y.; Chen, P.X.; Liu, R.; Dan Ramdath, D.; Liu, Q.; Hernandez, M.; Tsao, R. Bioaccessibility, In Vitro Antioxidant and Anti-Inflammatory Activities of Phenolics in Cooked Green Lentil (Lens culinaris). J. Funct. Foods 2017, 32, 248–255. [Google Scholar] [CrossRef]
- Chait, Y.A.; Gunenc, A.; Bendali, F.; Hosseinian, F. Simulated Gastrointestinal Digestion and In Vitro Colonic Fermentation of Carob Polyphenols: Bioaccessibility and Bioactivity. LWT 2020, 117, 108623. [Google Scholar] [CrossRef]
- Čopíková, J.; Černá, M.; Novotná, M.; Kaasová, J.; Synytsya, A. Application of FT-IR Spectroscopy in Detection of Food Hydrocolloids in Confectionery Jellies and Food Supplements. Czech J. Food Sci. 2001, 19, 51–56. [Google Scholar] [CrossRef]
- Guo, J.; Kong, L.; Du, B.; Xu, B. Morphological and Physicochemical Characterization of Starches Isolated from Chestnuts Cultivated in Different Regions of China. Int. J. Biol. Macromol. 2019, 130, 357–368. [Google Scholar] [CrossRef] [PubMed]
Type of Processing | Processing with Hot Air | Processing with Steam | ||
---|---|---|---|---|
Vegetal Material | Red Beetroot | Red Capsicum Pepper | Red Beetroot | Red Capsicum Pepper |
Cooking loss, % | 35.66 ± 0.53 A | 33.93 ± 0.08 B | 11.44 ± 0.25 C | 11.42 ± 0.21 C |
Cooking yield, % | 64.34 ± 0.53 C | 66.07 ± 0.08 B | 88.56 ± 0.26 A | 88.58 ± 0.21 A |
Phytochemicals and Antioxidant Activity | T0 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Red Beetroot | Red capsicum Pepper | |||||||||||
Processing with Steam | Processing with Hot Air | Processing with Steam | Processing with Hot Air | |||||||||
SM1 | EFSA | EASA | SM2 | EFSC | EASC | AM1 | EFAA | EAAA | AM2 | EFAC | EAAC | |
AA, µM Trolox/g DW | 30.38 ± 7.35 B | 63.73 ± 1.97 A | 49.8 ± 4.23 A | 33.05 ± 6.89 B | 54 ± 6.39 A | 58.82 ± 3.52 A | 65.37 ± 0.95 B | 67.98 ± 2.05 A, B | 71.08 ± 1.9 A | 17.21 ± 0.16 D | 36.25 ± 1.79 C | 32.27 ± 1.31 C |
TPC, mg GAE/g DW | 10.69 ± 0.05 C, D | 13.79 ± 0.07 A | 12.61 ± 0.27 B | 7.48 ± 0.06 E | 10.41 ± 0.08 D | 10.81 ± 0.13 C | 14.51 ± 0.7 B | 14.78 ± 0.67 B | 16.42 ± 0.47 A | 8.73 ± 0.33 C | 14.94 ± 0.37 B | 14.76 ± 0.3 B |
TFC, mg EQ/g DW | 12.09 ± 0.5 C | 15.37 ± 0.06 A | 13.49 ± 0.19 B | 6.92 ± 0.18 E | 10.37 ± 0.15 D | 10.96 ± 0.28 D | 8.52 ± 0.62 A | 9.74 ± 0.76 A | 9.44 ± 0.59 A | 5.63 ± 0.25 B | 5.94 ± 0.26 B | 6.78 ± 0.38 B |
BC, mg/g DW | nd | nd | nd | nd | nd | nd | 35.48 ± 0.02 A | 18.06 ± 0.01 C | 32.63 ± 0.43 B | 7.67 ± 0.01 F | 9.71 ± 0.06 E | 15.25 ± 0.13 D |
LYC, mg/g DW | nd | nd | nd | nd | nd | nd | 7.6 ± 0.02 C | 14.69 ± 0.00 A | 13.94 ± 0.1 B | 3.3 ± 0.01 F | 4.13 ± 0.05 E | 6.39 ± 0.06 D |
TC, mg/g DW | nd | nd | nd | nd | nd | nd | 17.48 ± 0.02 C | 34.07 ± 0.19 A | 31.46 ± 0.38 B | 7.5 ± 0.00 F | 9.44 ± 0.04 E | 14.88 ± 0.16 D |
T7 | ||||||||||||
Processing with Steam | Processing with Hot Air | Processing with Steam | Processing with Hot Air | |||||||||
AA, µM Trolox/g DW | 95.16 ± 4.54 C | 107.97 ± 0.51 B | 117.52 ± 3.83 A | 68.57 ± 0.05 E | 75.69 ± 0.09 D | 72.46 ± 0.14 D, E | 30.42 ± 3.35 C | 79.81 ± 3.98 A | 86.05 ± 9.55 A | 20.06 ± 0.16 C | 54.06 ± 1.41 B | 75.32 ± 2.75 A |
TPC, mg GAE/g DW | 12.05 ± 0.34 B | 13.8 ± 0.61 B | 16.88 ± 1.38 A | 6.83 ± 0.75 C | 8.59 ± 0.37 C | 8.66 ± 0.7 C | 16.84 ± 0.75 B | 20.77 ± 0.08 A | 19.57 ± 0.0 A | 10.86 ± 0.47 D | 14.19 ± 0.63 C | 16.11 ± 0.99 B |
TFC, mg EQ/g DW | 11.93 ± 0.32 B | 12.44 ± 0.05 B | 15.76 ± 0.17 A | 6.89 ± 0.11 D | 8.19 ± 0.18 C | 7.86 ± 0.21 C | 9.15 ± 0.04 A | 9.97 ± 0.05 A | 10.43 ± 1.19 A | 5.77 ± 0.0 B | 5.76 ± 0.1 B | 6.92 ± 0.03 B |
BC, mg/g DW | nd | nd | nd | nd | nd | nd | 12.81 ± 0.14 C | 21.67 ± 0.03 B | 24.35 ± 0.1 A | 8.27 ± 0.12 E | 8.29 ± 0.05 E | 10.15 ± 0.06 D |
LYC, mg/g DW | nd | nd | nd | nd | nd | nd | 5.56 ± 0.06 C | 8.89 ± 0.0 B | 10.18 ± 0.07 A | 4.27 ± 0.04 D | 3.57 ± 0.02 E | 3.04 ± 0.08 E |
TC, mg/g DW | nd | nd | nd | nd | nd | nd | 12.41 ± 0.09 C | 21.03 ± 0.04 B | 23.52 ± 0.07 A | 8.05 ± 0.13 E | 8.06 ± 0.03 E | 9.84 ± 0.0 D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tănase, L.-A.; Nistor, O.-V.; Mocanu, G.-D.; Andronoiu, D.-G.; Botez, E.; Ștefănescu, B.I. Red Beetroot and Red Capsicum Pepper Purees Boosted with Anise or Fennel Aqueous Extracts. Appl. Sci. 2024, 14, 5650. https://doi.org/10.3390/app14135650
Tănase L-A, Nistor O-V, Mocanu G-D, Andronoiu D-G, Botez E, Ștefănescu BI. Red Beetroot and Red Capsicum Pepper Purees Boosted with Anise or Fennel Aqueous Extracts. Applied Sciences. 2024; 14(13):5650. https://doi.org/10.3390/app14135650
Chicago/Turabian StyleTănase (Butnariu), Luiza-Andreea, Oana-Viorela Nistor, Gabriel-Dănuț Mocanu, Doina-Georgeta Andronoiu, Elisabeta Botez, and Bogdan Ioan Ștefănescu. 2024. "Red Beetroot and Red Capsicum Pepper Purees Boosted with Anise or Fennel Aqueous Extracts" Applied Sciences 14, no. 13: 5650. https://doi.org/10.3390/app14135650
APA StyleTănase, L. -A., Nistor, O. -V., Mocanu, G. -D., Andronoiu, D. -G., Botez, E., & Ștefănescu, B. I. (2024). Red Beetroot and Red Capsicum Pepper Purees Boosted with Anise or Fennel Aqueous Extracts. Applied Sciences, 14(13), 5650. https://doi.org/10.3390/app14135650