Biocompounds and Bioactivities of Selected Greek Boraginaceae Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Samples
2.3. Fatty Acids Analysis
2.4. Extraction of Phenolic Compounds
2.5. Determination of Total Phenolic and Flavonoid Contents
2.6. Characterization of Phenolic Compounds by HPLC-DAD
2.7. Characterization of Phenolic Compounds by LC-MS
2.8. Antioxidant Activity
2.9. Antitumor Assays
2.10. Statistical Analysis
3. Results
3.1. Fatty Acids Content
3.2. Phenolic Compounds
3.3. Antioxidant Activity
3.4. Antitumor Activity
4. Discussion
4.1. Fatty Acids Content
4.2. Phenolic Compound Content
4.3. Phenolic Compound Profiles
4.4. Antioxidant Activity
4.5. Antiproliferative Activity of the Water/Methanol Seed Extracts on HT-29 Cancer Cells
4.6. Correlation among Parameters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Segelbacher, G.; Bosse, M.; Burger, P.; Galbusera, P.; Godoy, J.A.; Helsen, P.; Hvilsom, C.; Iacolina, L.; Kahric, A.; Manfrin, C.; et al. New developments in the field of genomic technologies and their relevance to conservation management. Conserv. Genet. 2022, 23, 217–242. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2020, 75, 311–315. [Google Scholar] [CrossRef]
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L. Stearidonic acid (18: 4n-3): Metabolism, nutritional importance, medical uses, and natural sources. Eur. J. Lipid Sci. Technol. 2007, 109, 1226–1236. [Google Scholar] [CrossRef]
- Baker, E.J.; Valenzuela, C.A.; van Dooremalen, W.T.; Martínez-Fernández, L.; Yaqoob, P.; Miles, E.A.; Calder, P.C. Gamma-Linolenic and Pinolenic Acids Exert Anti-Inflammatory Effects in Cultured Human Endothelial Cells Through Their Elongation Products. Mol. Nutr. Food Res. 2020, 64, 2000382. [Google Scholar] [CrossRef]
- Balić, A.; Vlašić, D.; Žužul, K.; Marinović, B.; Bukvić Mokos, Z. Omega-3 versus omega-6 polyunsaturated fatty acids in the prevention and treatment of inflammatory skin diseases. Int. J. Mol. Sci. 2020, 21, 741. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, M.J.; Ortea, I.; Guil-Guerrero, J.L. α-Linolenic and γ-linolenic acids exercise differential antitumor effects on HT-29 human colorectal cancer cells. Toxicol. Res. 2020, 9, 474–483. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, J.; Gong, L. Gamma linolenic acid suppresses hypoxia-induced proliferation and invasion of non-small cell lung cancer cells by inhibition of HIF1α. Genes Genom. 2020, 42, 927–935. [Google Scholar] [CrossRef]
- da Costa, L.D.F.C.; Lopes, C.M.C.; Roa, C.L.; Zuchelo, L.T.S.; Baracat, E.C.; de Andrade, J.; Soares, J.M., Jr. Is there a beneficial effect of gamma-linolenic acid supplementation on body fat in postmenopausal hypertensive women? A prospective randomized double-blind placebo-controlled trial. Menopause 2021, 28, 699–705. [Google Scholar] [CrossRef]
- Greupner, T.; Koch, E.; Kutzner, L.; Hahn, A.; Schebb, N.H.; Schuchardt, J.P. Single-dose SDA-rich Echium oil increases plasma EPA, DPAn3, and DHA concentrations. Nutrients 2019, 11, 2346. [Google Scholar] [CrossRef]
- Baker, E.J.; Miles, E.A.; Burdge, G.C.; Yaqoob, P.; Calder, P.C. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog. Lipid Res. 2016, 64, 30–56. [Google Scholar] [CrossRef] [PubMed]
- D’Helft, J.; Caccialanza, R.; Derbyshire, E.; Maes, M. Relevance of ω-6 GLA Added to ω-3 PUFAs Supplements for ADHD: A Narrative Review. Nutrients 2022, 14, 3273. [Google Scholar] [CrossRef] [PubMed]
- Guil-Guerrero, J.L.; Gómez-Mercado, F.; Ramos-Bueno, R.P.; González-Fernández, M.J.; Urrestarazu, M.; Rincón-Cervera, M.Á. Sardinian Boraginaceae are new potential sources of gamma-linolenic acid. Food Chem. 2017, 218, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Chelh, T.C.; Lyashenko, S.; Lahlou, A.; Belarbi, E.H.; Rincón-Cervera, M.Á.; Rodríguez-García, I.; Urrestarazu-Gavilán, M.; López-Ruiz, R.; Guil-Guerrero, J.L. Buglossoides spp. seeds, a land source of health-promoting n-3 PUFA and phenolic compounds. Food Res. Int. 2022, 157, 111421. [Google Scholar] [CrossRef] [PubMed]
- Abedi, E.; Sahari, M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2014, 2, 443–463. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Samani, M.; Bahmani, M.; Rafieian-Kopaei, M. The chemical composition, botanical characteristic and biological activities of Borago officinalis: A review. Asian Pac. J. Trop. Med. 2014, 7, S22–S28. [Google Scholar] [CrossRef] [PubMed]
- Wettasinghe, M.; Shahidi, F.; Amarowicz, R.; Abou-Zaid, M.M. Phenolic acids in defatted seeds of borage (Borago officinalis L.). Food Chem. 2001, 75, 49–56. [Google Scholar] [CrossRef]
- Mhamdi, B.; Wannes, W.A.; Bourgou, S.; Marzouk, B. Biochemical characterization of borage (Borago officinalis L.) seeds. J. Food Biochem. 2009, 33, 331–341. [Google Scholar] [CrossRef]
- Fabrikov, D.; Guil-Guerrero, J.L.; González-Fernández, M.J.; Rodríguez-García, I.; Gómez-Mercado, F.; Urrestarazu, M. Borage oil: Tocopherols, sterols and squalene in farmed and endemic-wild Borago species. J. Food Compos. Anal. 2019, 83, 103299. [Google Scholar] [CrossRef]
- Owen, R.W.; Giacosa, A.; Hull, W.E.; Haubner, R.; Spiegelhalder, B.; Bartsch, H. Olive-oil consumption and health: The possible role of antioxidants. Lancet Oncol. 2000, 1, 107–112. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G. Dietary fatty acids in the secondary prevention of coronary heart disease: A systematic review, meta-analysis and meta-regression. BMJ Open 2021, 11, e041120. [Google Scholar] [CrossRef] [PubMed]
- Borowy, A.; Kapłan, M. Chemical composition and antioxidant activity of borage (Borago officinalis L.) seeds. Acta Sci. Polonorum. Hortorum Cultus 2020, 19, 79–90. [Google Scholar] [CrossRef]
- Lyashenko, S.; Fabrikov, D.; González-Fernández, M.J.; Gómez-Mercado, F.; Ruiz, R.L.; Fedorov, A.; de Bélair, G.; Urrestarazu, M.; Rodríguez-García, I.; Álvarez-Corral, M.; et al. Phenolic composition and in vitro antiproliferative activity of Borago spp. seed extracts on HT-29 cancer cells. Food Biosci. 2021, 42, 101043. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; González-Fernández, M.J.; Lyashenko, S.; Fabrikov, D.; Rincón-Cervera, M.Á.; Urrestarazu, M.; Gómez-Mercado, F. γ-Linolenic and Stearidonic Acids from Boraginaceae of Diverse Mediterranean Origin. Chem. Biodivers. 2020, 17, e2000627. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, V.P.; Assimopoulou, A.N. Lipids of the hexane extract from the roots of medicinal Boraginaceous species. Phytochem. Anal. 2003, 14, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Ganos, C.; Aligiannis, N.; Chinou, I.; Naziris, N.; Chountoulesi, M.; Mroczek, T.; Graikou, K. Rindera graeca (Boraginaceae) phytochemical profile and biological activities. Molecules 2020, 25, 3625. [Google Scholar] [CrossRef] [PubMed]
- Tzanoudakis, D.; Panitsa, M. The flora of the Greek islands. Ecol. Mediterr. 1995, 21, 195–212. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Zou, Y.; Lu, Y.; Wei, D. Antioxidant activity of flavonoid-rich extracts of Hypericum perforatum L. in vitro. J. Agric. Food Chem. 2004, 52, 5032–5039. [Google Scholar] [CrossRef]
- Forbes-Hernández, T.Y.; Gasparrini, M.; Afrin, S.; Cianciosi, D.; González-Paramás, A.M.; Santos-Buelga, C. Strawberry (cv. Romina) methanolic extract and anthocyanin-enriched fraction improve lipid profile and antioxidant status in HepG2 cells. Int. J. Mol. Sci. 2017, 18, 1149. [Google Scholar] [CrossRef]
- Skenderidis, P.; Kerasioti, E.; Karkanta, E.; Stagos, D.; Kouretas, D.; Petrotos, K.; Hadjichristodoulou, C.; Tsakalof, A. Assessment of the antioxidant and antimutagenic activity of extracts from goji berry of Greek cultivation. Toxicol. Rep. 2018, 5, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.C.; Weigend, M.; Hilger, H.H. Phylogeny and systematics of Lithodora (Boraginaceae-Lithospermeae) and its affinities to the monotypic genera Mairetis, Halacsya and Paramoltkia based on ITS1 and trnLUAA-sequence data and morphology. Toxicol. Rep. 2008, 57, 79–97. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; López-Martínez, J.C.; Gómez-Mercado, F.; Campra-Madrid, P. Gamma-linolenic and stearidonic acids from Moroccan Boraginaceae. Eur. J. Lipid Sci. Technol. 2006, 108, 43–47. [Google Scholar] [CrossRef]
- Ferrero, V.; Arroyo, J.; Castro, S.; Navarro, L. Unusual heterostyly: Style dimorphism and self-incompatibility are not tightly associated in Lithodora and Glandora (Boraginaceae). Ann. Bot. 2012, 109, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Guil-Guerrero, J.L.; Gómez-Mercado, F.; Ramos-Bueno, R.P.; Rincón-Cervera, M.Á.; Venegas-Venegas, E. Restricted-range Boraginaceae species constitute potential sources of valuable fatty acids. J. Am. Oil Chem. Soc. 2014, 91, 301–308. [Google Scholar] [CrossRef]
- Prasad, P.; Sreedhar, R.V. Identification and functional characterization of Buglossoides arvensis microsomal fatty acid desaturation pathway genes involved in polyunsaturated fatty acid synthesis in seeds. J. Biotech. 2020, 308, 130–140. [Google Scholar] [CrossRef]
- Hacıoğlu, B.T.; Erik, S. Phylogeny of Symphytum L. (Boraginaceae) with special emphasis on Turkish species. Afr. J. Biotechnol. 2011, 10, 15483–15493. [Google Scholar] [CrossRef]
- Salehi, B.; Sharopov, F.; Boyunegmez Tumer, T.; Ozleyen, A.; Rodríguez-Pérez, C.; Ezzat, S.M.; Azzini, E.; Hosseinabadi, T.; Butnariu, M.; Sarac, I.; et al. Symphytum Species: A Comprehensive Review on Chemical Composition, Food Applications and Phytopharmacology. Molecules 2019, 24, 2272. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Keum, Y.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Sreedhar, R.V.; Akhilender Naidu, K.; Shang, X.; Keum, Y.S. Omega-3 polyunsaturated fatty acids (PUFAs): Emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits—A review. Antioxidants 2021, 10, 1627. [Google Scholar] [CrossRef]
- Yuan, Q.; Xie, F.; Huang, W.; Hu, M.; Yan, Q.; Chen, Z.; Zheng, Y.; Liu, L. The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytother. Res. 2022, 36, 164–188. [Google Scholar] [CrossRef] [PubMed]
- Mhamdi, B.; Wannes, W.A.; Sriti, J.; Jellali, I.; Ksouri, R.; Marzouk, B. Effect of harvesting time on phenolic compounds and antiradical scavenging activity of Borago officinalis seed extracts. Ind. Crops Prod. 2010, 31, e1–e4. [Google Scholar] [CrossRef]
- Nogala-Kalucka, M.; Rudzinska, M.; Zadernowski, R.; Siger, A.; Krzyzostaniak, I. Phytochemical content and antioxidant properties of seeds of unconventional oil plants. J. Am. Oil Chem. Soc. 2010, 87, 1481–1487. [Google Scholar] [CrossRef]
- Chaouche, T.M.; Haddouchi, F.; Ksouri, R.; Atik-Bekkara, F. Evaluation of antioxidant activity of hydromethanolic extracts of some medicinal species from South Algeria. J. Chin. Med. Assoc. 2014, 77, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Bakowska-Barczak, A.M.; Schieber, A.; Kolodziejczyk, P. Characterization of Canadian black currant (Ribes nigrum L.) seed oils and residues. J. Agric. Food Chem. 2009, 57, 11528–11536. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.C.; Rodrigues, R.C.; Mercali, G.D.; Rodrigues, E. New insights into non-extractable phenolic compounds analysis. Food Res. Int. 2022, 157, 111487. [Google Scholar] [CrossRef] [PubMed]
- Dresler, S.; Szymczak, G.; Wójcik, M. Comparison of some secondary metabolite content in the seventeen species of the Boraginaceae family. Pharm. Biol. 2017, 55, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Bulgakov, V.P.; Inyushkina, Y.V.; Fedoreyev, S.A. Rosmarinic acid and its derivatives: Biotechnology and applications. Crit. Rev. Biotech. 2012, 32, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Lyashenko, S.; González-Fernández, M.J.; Borisova, S.; Belarbi, E.H.; Guil-Guerrero, J.L. Mertensia (Boraginaceae) seeds are new sources of γ-linolenic acid and minor functional compounds. Food Chem. 2021, 350, 128635. [Google Scholar] [CrossRef]
- Lyashenko, S.; Yunusova, S.; López-Ruiz, R.; Vasfilova, E.; Kiseleva, O.; Chimitov, D.; Bahanova, M.; Bojko, N.; Guil-Guerrero, J.L. Lipid fractions, fatty acid profiles, and bioactive compounds of Lithospermum officinale L. seeds. J. Am. Oil Chem. Soc. 2021, 98, 425–437. [Google Scholar] [CrossRef]
- Yang, B.; Liu, H.; Yang, J.; Gupta, V.K.; Jiang, Y. New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends Food Sci. Technol. 2018, 79, 116–124. [Google Scholar] [CrossRef]
- Gorlach, S.; Wagner, W.; Podsedek, A.; Sosnowska, D.; Dastych, J.; Koziołkiewicz, M. Polyphenols from evening primrose (Oenothera paradoxa) defatted seeds induce apoptosis in human colon cancer Caco-2 cells. J. Agric. Food Chem. 2011, 59, 6985–6997. [Google Scholar] [CrossRef] [PubMed]
- Vichitsakul, K.; Laowichuwakonnukul, K.; Soontornworajit, B.; Poomipark, N.; Itharat, A.; Rotkrua, P. Anti-proliferation and induction of mitochondria-mediated apoptosis by Garcinia hanburyi resin in colorectal cancer cells. Heliyon 2023, 22, e16411. [Google Scholar] [CrossRef] [PubMed]
- Peña-Morán, O.A.; Villarreal, M.L.; Álvarez-Berber, L.; Meneses-Acosta, A.; Rodríguez-López, V. Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines. Molecules 2016, 21, 1013. [Google Scholar] [CrossRef]
Sample | Name | Date of Collection | Locality | Coord. (MGRS) | Herbarium Code | Altitude (masl) |
---|---|---|---|---|---|---|
Tribe Boragine | ||||||
SB1 | Symphytum bulbosum K. F. Schimp. | 20 April 2023 | Greece, West Greece, Blaxomandras | 34SEH6353 | HUAL 30010 | 305 |
SB2 | S. bulbosum K. F. Schimp. | 20 April 2023 | Greece, West Greece, Agia Barbara | 34SEH4380 | − | 430 |
SC | S. creticum (Willd.) Greuter & Rech. f. | 19 April 2023 | Greece, Peloponnese, Monenvasia | 34SFF8362 | HUAL 30007 | 30 |
Tribe Lithospermeae | ||||||
AC | Alkanna corcyrensis Hayek | 20 April 2023 | Greece, West Greece, Analepse: close to Banja bridge | 34SEH6056 | HUAL 30011 | 135 |
AGG | A. graeca Boiss. & Spruner subsp. graeca | 21 April 2023 | Greece, Central Greece, Teichio | 34SEH8762 | HUAL 30013 | 200 |
AM | A. methanaea Hausskn. | 21 April 2023 | Greece, Central Greece, Agia Triada | 34SFH6645 | HUAL 30015 | 560 |
AP | A. pindicola Hausskn. | 20 April 2023 | Greece, West Greece, Skoytera | 34SEH4179 | HUAL 30012 | 215 |
AS | A. sartoriana Boiss. & Heldr. | 18 April 2023 | Greece, Peloponnese, Drepanoy: close to Vivari | 34SFG7055 | HUAL 30004 | 40 |
ST | A. tinctoria (L.) Tausch | 18 April 2023 | Greece, Attica, Mégara: close to Kinetta beach | 34SFH9705 | HUAL 30002 | 44 |
CM | Cerinthe major L. | 19 April 2023 | Greece, Peloponnese, Ualamun: close to Lagkada | 34SFF1971 | HUAL 30008 | 445 |
EIB | Echium italicum subsp. biebersteinii (Lacaita) Greuter & Burdet | 18 April 2023 | Greece, Peloponnese, Palea Epidavros | 34SFG9064 | HUAL 30003 | 175 |
EVP | E. vulgare subsp. pustulatum (Sm.) E. Schmid & Gams | 18 April 2023 | Greece, Attica, Mégara: close to Vardaris | 34SGH0305 | HUAL 30001 | 50 |
LZ | Lithodora zahnii (Halácsy) I. M. Johnst. | 19 April 2023 | Greece, Peloponnese, Kampoy: Koskarakas bridge | 34SFF0690 | HUAL 30009 | 185 |
OF | Onosma frutescens Lam. | 18 April 2023 | Greece, Peloponnese, Agios Andreas | 34SFG5333 | HUAL 30006 | 90 |
OG | O. graeca Boiss. | 18 April 2023 | Greece, Peloponnese, Drepanoy: close to Vivari | 34SFG7055 | HUAL 30005 | 42 |
CODE | Species | Fatty Acids (FA% of Total FA) A,B,C,D | Total FAs (g/100 g) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16:0 PA | 16:1n-7 POA | 18:0 SA | 18:1n-9 OA | 18:1n-7 VA | 18:2n-6 LA | 18:3n-6 GLA | 18:3n-3 ALA | 18:4n-3 SDA | 20:1n-9 GOA | 22:1n-9 EA | n-6 PUFA | n-3 PUFA | n-6/ n-3 | Total PUFA | Total MUFA | Total SFA | |||
Tribe Boraginae | |||||||||||||||||||
SB1 | Symphytum bulbosum | 13.4 ± 0.1 cd | 0.3 ± 0.0 b | 2.1 ± 0.0 h | 10.6 ± 0.4 d | 0.4 ± 0.0 ab | 30.7 ± 0. 7bc | 26.2 ± 0.3 a | 9.2 ± 0.7 i | 2.8 ± 0.3 de | 1.7 ± 0.0 b | 1.0 ± 0. 1ab | 56.9 ± 0.8 b | 12.0 ± 0.8 i | 4.8 | 68.9 ± 1.1 b | 14.8 ± 0.4 de | 16.3 ± 0.1 ef | 39.8 ± 10.2 bc |
SB2 | S. bulbosum | 19.5 ± 0.8 b | 0.7 ± 0.1 a | 1.7 ± 0.1 h | 9.6 ± 0.1 d | 0.5 ± 0.1 a | 24.4 ± 0.8 efg | 24.7 ± 0.8 ab | 11.4 ± 0.3 hi | 3.9 ± 0.1 cd | 1.2 ± 0.2 c | 0.5 ± 0.1 cd | 49.1 ± 1.1 c | 15.2 ± 0.3 hi | 3.2 | 64.3 ± 1.2 de | 13.1 ± 0.3 ef | 22.6 ± 0.8 cd | 23.2 ± 6.1 def |
SC | S. creticum | 10.7 ± 0.3 de | 0.2 ± 0.0 bcd | 3.1 ± 0.1 g | 17.0 ± 0.0 b | 0.3 ± 0.0 cd | 39.0 ± 0.6 a | 23.2 ± 0.3 b | 1.3 ± 0.0 j | 0.7 ± 0.0 f | 2.1 ± 0.0 a | 1.1 ± 0.0 a | 62.2 ± 0.7 a | 2.0 ± 0.0 j | 31.2 | 64.2 ± 0.7 de | 21.6 ± 0.0 b | 14.2 ± 0.1 fgh | 47.1 ± 6.0 b |
Tribe Lithospermeae | |||||||||||||||||||
AC | Alkanna corcyrensis | 24.5 ± 2.6 a | n.d. | 7.0 ± 0.2 a | 5.0 ± 0.7 e | n.d. | 27.9 ± 0.6 cde | 8.3 ± 0.2 f | 24.6 ± 1.5 f | 2.7 ± 0.0 de | n.d. | n.d. | 36.2 ± 0.6 fg | 27.4 ± 1.5 fg | 1.3 | 63.5 ± 1.6 ef | 5.0 ± 0.7 h | 31.5 ± 2.6 a | 87.3 ± 2.2 a |
AGG | A. graeca graeca | 22.0 ± 0.5 ab | 0.2 ± 0.0 bc | 4.3 ± 0.1 cd | 10.1 ± 0.1 d | n.d. | 33.9 ± 1.1 b | 9.2 ± 1. 1ef | 14.4 ± 0.6 h | 3.9 ± 0.2 cd | 1.1 ± 0.1 de | 0.3 ± 0.0 ef | 43.0 ± 1.1 d | 18.3 ± 0.6 h | 2.4 | 61.3 ± 1.7 f | 11.6 ± 0.1 fg | 27.0 ± 0.5 b | 10.8 ± 1.8 g |
AM | A. methanaea | 18.9 ± 2.4 b | 0.2 ± 0.0 bcd | 3.3 ± 0.2 fg | 10.3 ± 0.3 d | n.d. | 26.5 ± 1.6 def | 8.1 ± 0.7 f | 23.9 ± 2.1 fg | 6.9 ± 1.3 b | 0.9 ± 0.1 fg | 0.3 ± 0.2 def | 34.6 ± 1.7 fg | 30.8 ± 2.5 efg | 1.1 | 65.3 ± 3.0 cde | 11.7 ± 0.4 fg | 22.9 ± 2.4 cd | 9.2 ± 0.8 g |
AP | A. pindicola | 20.7 ± 0.2 b | 0.3 ± 0.0 bc | 4.6 ± 0.1 bc | 9.3 ± 0.0 d | n.d. | 27.2 ± 0.1 cde | 10.7 ± 0.0 e | 20.3 ± 0.0 g | 5.9 ± 0.0 b | 0.7 ± 0.0 gh | n.d. | 37.9 ± 0.1 ef | 26.2 ± 0.0 g | 1.4 | 64.1 ± 0.1 def | 10.3 ± 0.0 g | 25.6 ± 0.2 bc | 21.9 ± 1.7 def |
AS | A. sartoriana | 7.8 ± 0.2 e | 0.1 ± 0.0 de | 3.1 ± 0.1 g | 13.0 ± 0.2 c | n.d. | 22.9 ± 1.1 fg | 10.4 ± 0.1 e | 37.3 ± 0.7 ab | 3.9 ± 0.1 cd | 0.9 ± 0.0 ef | 0.2 ± 0.0 fg | 33.4 ± 1.1 gh | 41.2 ± 0.7 bc | 0.8 | 74.5 ± 1.3 a | 14.4 ± 0.2 de | 11.0 ± 0.2 h | 12.2 ± 1.0 fg |
AT | A. tinctoria | 8.7 ± 1.4 e | n.d. | 2.2 ± 0.2 h | 13.5 ± 0.7 c | n.d. | 28.5 ± 2.1 cd | 13.0 ± 0.6 d | 29.4 ± 2.7 de | 3.3 ± 0.5cde | n.d. | 0.9 ± 0.2 b | 41.4 ± 2.2 de | 32.7 ± 2.7 cd | 1.3 | 74.1 ± 3.5 a | 14.4 ± 0.2 de | 11.5 ± 1.4 gh | 31.8 ± 3.4 cd |
CM | Cerinthe major | 10.0 ± 1.4 e | 0.1 ± 0.0 de | 5.1 ± 0.0 b | 16.3 ± 0.2 b | 0.3 ± 0.0 d | 16.5 ± 0.4 ij | 5.0 ± 0.1 gh | 35.8 ± 1.2 bc | 8.8 ± 0.1 a | 1.2 ± 0.1 cd | 0.5 ± 0.1 cd | 21.5 ± 0.4 j | 44.6 ± 1.2 b | 0.5 | 66.1 ± 1.3 cde | 18.6 ± 0.2 c | 15.4 ± 1.4 fg | 44.3 ± 7.1 b |
EIB | Echium italicum biebersteinii | 9.7 ± 0.3 e | n.d. | 4.1 ± 0.1 cde | 15.2 ± 0.3 bc | n.d. | 12.9 ± 0.2 j | 5.6 ± 0.5 g | 41.2 ± 1.6 a | 9.6 ± 0.0 a | n.d. | 0.4 ± 0.1 cde | 18.5 ± 0.5 j | 50.7 ± 1.6 a | 0.4 | 69.2 ± 0.8 b | 15.6 ± 0.3 d | 15.2 ± 0.9 fg | 32 ± 8.5 cd |
EVP | E. vulgare pustulatum | 20.4 ± 2.5 b | n.d. | 3.9 ± 0.9 def | 6.7 ± 2.1 e | n.d. | 21.6 ± 0.2 gh | 7.6 ± 2.2 f | 32.0 ± 1.8 cd | 6.4 ± 1.1 b | n.d. | 0.6 ± 0.1 c | 29.3 ± 2.2 hi | 38.5 ± 2.1 c | 0.8 | 67.7 ± 3.0 bc | 7.3 ± 2.1 h | 25.0 ± 2.3 bc | 17.1 ± 6.4 efg |
LZ | Lithodora zahnii | 10.9 ± 1.8 de | 0.1 ± 0.0 de | 3.4 ± 0.1 efg | 16.9 ± 1.2 b | 0.2 ± 0.1 d | 17.7 ± 0.0 hi | 17.4 ± 0.3 c | 22.4 ± 2.0 fg | 8.9 ± 0.6 a | 0.8 ± 0.1 gh | 0.2 ± 0.1 fg | 35.2 ± 0.3 fg | 31.3 ± 2.1 ef | 1.1 | 66.5 ± 2.1 bcd | 18.4 ± 1.2 c | 15.0 ± 1.8 fg | 26.4 ± 7.5 de |
OF | Onosma frutescens | 15.1 ± 2.5 c | 0.2 ± 0.1 cd | 4.2 ± 0.8 cd | 24.4 ± 3.4 a | 0.4 ± 0.2 bc | 23.3 ± 5.6 fg | 3.9 ± 0.8 i | 25.3 ± 5.5 ef | 2.4 ± 0.9 e | 0.6 ± 0.1 h | n.d. | 27.2 ± 5.7 i | 27.7 ± 5.6 fg | 1.0 | 54.9 ± 7.9 g | 25.6 ± 3.4 a | 19.5 ± 2.6 de | 22.3 ± 0.3 def |
OG | O. graeca | 8.7 ± 0.7 e | n.d. | 3.9 ± 0.0 def | 16.9 ± 0.2 b | 0.2 ± 0.0 dc | 27.5 ± 1.1 cde | 4.7 ± 0.1 gh | 32.7 ± 1.4 cd | 4.1 ± 0.4 c | 0.8 ± 0.2 gh | 0.3 ± 0.1 ef | 32.3 ± 1.1 gh | 36.7 ± 1. 5cd | 0.9 | 69.0 ± 1.8 b | 18.2 ± 0.3 c | 12.8 ± 0.7 fgh | 22.2 ± 1.4d ef |
Code | Species | Antioxidant Activity | |||
---|---|---|---|---|---|
DPPH mmol TE/100 g | ABTS mmol TE/100 g | TPC mg GAE/100 g | TFC mg QE/100 g | ||
Tribe Boraginae | |||||
SB1 | Symphytum bulbosum | 1.07 ± 0.0 ef | 0.87 ± 0.0 e | 340.7 ± 10.7 f | 306.7 ± 17.0 de |
SB2 | S. bulbosum | 1.01 ± 0.0 ef | 0.85 ± 0.0 e | 413.9 ± 18.0 ef | 311.7 ± 15.0 de |
SC | S. creticum | 1.13 ± 0.0 e | 0.87 ± 0.0 e | 632.7 ± 2.9 c | 405.6 ± 7.0 bc |
Tribe Lithospermeae | |||||
AC1 | Alkanna corcyrensis | 2.56 ± 0.3 c | 1.24 ± 0.4 d | 525.3 ± 15.3 d | 365.3 ± 14.0 c |
AGG | A. graeca subsp. graeca | 2.38 ± 0.0 c | 1.60 ± 0.0 c | 633.2 ± 16.7 c | 420.3 ± 13.8 b |
AM | A. methanaea | 4.72 ± 0.1 a | 2.49 ± 0.1 a | 844.0 ± 19.2 a | 662.1 ± 18.7 a |
AP | A. pindicola | 4.38 ± 0.2 b | 2.18 ± 0.0 b | 750.4 ± 13.6 b | 674.1 ± 10.9 a |
AS | A. sartoriana | 1.03 ± 0.0 ef | 0.86 ± 0.0 e | 419.0 ± 10.5 e | 259.9 ± 17.8 e |
AT | A. tinctoria | 0.99 ± 0.0 ef | 0.84 ± 0.0 e | 379.2 ± 11.7 ef | 206.9 ± 7.8 fg |
CM | C. major | 0.92 ± 0.0 f | 0.74 ± 0.0 ef | 641.1 ± 20.8 c | 353.0 ± 9.4 cd |
EIB | Echium italicum subsp. biebersteinii | 1.13 ± 0.0 e | 0.84 ± 0.0 e | 375.7 ± 15.6 ef | 250.4 ± 3.9 ef |
EVP | E. vulgare subsp. pustulatum | 1.41 ± 0.0 d | 0.61 ± 0.0 f | 428.7 ± 11.8 e | 283.4 ± 8.7 e |
LZ | Lithodora zahnii | 1.10 ± 0.0 ef | 0.86 ± 0.0e | 656.2 ± 6.6 c | 426.8 ± 17.7 b |
OF | Onosma frutescens | 1.00 ± 0.0 ef | 0.85 ± 0.0 e | 267.1 ± 1.8 g | 163.5 ± 14.4 g |
OG | O. graeca | 1.02 ± 0.0 ef | 0.82 ± 0.0 e | 535.1 ± 15.5 d | 307.6 ± 19.4 de |
α-Tocoferol | 16.52 ± 0.57 | 8.67 ± 0.45 | - | - | |
Ascorbic acid | 23.44 ± 1.43 | 10.12 ± 0.16 | - | - | |
Caffeic acid | 21.18 ± 0.32 | 10.42 ± 0.29 | - | - |
Code | Species | Gallic Acid | Protocatechuic Acid | Chlorogenic Acid | 3,4-Dihydroxy-hydrocinnamic Acid C | 4-Hydroxy-benzoic Acid | Caffeic Acid | Vanillic Acid | Syringic Acid | Vanillin | Trans-p-coumaric acid | Rutin (Quercetin-3-O-rutinoside) | Sinapic Acid |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tribe Boraginae | |||||||||||||
SB1 | Symphytum bulbosum | 2.7 ± 0.2 d | 3.7 ± 0.3 b | 5.3 ± 0.4 c | 0.3 ± 0.1 c | 3.1 ± 0.3 e | n.d. | 0.6 ± 0.2 b | n.d. | n.d. | 6.5 ± 0.2 d | 4.1 ± 0.2 g | 0.8 ± 0.1 d |
SB2 | S. bulbosum | 7.6 ± 0.3 c | 5.0 ± 0.5 a | 8.8 ± 0.7 c | 0.1 ± 0.0 de | 3.9 ± 0.2 d | n.d. | 0.4 ± 0.1 bc | n.d. | n.d. | 1.3 ± 0.2 d | 4.0 ± 0.1 g | 0.8 ± 0.1 d |
SC | S. creticum | 0.2 ± 0.1 fg | n.d. | 228.5 ± 20.5 a | n.d. | 2.0 ± 0.2 f | 5.0 ± 0.2 a | 8.2 ± 0.3 a | n.d. | n.d. | 5.6 ± 0.1 d | 7.4 ± 0.5 f | n.d. |
Tribe Lithospermeae | |||||||||||||
AC | Alkanna corcyrensis | n.d. | n.d. | n.d. | n.d. | 6.9 ± 0.4 c | n.d. | n.d. | n.d. | n.d. | 59.7 ± 3.9 c | 20.1 ± 0.6 c | n.d. |
AGG | A. graeca subsp. graeca | 16.1 ± 0.4 b | 0.7 ± 0.2 c | 76.6 ± 5.2 b | 0.7 ± 0.1 b | 9.2 ± 0.4 b | 0.6 ± 0.1 b | n.d. | n.d. | n.d. | 137.5 ± 10.2 b | 41.3 ± 2.2 a | n.d. |
AM | A. methanaea | 19.1 ± 0.4 a | n.d. | 68.8 ± 4.5 b | n.d. | 12.2 ± 0.3 a | n.d. | n.d. | n.d. | n.d. | 160.7 ± 11.3 a | 17.0 ± 1.0 d | n.d. |
AP | A. pindicola | n.d. | n.d. | n.d. | n.d. | 6.6 ± 0.3 c | n.d. | n.d. | n.d. | n.d. | 104.0 ± 9.8 b | 34.0 ± 2.1 b | 8.2 ± 0.5 b |
AS | A. sartoriana | n.d. | n.d. | 0.5 ± 0.1 c | 1.9 ± 0.2 a | 1.2 ± 0.1 g | n.d. | 0.1 ± 0.0 d | n.d. | n.d. | 6.8 ± 0.2 d | 19.5 ± 0.3 c | n.d. |
AT | A. tinctoria | n.d. | n.d. | n.d. | 0.2 ± 0.0 cd | 1.4 ± 0.2 g | n.d. | 0.1 ± 0.0 d | n.d. | n.d. | 1.9 ± 0.1 d | 10.4 ± 0.2 e | 1.2 ± 0.2 d |
CM | Cerinthe major | 0.3 ± 0.1 fg | n.d. | n.d. | n.d. | 0.9 ± 0.1 g | n.d. | 0.4 ± 0.1 bc | n.d. | n.d. | n.d. | 4.0 ± 0.2 g | n.d. |
EIB | Echium italicum subsp. biebersteinii | n.d. | n.d. | n.d. | n.d. | 1.0 ± 0.1 g | n.d. | n.d. | n.d. | n.d. | 1.0 ± 0.1 d | 5.4 ± 0.2 fg | 2.0 ± 0.1 c |
EVP | E. vulgare subsp. pustulatum | n.d. | n.d. | n.d. | n.d. | 1.1 ± 0.1 g | n.d. | n.d. | n.d. | n.d. | 1.7 ± 0.1 d | 4.1± 0.2 g | 2.2 ± 0.2 c |
LZ | Lithodora zahnii | 0.6 ± 0.1 f | n.d. | 6.3 ± 0.6 c | n.d. | 2.6 ± 0.3 e | n.d. | 0.2 ± 0.1 cd | n.d. | 8.3 ± 0.3 a | 58.2 ± 3.7 c | 15.1 ± 0.8 d | 16.4 ± 0.9 a |
OF | Onosma frutescens | 1.6 ± 0.2 e | n.d. | n.d. | n.d. | 1.4 ± 0.2 g | n.d. | n.d. | n.d. | 5.9 ± 0.2 b | n.d. | 3.8 ± 0.2 g | n.d. |
OG | O. graeca | n.d. | n.d. | n.d. | n.d. | 3.8 ± 0.2 d | 0.3 ± 0.1 c | 0.2 ± 0.1 cd | 8.0 ± 0.2 a | 5.8 ± 0.1 b | 2.0 ± 0.1 d | 5.1 ± 0.1 g | n.d. |
Code | Species | Isoquercetin (Quercetin 3-O-glucoside) D | Apigetrin (Apigenin-7-O-glucoside) | Rosmarinic Acid | Lithospermic Acid | Salicylic Acid | Salvianolic Acid | 2-OH-4-methoxybenzoic Acid | Luteolin | Quercetin | Naringenin | Kaempferol | Total Identified Phenolics |
Tribe Boraginae | |||||||||||||
SB1 | Symphytum bulbosum | 40.2 ± 1.7 e | 12.4 ± 0.5 e | 87.2 ± 5.5 g | 211.8 ± 8.8 a | 1.4 ± 0.2 f | 4.2 ± 0.4 f | n.d. | n.d. | n.d. | n.d. | 16.9 ± 0.6 a | 401.1 ± 10.6 e |
SB2 | S. bulbosum | 34.6 ± 1.9 ef | 12.2 ± 0.7 e | 65.6 ± 2.1 gh | 81.7 ± 4.2 b | 3.3 ± 0.2 de | 2.3 ± 0.1 f | n.d. | n.d. | n.d. | n.d. | 16.2 ± 0.4 ab | 247.8 ± 5.2 g |
SC | S. creticum | 112.9 ± 4.8 a | 12.7 ± 0.8 e | 467.1 ± 25.3 d | n.d. | 4.0 ± 1.2 d | 1.9 ± 0.2 f | n.d. | n.d. | n.d. | n.d. | 15.8 ± 0.7 b | 871.3 ± 33.0 b |
Tribe Lithospermeae | |||||||||||||
AC | Alkanna corcyrensis | 27.7 ± 1.2 f | 115.1 ± 2.7 b | 433.7 ± 16.2 d | n.d. | 8.0 ± 0.9 c | 40.5 ± 2.3 b | 4.6 ± 0.9 d | n.d. | n.d. | 23.9 ± 1.1 b | n.d. | 740.2 ± 35.6 c |
AGG | A. graeca subsp. graeca | 33.9 ± 1.8 f | 119.9 ± 8.2 b | 543.9 ± 28.4 c | 59.0 ± 3.5 c | 10.7 ± 0.4 b | 25.4 ± 1.5 cd | 5.7 ± 0.2 c | n.d. | n.d. | 28.7 ± 1.1 b | n.d. | 1110.0 ± 32.1 b |
AM | A. methanaea | 64.1 ± 3.1 c | 137.7 ± 12.5 a | 762.7 ± 45.2 a | 87.5 ± 4.8 b | 8.1 ± 0.3 c | 125.8 ± 20.2 a | 8.5 ± 0.3 b | n.d. | n.d. | 52.5 ± 2.3 a | n.d. | 1524.7 ± 52.9 a |
AP | A. pindicola | 48.8 ± 2.3 d | 110.1 ± 6.7 b | 442.8 ± 26.4 d | n.d. | 7.3 ± 0.6 c | 42.3 ± 1.9 b | n.d. | n.d. | n.d. | n.d. | n.d. | 804.1 ± 29.2 c |
AS | A. sartoriana | 35.1 ± 1.5 ef | 61.6 ± 2.2 c | 319.8 ± 22.4 e | n.d. | 3.4 ± 0.3 de | 37.0 ± 1.2 bc | 4.0 ± 0.2 d | n.d. | 13.8 ± 0.3 a | 13.0 ± 0.4 c | 7.7 ± 0.3 e | 525.4 ± 22.6 d |
AT | A. tinctoria | 15.0 ± 0.5 g | 26.1 ± 1.2 d | 261.6 ± 15.2 f | n.d. | 2.1 ± 0.2 ef | 10.6 ± 0.3 ef | n.d. | n.d. | 8.5 ± 0.3 b | n.d. | n.d. | 339.0 ± 15.3 f |
CM | Cerinthe major | 51.5 ± 1.4 d | 11.3 ± 0.7 e | 650.9 ± 35.5 b | n.d. | 1.1 ± 0.3 f | 1.2 ± 0.1 f | 10.0 ± 0.3 a | 35.9 ± 1.1 a | n.d. | n.d. | 13.1 ± 0.5 c | 780.4 ± 35.6 c |
EIB | Echium italicum subsp. biebersteinii | 75.8 ± 3.5 b | 12.4 ± 0.2 e | 276.4 ± 14.8 ef | n.d. | 1.9 ± 0.2 ef | 10.5 ± 0.2 ef | n.d. | 4.1 ± 0.2 b | n.d. | 12.9 ± 0.3 c | 11.6 ± 0.5 d | 414.9 ± 15.2 e |
EVP | E. vulgare subsp. pustulatum | 81.0 ± 2.3 b | 14.3 ± 0.9 e | 281.4 ± 9.8 ef | n.d. | 2.5 ± 0.4 ef | 9.6 ± 0.4 ef | n.d. | 3.9 ± 0.4 b | n.d. | 12.0 ± 0.3 d | 12.1 ± 0.4 c | 425.8 ± 13.7 e |
LZ | Lithodora zahnii | 60.5 ± 2.2 c | 12.3 ± 0.4 e | 307.6 ± 21.6 ef | n.d. | 3.0 ± 0.5 def | 18.8 ± 0.9 de | n.d. | 4.3 ± 0.3 b | n.d. | 12.2 ± 0.2 d | 8.1 ± 0.3 e | 534.4 ± 22.1 d |
OF | Onosma frutescens | 29.5 ± 1.4 f | 12.1 ± 0.9 e | 33.9 ± 1.0 h | n.d. | 4.5 ± 1.0 d | 5.4 ± 0.6 f | n.d. | 4.6 ± 0.3 b | n.d. | n.d. | n.d. | 102.8 ± 2.3 h |
OG | O. graeca | 109.2 ± 5.5 a | 15.2 ± 1.3 e | 304.8 ± 20.5 e f | n.d. | 75.3 ± 2.5 a | 31.6 ± 1.3 bc | n.d. | 4.1 ± 0.2 b | 5.5 ± 0.2 c | n.d. | n.d. | 570.9 ± 21.5 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezzaitouni, M.; Chileh-Chelh, T.; Rincón-Cervera, M.Á.; Gómez-Mercado, F.; Benteima, H.; López-Ruiz, R.; Guil-Guerrero, J.L. Biocompounds and Bioactivities of Selected Greek Boraginaceae Seeds. Appl. Sci. 2024, 14, 6026. https://doi.org/10.3390/app14146026
Ezzaitouni M, Chileh-Chelh T, Rincón-Cervera MÁ, Gómez-Mercado F, Benteima H, López-Ruiz R, Guil-Guerrero JL. Biocompounds and Bioactivities of Selected Greek Boraginaceae Seeds. Applied Sciences. 2024; 14(14):6026. https://doi.org/10.3390/app14146026
Chicago/Turabian StyleEzzaitouni, Mohamed, Tarik Chileh-Chelh, Miguel Ángel Rincón-Cervera, Francisco Gómez-Mercado, Hajiba Benteima, Rosalía López-Ruiz, and José Luis Guil-Guerrero. 2024. "Biocompounds and Bioactivities of Selected Greek Boraginaceae Seeds" Applied Sciences 14, no. 14: 6026. https://doi.org/10.3390/app14146026
APA StyleEzzaitouni, M., Chileh-Chelh, T., Rincón-Cervera, M. Á., Gómez-Mercado, F., Benteima, H., López-Ruiz, R., & Guil-Guerrero, J. L. (2024). Biocompounds and Bioactivities of Selected Greek Boraginaceae Seeds. Applied Sciences, 14(14), 6026. https://doi.org/10.3390/app14146026