Biological Assessment of Green Waste and Dredged Sediment Co-Composting for Nursery Plant Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Green Waste and Dredged Sediment Collection
2.2. Co-Composting Set Up and Monitoring
2.3. Ecoenzyme Activities and Stoichiometry
2.4. Microbial Biomass, Respiration, and Abundance
2.5. Plant Trial
2.6. Statistical Analysis
3. Results
3.1. Co-Compost Maturity and Stability
3.2. Microbial Biomass, Respiration, and Abundance
3.3. Plant Trial
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azim, K.; Soudi, B.; Boukhari, S.; Perissol, C.; Roussos, S.; Thami, A.I. Composting parametersand compost quality: A literature review. Org. Agric. 2018, 8, 141–158. [Google Scholar] [CrossRef]
- Moorhead, D.; Cui, Y.; Sinsabaugh, R.; Schimel, J. Interpreting patterns of ecoenzymatic stoichiometry. Soil Biol. Biochem. 2023, 180, 108997. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Lewu, F.B.; Mulidzi, R.; Ncube, B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant. Nutr. 2017, 17, 794–807. [Google Scholar] [CrossRef]
- Nemet, F.; Perić, K.; Lončarić, Z. Microbiological activities in the composting process—A review. COLUMELLA J. Agric. Environ. Sci. 2021, 8, 41–53. [Google Scholar] [CrossRef]
- Federici, E.; Pepi, M.; Esposito, A.; Scargetta, S.; Fidati, L.; Gasperini, S.; Cenci, G.; Altieri, R. Two-phase olive mill waste composting: Community dynamics and functional role of the resident microbiota. Bioresour. Technol. 2011, 102, 10965–10972. [Google Scholar] [CrossRef] [PubMed]
- Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. Waste management through composting: Challenges and potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Amuah, E.E.Y.; Fei-Baffoe, B.; Sackey, L.N.A.; Douti, N.B.; Kazapoe, R.W. A review of the principles of composting: Understanding the processes, methods, merits, and demerits. Org. Agric. 2022, 12, 547–562. [Google Scholar] [CrossRef]
- Hernández-Lara, A.; Ros, M.; Cuartero, J.; Bustamante, M.Á.; Moral, R.; Andreu-Rodríguez, F.J.; Fernández, J.A.; Egea-Gilabert, C.; Pascual, J.A. Bacterial and fungal community dynamics during different stages of agro-industrial waste composting and its relationship with compost suppressiveness. Sci. Total Environ. 2022, 805, 150330. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Sun, H.; Chen, E.; Yang, M.; Wu, C.; Sun, X.; Wang, Q. From waste to wealth: Innovations in organic solid waste composting. Environ. Res. 2023, 2023, 115977. [Google Scholar] [CrossRef]
- Inghels, D.; Dullaert, W.; Bloemhof, J. A model for improving sustainable green waste recovery. Resour. Conserv. Recy. 2016, 110, 61–73. [Google Scholar] [CrossRef]
- Reyes-Torres, M.; Oviedo-Ocaña, E.R.; Dominguez, I.; Komilis, D.; Sánchez, A. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Manag. 2018, 77, 486–499. [Google Scholar] [CrossRef]
- Wu, D.; Wei, Z.; Mohamed, T.A.; Zheng, G.; Qu, F.; Wang, F.; Zhao, Y.; Song, C. Lignocellulose biomass bioconversion during composting: Mechanism of action of lignocellulase, pretreatment methods and future perspectives. Chemosphere 2022, 286, 131635. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xie, Y.; Sheng, H. Green waste characteristics and sustainable recycling options. Environ. Dev. Sustain. 2023, 11, 100098. [Google Scholar] [CrossRef]
- Mattei, P.; Cincinelli, A.; Martellini, T.; Natalini, R.; Pascale, E.; Renella, G. Reclamation of river dredged sediments polluted by PAHs by co-composting with green waste. Sci. Total Environ. 2016, 566, 567–574. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, L. Combined addition of biochar, lactic acid, and pond sediment improves green waste composting. Sci. Total Environ. 2022, 852, 158326. [Google Scholar] [CrossRef]
- Macci, C.; Vannucchi, F.; Doni, S.; Peruzzi, E.; Lucchetti, S.; Castellani, M.; Masciandaro, G. Recovery and environmental recycling of sediments: The experience of CNR-IRET Pisa. J. Soils Sediments 2022, 22, 2865–2872. [Google Scholar] [CrossRef]
- Macci, C.; Vannucchi, F.; Peruzzi, E.; Doni, S.; Lucchetti, S.; Waska, K.; Heřmánková, M.; Scodellini, R.; Cincinelli, A.; Nicese, F.P.; et al. A low impact sediment and green waste co-compost: Can it replace peat in the nursery sector? Environ. Dev. Sustain. 2023, 1–23. [Google Scholar] [CrossRef]
- Peruzzi, E.; Macci, C.; Doni, S.; Zelari, L.; Masciandaro, G. Co-composting as a management strategy for Posidonia oceanica residues and dredged sediments. Waste Biomass Valoriz. 2020, 11, 4907–4919. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, C.; Liu, Y.; Li, A.; Hu, X.; Chen, J.; Zhang, S.; Li, X.; Che, R.; Li, S.; et al. Green waste and sewage sludge feeding ratio alters co-composting performance: Emphasis on the role of bacterial community during humification. Bioresour. Technol. 2023, 380, 129014. [Google Scholar] [CrossRef]
- Mattei, P.; Pastorelli, R.; Rami, G.; Mocali, S.; Giagnoni, L.; Gonnelli, C.; Renella, G. Evaluation of dredged sediment co-composted with green waste as plant growing media assessed by eco-toxicological tests, plant growth and microbial community structure. J. Hazard. Mater. 2017, 333, 144–153. [Google Scholar] [CrossRef]
- Nicese, F.P.; Azzini, L.; Lucchetti, S.; Macci, C.; Vannucchi, F.; Masciandaro, G.; Pantani, O.L.; Arfaioli, P.; Pathan, S.I.; Pietramellara, G.; et al. Co-Composting of Green Waste and Dredged Sediments Can Reduce the Environmental Impact of the Potted Nursery without Affecting Plant Growth. Appl. Sci. 2024, 14, 1538. [Google Scholar] [CrossRef]
- Pascual, J.A.; Ceglie, F.; Tuzel, Y.; Koller, M.; Koren, A.; Hitchings, R.; Tittarelli, F. Organic substrate for transplant production in organic nurseries. A Review. Agron. Sustain. Dev. 2018, 38, 1–23. [Google Scholar] [CrossRef]
- Räsänen, A.; Albrecht, E.; Annala, M.; Aro, L.; Laine, A.M.; Maanavilja, L.; Mustajoki, J.; Ronkanen, A.; Silvan, N.; Tarvainen, O.; et al. After-use of peat extraction sites—A systematic review of biodiversity, climate, hydrological and social impacts. Sci. Total Environ. 2023, 2023, 163583. [Google Scholar] [CrossRef]
- Vannucchi, F.; Macci, C.; Doni, S.; Longo, V.; Ugolini, F.; Masciandaro, G.; Peruzzi, E. Posidonia-based compost and dredged sediment in growing media improve tolerance and nutrient uptake in ornamental plants. Sustainability 2022, 14, 14419. [Google Scholar] [CrossRef]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef]
- Hill, B.; Elonen, C.; Seifert, L.; May, A.; Tarquinio, E. Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers. Ecol. Indic. 2012, 18, 540–551. [Google Scholar] [CrossRef]
- Sinsabaugh, R.; Lauber, C.; Weintraub, M.; Ahmed, B.; Allison, S.; Crenshaw, C.; Contosta, A.; Cusack, D.; Frey, S.; Gallo, M.; et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef]
- Xu, L.; Xing, X.; Cui, H.; Peng, J.; Bai, J.; Zheng, X. Soil biological characteristic, nutrient contents and stoichiometry as affected by different types of remediation in a smelter-impacted soil. Chem. Ecol. 2020, 36, 419–433. [Google Scholar] [CrossRef]
- Yadav, R.; Tripathi, P.; Singh, R.P.; Khare, P. Assessment of soil enzymatic resilience in chlorpyrifos contaminated soils by biochar aided Pelargonium graveolens L. plantation. Environ. Sci. Pollut. Res. 2023, 30, 7040–7055. [Google Scholar] [CrossRef]
- Macci, C.; Peruzzi, E.; Doni, S.; Vannucchi, F.; Masciandaro, G. Landfarming as a sustainable management strategy for fresh and phytoremediated sediment. Environ. Sci. Pollut. Res. Int. 2021, 28, 39692–39707. [Google Scholar] [CrossRef]
- Decreto legislativo 75/2010. Riordino e Revisione Della Disciplina in Materia di Fertilizzanti. GU Serie Generale n.303 del 29-12-2022. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/10087 (accessed on 20 June 2024).
- Senesi, N.; Brunetti, G. Chemical and physico-chemical parameters for quality evaluation of humic substances produced during composting. In The Science of Composting; de Bertoldi, M., Sequi, P., Lemmes, B., Papi, T., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 195–212. [Google Scholar]
- EPA 8270E; Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (gc/ms). EPA SW-846, US GPO: Washington, DC, USA, 2018.
- UNI EN 14039; Characterization of Waste—Determination of Hydrocarbon Content in the Range of C10 to C40 by Gas Chromatography. EN: Brussels, Belgium, 2005.
- Hoekstra, N.J.; Bosker, T.; Lantinga, E.A. Effects of cattle dung from farms with different feeding strategies on germination and initial root growth of cress (Lepidium sativum L.). Agric. Ecosyst. Environ. 2002, 93, 189–196. [Google Scholar] [CrossRef]
- Marx, M.C.; Wood, M.; Jarvis, S.C. A microplate fluorimetric assay fir the study of enzyme diversity in soils. Soil Biol. Biochem. 2001, 33, 1633–1640. [Google Scholar] [CrossRef]
- Vepsäläinen, M.; Kukkonen, S.; Vestberg, M.; Sirviö, H.; Niemi, R.M. Application of soil enzyme activity test kit in a field experiment. Soil Biol. Biochem. 2001, 33, 1665–1672. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Follstad Shah, J.J. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 313–343. [Google Scholar] [CrossRef]
- Fournasier, F.; Asher, J.; Ceccherini, M.T.; Tomat, E.; Pietramellara, G. A simplified rapid, low-cost and versatile DNA-based assesment of soil microbial biomass. Ecol. Indic. 2014, 45, 75–82. [Google Scholar] [CrossRef]
- Anderson, J.P.E.; Domsch, K.H. Selective inhibition as a method for estimation of the relative activities of microbial populations in soils. Bull. Ecol. Res. Comm. 1973, 17, 281–282. [Google Scholar]
- Muyzer, G.; de Waal, E.C.; Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Simmons, S.L.; Bazylinski, D.A.; Edwards, K.J. Population dynamics of marine magnetotactic bacteria in a meromictic salt pond described with qPCR. Environ. Microbiol. 2007, 9, 2162–2174. [Google Scholar] [CrossRef]
- Chemidlin Prévost-Bouré, N.; Christen, R.; Dequiedt, S.; Mougel, C.; Lelièvre, M.; Jolivet, C.; Shahbazkia, H.R.; Guillou, L.; Arrouays, D.; Ranjard, L. Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS ONE 2011, 6, e24166. [Google Scholar] [CrossRef]
- Decreto legislative 152/2006. Norme in Materia Ambientale. GU Serie Generale n.88 del 14-04-2006—Suppl. Ordinario n. 96. Available online: https://www.gazzettaufficiale.it/dettaglio/codici/materiaAmbientale (accessed on 20 June 2024).
- Bremer, E.; Krämer, R. Responses of microorganisms to osmotic stress. Annu. Rev. Microbiol. 2019, 73, 313–334. [Google Scholar] [CrossRef]
- Yan, N.; Marschner, P.; Cao, W.; Zuo, C.; Qin, W. Influence of salinity and water content on soil microorganisms. Int. Soil Water Conserv. Res. 2012, 3, 316–323. [Google Scholar] [CrossRef]
- Sánchez, A. A perspective on the use of respiration indices beyond the measurement of the stability of compost. Waste Manag. Bull. 2023, 1, 1–5. [Google Scholar] [CrossRef]
- Onwosi, C.O.; Igbokwe, V.C.; Odimba, J.N.; Eke, I.E.; Nwankwoala, M.O.; Iroh, I.N.; Ezeogu, L.I. Composting technology in waste stabilization: On the methods, challenges and future prospects. J. Environ. Manag. 2017, 190, 140–157. [Google Scholar] [CrossRef] [PubMed]
- Jurado, M.M.; Suárez-Estrella, F.; Vargas-García, M.C.; López, M.J.; López-González, J.A.; Moreno, J. Evolution of enzymatic activities and carbon fractions throughout composting of plant waste. J. Environ. Manag. 2014, 133, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Ou, Y.L.; Lin, J.G. Co-composting of green waste and food waste at low C/N ratio. Waste Manag. 2010, 30, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Nikaeen, M.; Nafez, A.H.; Bina, B.; Nabavi, B.F.; Hassanzadeh, A. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting. Waste Manag. 2015, 39, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Elser, J.J.; Acharya, K.; Kyle, M.; Cotner, J.; Makino, W.; Markow, T.; Watts, T.; Hobbie, S.; Fagan, W.; Schade, J.; et al. Growth rate–stoichiometry couplings in diverse biota. Ecology 2003, 6, 936–943. [Google Scholar] [CrossRef]
- Gómez, R.B.; Lima, F.V.; Ferrer, A.S. The use of respiration indices in the composting process: A review. Waste Manag. Res. 2006, 24, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Nin, S.; Bonetti, D.; Antonetti, M.; Peruzzi, E.; Manzi, D.; Macci, C. Sediment-Based Growing Media Provides a Window Opportunity for Environmentally Friendly Production of Ornamental Shrubs. Agronomy 2023, 13, 92. [Google Scholar] [CrossRef]
- Diara, C.; Incrocci, L.; Pardossi, A.; Minuto, A. Reusing greenhouse growing media. Acta Hortic. 2012, 927, 793–800. [Google Scholar] [CrossRef]
Chemical Parameters | S | GW | |
pH | 7.68 ± 0.04 | 6.51 ± 0.01 | |
EC | dS/m | 4.20 ± 0.02 | 0.17 ± 0.01 |
TOC | % | 1.41 ± 0.03 | 34.1 ± 5.7 |
TN | % | 0.18 ± 0.01 | 1.64 ± 0.02 |
TOC/TN | 7.83 | 20.8 | |
Organic contamination | |||
C > 12 | mg kg−1 | 133.5 ± 10.2 | |
PCB | <LOD | ||
Heavy metals | |||
Cu | mg kg−1 | 56.6 ± 4.7 | 35.3 ± 5.6 |
Zn | 108 ± 1.0 | 24.6 ± 2.4 | |
Cd | <LOD | <LOD | |
Ni | 50.8 ± 1.0 | 7.02 ± 0.30 | |
Pb | 16.6 ± 0.7 | 3.11 ± 0.91 | |
Cr | 58.5 ± 5.6 | 19.3 ± 3.1 |
Pile | Sampling Time | ||||
---|---|---|---|---|---|
4 | 30 | 60 | 100 | ||
pH | A | 8.2 ± 0.13 Cb | 7.9 ± 0.23 Bb | 7.2 ± 0.15 Aa | 7.4 ± 0.08 ABa |
B | 7.7 ± 0.13 Bb | 7.5 ± 0.03 Aa | 7.4 ± 0.04 Ba | 7.5 ± 0.03 Ba | |
C | 7.3 ± 0.16 Aa | 7.4 ± 0.00 Aa | 7.3 ± 0.06 ABa | 7.3 ± 0.15 Aa | |
EC | A | 3.0 ± 0.29 Ba | 3.0 ± 0.33 Ca | 2.9 ± 0.21 Ca | 2.7 ± 0.2 Ca |
B | 2.3 ± 0.16 Aa | 2.6 ± 0.06 Ba | 2.4 ± 0.30 Ba | 2.4 ± 0.15 Ba | |
C | 2.5 ± 0.30 Ac | 1.8 ± 0.14 Ab | 1.3 ± 0.09 Aa | 1.2 ± 0.00 Aa | |
TOC | A | 1.72 ± 0.63 Aa | 1.72 ± 0.40 Aa | 1.65 ± 0.05 Aa | 1.86 ± 0.06 Aa |
B | 4.33 ± 1.45 Bab | 4.07 ± 0.28 Ba | 5.78 ± 0.84 Bb | 3.54 ± 0.62 Ba | |
C | 11.25 ± 0.52 Cc | 10.49 ± 0.10 Cb | 11.66 ± 0.49 Cc | 9.39 ± 0.25 Ca | |
TN | A | 0.22 ± 0.09 Aa | 0.14 ± 0.01 Aa | 0.13 ± 0.01 Aa | 0.15 ± 0.01 Aa |
B | 0.36 ± 0.07 Bab | 0.31 ± 0.03 Ba | 0.38 ± 0.01 Bb | 0.31 ± 0.02 Ba | |
C | 1.17 ± 0.08 Cd | 0.74 ± 0.02 Cb | 0.71 ± 0.00 Cc | 0.58 ± 0.02 Ca | |
TOC/TN | A | 8.0 ± 7.19 Aa | 12.2 ± 2.73 Ab | 12.4 ± 2.87 Ab | 12.7 ± 4.84 Ab |
B | 11.8 ± 4.76 Ba | 13.3 ± 4.21 ABab | 15.1 ± 4.48 Bb | 11.4 ± 3.96 Aa | |
C | 9.6 ± 5.69 Aa | 14.2 ± 5.08 Bb | 16.4 ± 4.12 Cc | 16.2 ± 5.20 Bc | |
HA | A | 71.9 ± 10.17 Bc | 27.3 ± 3.86 Aa | 28.7 ± 4.06 Aa | 48.4 ± 6.84 ABb |
B | 47.6 ± 6.73 Aa | 42.1 ± 5.95 Ba | 44.8 ± 6.34 Ba | 39.6 ± 5.60 Aa | |
C | 56.9 ± 8.05 Ab | 50.8 ± 7.18 Bab | 41.2 ± 5.83 Ba | 52.0 ± 7.35 Bab |
Dry Weight (kg) | |||||||
---|---|---|---|---|---|---|---|
Substrate | Height (cm) | Aboveground | Belowground | Total | Shoot/ Root | DW/ FW | Leaf Area (m2) |
Control | 128 ± 2.5 a | 0.46 ± 0.05 a | 0.14 ± 0.02 a | 0.60 ± 0.03 a | 3.31 ± 0.78 ns | 0.53 ± 0.01 ns | 0.92 ± 0.02 a |
A | 104 ± 7.0 b | 0.31 ± 0.03 b | 0.08 ± 0.01 b | 0.39 ± 0.02 b | 3.57 ± 0.49 ns | 0.55 ± 0.02 ns | 0.61 ± 0.07 b |
B | 113 ± 9.5 ab | 0.34 ± 0.03 b | 0.11 ± 0.01 ab | 0.45 ± 0.02 b | 3.24 ± 0.60 ns | 0.53 ± 0.02 ns | 0.66 ± 0.10 b |
C | 110 ± 4.0 b | 0.33 ± 0.04 b | 0.09 ± 0.02 b | 0.42 ± 0.05 b | 3.60 ± 0.30 ns | 0.55 ± 0.01 ns | 0.76 ± 0.08 ab |
Dry Weight (kg) | |||||||
---|---|---|---|---|---|---|---|
Substrate | Height (cm) | Aboveground | Belowground | Total | Shoot/ Root | DW/ FW | Leaf Area (m2) |
Control | 45.3 ± 5.77 ns | 0.25 ± 0.01 ns | 0.05 ± 0.02 ns | 0.30 ± 0.03 ns | 5.13 ± 1.58 ns | 0.42 ± 0.03 ns | 0.63 ± 0.08 ns |
A | 48.7 ± 5.77 ns | 0.23 ± 0.05 ns | 0.07 ± 0.01 ns | 0.30 ± 0.07 ns | 3.25 ± 0.35 ns | 0.43 ± 0.01 ns | 0.61 ± 0.17 ns |
B | 46.7 ± 8.15 ns | 0.22 ± 0.05 ns | 0.06 ± 0.01 ns | 0.28 ± 0.05 ns | 3.94 ± 1.03 ns | 0.43 ± 0.03 ns | 0.56 ± 0.11 ns |
C | 44.7 ± 2.08 ns | 0.20 ± 0.04 ns | 0.05 ± 0.01 ns | 0.25 ± 0.05 ns | 3.58 ± 0.13 ns | 0.44 ± 0.02 ns | 0.54 ± 0.05 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vannucchi, F.; Peruzzi, E.; Doni, S.; Manzi, D.; Azzini, L.; Pathan, S.I.; Pietramellara, G.; Arfaioli, P.; Nicese, F.P.; Masciandaro, G.; et al. Biological Assessment of Green Waste and Dredged Sediment Co-Composting for Nursery Plant Cultivation. Appl. Sci. 2024, 14, 5767. https://doi.org/10.3390/app14135767
Vannucchi F, Peruzzi E, Doni S, Manzi D, Azzini L, Pathan SI, Pietramellara G, Arfaioli P, Nicese FP, Masciandaro G, et al. Biological Assessment of Green Waste and Dredged Sediment Co-Composting for Nursery Plant Cultivation. Applied Sciences. 2024; 14(13):5767. https://doi.org/10.3390/app14135767
Chicago/Turabian StyleVannucchi, Francesca, Eleonora Peruzzi, Serena Doni, Davide Manzi, Lapo Azzini, Shamina Imran Pathan, Giacomo Pietramellara, Paola Arfaioli, Francesco Paolo Nicese, Grazia Masciandaro, and et al. 2024. "Biological Assessment of Green Waste and Dredged Sediment Co-Composting for Nursery Plant Cultivation" Applied Sciences 14, no. 13: 5767. https://doi.org/10.3390/app14135767
APA StyleVannucchi, F., Peruzzi, E., Doni, S., Manzi, D., Azzini, L., Pathan, S. I., Pietramellara, G., Arfaioli, P., Nicese, F. P., Masciandaro, G., & Macci, C. (2024). Biological Assessment of Green Waste and Dredged Sediment Co-Composting for Nursery Plant Cultivation. Applied Sciences, 14(13), 5767. https://doi.org/10.3390/app14135767