Exoland Simulator, a Laboratory Device for Reflectance Spectral Analyses of Planetary Soil Analogs: Design and Simulation
Abstract
:1. Introduction
2. Materials and Methods
- An acquisition system (spectrometers and optical system);
- A positioning system (Cartesian robot);
- A handling system.
2.1. Vis–NIR Reflectance Spectroscopy and Acquisition System
- Molecular water (adsorbed, interlayer, water ice) and hydrated salts (e.g., sulfates) due to overtone and combinations of H2O/O–H groups in the 1.4–1.6 µm range [28];
- Ortho- and chain silicates through Fe2+ crystal field transitions that produce large absorption bands around 1.0 and 2.0 µm (pyroxene or olivine) [52];
- Sheet silicates (phyllosilicates) due to the hydroxyl vibrational mode OH at 1.4 µm combined with the Al–OH or Fe/Mg–OH modes at ≃2.2 and ≃2.3 µm, respectively [33];
- Carbonates through overtone and the combination of the groups at 2.3 µm [28];
- compounds due to the presence of overtone and the combination at ≃1.08, 1.56, 2.01, and 2.2 µm [53].
2.2. Design of the Positioning System: Modification of a 3D Printer
2.3. Design of the Collimator Handling System
2.4. Design of Trajectories
3. Simulations on the Positioning System and Results
4. Showcasing Spectral Analyses on Planetary Soils
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, N.; Sun, Z.; Wang, X.; Yeung, E.H.K.; To, M.K.T.; Li, X.; Hu, Y. Simulation analysis for optimal design of pneumatic bellow actuators for soft-robotic glove. Biocybern. Biomed. Eng. 2020, 40, 1359–1368. [Google Scholar] [CrossRef]
- Pugi, L.; Berzi, L.; Grasso, F.; Savi, R.; Vita, V. Design and simulation of an electrified directional drilling machine. Int. J. Mech. Control 2021, 22, 17–29. [Google Scholar]
- Allotta, B.; Malvezzi, M.; Meli, E.; Pugi, L.; Ridolfi, A.; Rindi, A.; Vettori, G. Simulation of railway braking tests under degraded adhesion conditions. In Proceedings of the IMSD2012, Stuttgart, Germany, 29 May–1 June 2012. [Google Scholar]
- Perrelli, M.; Cosco, F.; Lo Polito, D.; Mundo, D. Development and Validation of a Vehicle Simulation Platform for Driver-in-the-Loop Testing. In The International Conference of IFToMM Italy; Springer: Cham, Switzerland, 2022; pp. 355–360. [Google Scholar]
- Valigi, M.C.; Braccesi, C.; Logozzo, S.; Conti, L.; Borasso, M. A new telemetry system for measuring the rotating ring’s temperature in a tribological test rig for mechanical face seals. Tribol. Int. 2017, 106, 71–77. [Google Scholar] [CrossRef]
- Haoua, A.A.; Rey, P.A.; Cherif, M.; Abisset-Chavanne, E.; Yousfi, W. Material recognition method to enable adaptive drilling of multi-material aerospace stacks. Int. J. Adv. Manuf. Technol. 2024, 131, 779–796. [Google Scholar] [CrossRef]
- Moczulak, B.; Żywica, G.; Miąskowski, W.; Kiński, W.; Bagiński, P. Experimental Study of the Thermal and Wear Characteristics of a Foil Bearing Lubricated with a Low-Boiling Liquid. Appl. Sci. 2023, 13, 6766. [Google Scholar] [CrossRef]
- Park, J.; Kim, D.; Sim, K. Development and Performance Measurements of Gas Foil Polymer Bearings with a Dual-Rotor Test Rig Driven by Permanent Magnet Electric Motor. Appl. Sci. 2022, 12, 1505. [Google Scholar] [CrossRef]
- Achilli, G.M.; Logozzo, S.; Valigi, M.C. An Educational Test Rig for Kinesthetic Learning of Mechanisms for Underactuated Robotic Hands. Robotics 2022, 11, 115. [Google Scholar] [CrossRef]
- Valigi, M.C.; Logozzo, S.; Canella, G. A robotic 3D vision system for automatic cranial prostheses inspection. In Advances in Service and Industrial Robotics: Proceedings of the 26th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2017; Springer: Cham, Switzerland, 2018; pp. 328–335. [Google Scholar]
- Tiboni, M.; Loda, D. Monolithic PneuNets Soft Actuators for Robotic Rehabilitation: Methodologies for Design, Production and Characterization. Actuators 2023, 12, 299. [Google Scholar] [CrossRef]
- Carello, M.; Maffiodo, D. Test bench for pressure calibration of continuous positive airway pressure (CPAP) device for sleep apnea applications. Int. J. Appl. Eng. Res 2017, 12, 15091–15096. [Google Scholar]
- Aggogeri, F.; Borboni, A.; Merlo, A.; Pellegrini, N.; Tiboni, M. Design of a 3-DOFs parallel robotic device for miniaturized object machining. In Advances in Service and Industrial Robotics: Proceedings of the 27th International Conference on Robotics in Alpe-Adria Danube Region (RAAD 2018); Springer: Berlin/Heidelberg, Germany, 2019; pp. 325–332. [Google Scholar]
- Malvezzi, M.; Iqbal, Z.; Valigi, M.C.; Pozzi, M.; Prattichizzo, D.; Salvietti, G. Design of multiple wearable robotic extra fingers for human hand augmentation. Robotics 2019, 8, 102. [Google Scholar] [CrossRef]
- Gupta, R.P. Remote Sensing Geology; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Bishop, J.L.; Bell, J.; Moersch, J.E. Remote Compositional Analysis: Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces; Cambridge University Press: Cambridge, UK, 2019; Volume 24. [Google Scholar]
- Hanel, R.A. Exploration of the Solar System by Infrared Remote Sensing; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Arnold, G.E. Infrared remote sensing of planetary surfaces: An overview, outstanding questions, and prospects. Infrared Remote Sens. Instrum. XXI 2013, 8867, 15–27. [Google Scholar]
- McCord, T.B. Reflectance Spectroscopy in Planetary Science: Review and Strategy for the Future. 1988. Available online: https://ntrs.nasa.gov/citations/19880015180 (accessed on 26 May 2024).
- Kortüm, G. Reflectance Spectroscopy: Principles, Methods, Applications; Springer Science & Business Media: Heidelberg, Germany, 2012. [Google Scholar]
- Murchie, S.; Arvidson, R.; Bedini, P.; Beisser, K.; Bibring, J.P.; Bishop, J.; Boldt, J.; Cavender, P.; Choo, T.; Clancy, R.; et al. Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars reconnaissance orbiter (MRO). J. Geophys. Res. Planets 2007, 112. Available online: https://ntrs.nasa.gov/citations/20030012646 (accessed on 26 May 2024). [CrossRef]
- Ferrari, M.; De Angelis, S.; De Sanctis, M.; Frigeri, A.; Altieri, F.; Ammannito, E.; Formisano, M.; Vinogradoff, V. Constraining the Rosalind Franklin Rover/Ma_MISS Instrument Capability in the Detection of Organics. Astrobiology 2023, 23, 691–704. [Google Scholar] [CrossRef]
- Maurice, S.; Wiens, R.C.; Bernardi, P.; Caïs, P.; Robinson, S.; Nelson, T.; Gasnault, O.; Reess, J.M.; Deleuze, M.; Rull, F.; et al. The SuperCam instrument suite on the Mars 2020 rover: Science objectives and mast-unit description. Space Sci. Rev. 2021, 217, 1–108. [Google Scholar] [CrossRef]
- Schmitt, B.; Albert, D.; Bollard, P.; Bonal, L.; Gorbacheva, M.; Mercier, L.; Sshade, C.P. SSHADE in H2020: Development of an European Database Infrastructure in Solid Spectroscopy. In Proceedings of the European Planetary Science Congress, Nantes, France, 27 September–2 October 2015; p. 628. [Google Scholar]
- Milliken, R.; Hiroi, T.; Scholes, D.; Slavney, S.; Arvidson, R. The NASA Reflectance Experiment LABoratory (RELAB) facility: An online spectral database for planetary exploration. In Proceedings of the Astromaterials Data Management in the Era of Sample-Return Missions Community Workshop, Tucson, AZ, USA, 8–9 November 2021; LPI Contribution No. 2654. NASA: Washington, DC, USA, 2021. [Google Scholar]
- Maturilli, A.; Helbert, J.; Moroz, L. The Berlin emissivity database (BED). Planet. Space Sci. 2008, 56, 420–425. [Google Scholar] [CrossRef]
- Cloutis, E.A.; Hawthorne, F.C.; Mertzman, S.A.; Krenn, K.; Craig, M.A.; Marcino, D.; Methot, M.; Strong, J.; Mustard, J.F.; Blaney, D.L.; et al. Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus 2006, 184, 121–157. [Google Scholar] [CrossRef]
- De Angelis, S.; Carli, C.; Tosi, F.; Beck, P.; Brissaud, O.; Schmitt, B.; Potin, S.; De Sanctis, M.C.; Capaccioni, F.; Piccioni, G. NIR reflectance spectroscopy of hydrated and anhydrous sodium carbonates at different temperatures. Icarus 2019, 317, 388–411. [Google Scholar] [CrossRef]
- Fastelli, M.; Comodi, P.; Schmitt, B.; Beck, P.; Poch, O.; Sassi, P.; Zucchini, A. Reflectance spectra (1–5 μm) at low temperatures and different grain sizes of ammonium-bearing minerals relevant for icy bodies. Icarus 2022, 382, 115055. [Google Scholar] [CrossRef]
- Berg, B.L.; Cloutis, E.A.; Beck, P.; Vernazza, P.; Bishop, J.L.; Takir, D.; Reddy, V.; Applin, D.; Mann, P. Reflectance spectroscopy (0.35–8 μm) of ammonium-bearing minerals and qualitative comparison to Ceres-like asteroids. Icarus 2016, 265, 218–237. [Google Scholar] [CrossRef]
- Gendrin, A.; Mangold, N.; Bibring, J.P.; Langevin, Y.; Gondet, B.; Poulet, F.; Bonello, G.; Quantin, C.; Mustard, J.; Arvidson, R.; et al. Sulfates in Martian layered terrains: The OMEGA/Mars Express view. Science 2005, 307, 1587–1591. [Google Scholar] [CrossRef]
- Pisello, A.; De Angelis, S.; Ferrari, M.; Porreca, M.; Vetere, F.P.; Behrens, H.; De Sanctis, M.C.; Perugini, D. Visible and near-InfraRed (VNIR) reflectance of silicate glasses: Characterization of a featureless spectrum and implications for planetary geology. Icarus 2022, 374, 114801. [Google Scholar] [CrossRef]
- Bishop, J.; Lane, M.; Dyar, M.; Brown, A. Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Miner. 2008, 43, 35–54. [Google Scholar] [CrossRef]
- Roush, T.L.; Bishop, J.L.; Brown, A.J.; Blake, D.F.; Bristow, T.F. Laboratory reflectance spectra of clay minerals mixed with Mars analog materials: Toward enabling quantitative clay abundances from Mars spectra. Icarus 2015, 258, 454–466. [Google Scholar] [CrossRef]
- Comodi, P.; Stagno, V.; Zucchini, A.; Fei, Y.; Prakapenka, V. The compression behavior of blödite at low and high temperature up to 10 GPa: Implications for the stability of hydrous sulfates on icy planetary bodies. Icarus 2017, 285, 137–144. [Google Scholar] [CrossRef]
- De Angelis, S.; Ferrari, M.; De Sanctis, M.; Ammannito, E.; Raponi, A.; Ciarniello, M. High-Temperature Vis-IR Spectroscopy of NH4-Phyllosilicates. J. Geophys. Res. Planets 2021, 126, e2020JE006696. [Google Scholar] [CrossRef]
- Roosjen, P.P.J.; Clevers, J.G.P.W.; Bartholomeus, H.M.; Schaepman, M.E.; Schaepman-Strub, G.; Jalink, H.; Van der Schoor, R.; De Jong, A. A Laboratory Goniometer System for Measuring Reflectance and Emittance Anisotropy. Sensors 2012, 12, 17358–17371. [Google Scholar] [CrossRef] [PubMed]
- Coburn, C.; Peddle, D. A low-cost field and laboratory goniometer system for estimating hyperspectral bidirectional reflectance. Can. J. Remote Sens. 2006, 32, 244–253. [Google Scholar] [CrossRef]
- Rajasozhaperumal, G.; Kannan, C. Influence of Fatty Acid Composition on the Tribological Performance of Methyl Esters Under Boundary Lubrication Regime. Arab. J. Sci. Eng. 2023, 48, 3581–3597. [Google Scholar] [CrossRef]
- Kesavulu, A.; Mohanty, A. Tribological characterization of graphene nanoplatelets/alumina particles filled epoxy hybrid nanocomposites. J. Appl. Polym. Sci. 2020, 137, 49518. [Google Scholar] [CrossRef]
- Dave, D.P.; Patel, A.M.; Chauhan, K.V.; Rawal, S.K. An Influence of Oxygen Flow Rate on Structural, Optical and Tribological Properties of Molybdenum Oxide Thin Films. Adv. Eng. Forum 2021, 39, 43–53. [Google Scholar] [CrossRef]
- Abdul Rahim, H.; Ghazali, R.; Sahlan, S.; Maidin, M.S. Prediction of texture of raw poultry meat by visible and near-infrared reflectance spetroscopy. J. Teknol. Sci. Eng. 2013, 64, 59–62. [Google Scholar] [CrossRef]
- Mirschel, G.; Heymann, K.; Savchuk, O.; Genest, B.; Scherzer, T. In-line monitoring of the thickness of printed layers by near-infrared (NIR) spectroscopy at a printing press. Appl. Spectrosc. 2012, 66, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Van Beers, R.; Saeys, W.; Li, C.; Cen, H. Measurement of optical properties of fruits and vegetables: A review. Postharvest Biol. Technol. 2020, 159, 111003. [Google Scholar] [CrossRef]
- Dixit, Y.; Casado-Gavalda, M.P.; Cama-Moncunill, R.; Cama-Moncunill, X.; Markiewicz-Keszycka, M.; Cullen, P.; Sullivan, C. Developments and challenges in online NIR spectroscopy for meat processing. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1172–1187. [Google Scholar] [CrossRef] [PubMed]
- Recena, R.; Fernández-Cabanás, V.M.; Delgado, A. Soil fertility assessment by Vis–NIR spectroscopy: Predicting soil functioning rather than availability indices. Geoderma 2019, 337, 368–374. [Google Scholar] [CrossRef]
- Schoonheydt, R.A. UV-Vis–NIR spectroscopy and microscopy of heterogeneous catalysts. Chem. Soc. Rev. 2010, 39, 5051–5066. [Google Scholar] [CrossRef]
- Prajapati, P.; Solanki, R.; Modi, V.; Basuri, T. A brief review on NIR spectroscopy and its pharmaceutical applications. Int. J. Pharm. Chem. Anal. 2016, 3, 117–123. [Google Scholar] [CrossRef]
- Abouelkasem, Z.A.; Nassef, G.A.; Abdelnaeem, M.; Nassef, M.G.A. Enhancing the Elastohydrodynamic Lubrication and Vibration Behavior of Rolling Bearings Using a Hybrid Bio-Grease Blended with Activated Carbon Nanoparticles. Tribol. Lett. 2024, 72, 46. [Google Scholar] [CrossRef]
- Liu, S.; Hall, D.J.; McCarthy, S.M.; Jacobs, J.J.; Urban, R.M.; Pourzal, R. Fourier transform infrared spectroscopic imaging of wear and corrosion products within joint capsule tissue from total hip replacements patients. J. Biomed. Mater. Res.—Part B Appl. Biomater. 2020, 108, 513–526. [Google Scholar] [CrossRef]
- Clark, R.N.; King, T.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. Solid Earth 1990, 95, 12653–12680. [Google Scholar] [CrossRef]
- Cloutis, E.A.; Gaffey, M.J.; Jackowski, T.L.; Reed, K.L. Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra. J. Geophys. Res. Solid Earth 1986, 91, 11641–11653. [Google Scholar] [CrossRef]
- Krohn, M.D.; Altaner, S.P. Near-infrared detection of ammonium minerals. Geophysics 1987, 52, 924–930. [Google Scholar] [CrossRef]
- Pisello, A.; Zinzi, A.; Bisolfati, M.; Porreca, M.; Perugini, D. A new spectral database for silicate glasses: A fundamental resource to interpret characteristics of volcanic terrains on planetary bodies. In Proceedings of the 16th Europlanet Science Congress 2022, Palacio de Congresos de Granada, Granada, Spain, 18–23 September 2022. [Google Scholar]
- Felzer, B.; Hauff, P.; Goetz, A.F. Quantitative reflectance spectroscopy of buddingtonite from the Cuprite mining district, Nevada. J. Geophys. Res. Solid Earth 1994, 99, 2887–2895. [Google Scholar] [CrossRef]
- Comodi, P.; Fastelli, M.; Maturilli, A.; Balic-Zunic, T.; Zucchini, A. Emissivity and reflectance spectra at different temperatures of hydrated and anhydrous sulphates: A contribution to investigate the composition and dynamic of icy planetary bodies. Icarus 2021, 355, 114132. [Google Scholar] [CrossRef]
Features | Data |
---|---|
Number of positions in x | 3 |
Number of positions in y | 2 |
Number of total positions | 6 |
Acquisition height | 10/40/90 mm |
Collimator admittance angle | 0° |
Stop time in each position | 0.2 s |
Total simulation time | 118.08 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dionigi, M.; Logozzo, S.; Valigi, M.C.; Comodi, P.; Pisello, A.; Perugini, D.; Fastelli, M. Exoland Simulator, a Laboratory Device for Reflectance Spectral Analyses of Planetary Soil Analogs: Design and Simulation. Appl. Sci. 2024, 14, 5954. https://doi.org/10.3390/app14135954
Dionigi M, Logozzo S, Valigi MC, Comodi P, Pisello A, Perugini D, Fastelli M. Exoland Simulator, a Laboratory Device for Reflectance Spectral Analyses of Planetary Soil Analogs: Design and Simulation. Applied Sciences. 2024; 14(13):5954. https://doi.org/10.3390/app14135954
Chicago/Turabian StyleDionigi, Marco, Silvia Logozzo, Maria Cristina Valigi, Paola Comodi, Alessandro Pisello, Diego Perugini, and Maximiliano Fastelli. 2024. "Exoland Simulator, a Laboratory Device for Reflectance Spectral Analyses of Planetary Soil Analogs: Design and Simulation" Applied Sciences 14, no. 13: 5954. https://doi.org/10.3390/app14135954
APA StyleDionigi, M., Logozzo, S., Valigi, M. C., Comodi, P., Pisello, A., Perugini, D., & Fastelli, M. (2024). Exoland Simulator, a Laboratory Device for Reflectance Spectral Analyses of Planetary Soil Analogs: Design and Simulation. Applied Sciences, 14(13), 5954. https://doi.org/10.3390/app14135954