Effect of Methylammonium Iodide (MACl) on MAPbI3-Based Perovskite UV-C Photodetectors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Device Fabrication Process of MAPbI3-Based Perovskite Photodetector
2.3. Device Characterization
3. Results and Discussion
3.1. Crystallinity and Surface Morphological Properties of the Samples
3.2. Optical and Electrical Properties of Samples
3.3. Ultraviolet (UV) Detection Performance Evaluation of the Fabricated Photodetection Device
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, L.; Nihtianov, S. Comparative study of silicon-based ultraviolet photodetectors. IEEE Sens. J. 2012, 12, 2453–2459. [Google Scholar] [CrossRef]
- Yao, J.; Yang, G. 2D material broadband photodetectors. Nanoscale 2020, 12, 454–476. [Google Scholar] [CrossRef]
- Choi, G.I.; Choi, H.W. A study to improve the performance of mixed cation–halide perovskite-based UVC photodetectors. Nanomaterials 2022, 12, 1132. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhang, Y.; Hu, Y.; Gu, H. Ultraviolet detectors based on wide bandgap semiconductor nanowire: A review. Sensors 2018, 18, 2072. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.C.; Preto, S. Intelligent Human Systems Integration. In Proceedings of the IHSI 2018, Advances in Intelligent Systems and Computing, Dubai, United Arab Emirates, 7–9 January 2018; Karwowski, W., Ahram, T., Eds.; Springer: Cham, Switzerland, 2018; Volume 722. [Google Scholar]
- Narayanan, D.L.; Saladi, R.N.; Fox, J.L. Ultraviolet radiation and skin cancer. Int. J. Dermatol. 2010, 49, 978–986. [Google Scholar] [CrossRef]
- Dixon, A.J.; Dixon, B.F. Ultraviolet radiation from welding and possible risk of skin and ocular malignancy. Med. J. Aust. 2004, 181, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Jin, W.; Zhang, D.; Tang, T.; Li, C.; Liu, X.; Liu, Z.; Lei, B.; Zhou, C. Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination. Chem. Phys. Lett. 2004, 389, 176–180. [Google Scholar] [CrossRef]
- Tsai, S.H.; Basu, S.; Huang, C.Y.; Hsu, L.C.; Lin, Y.G.; Horng, R.H. Deep-Ultraviolet Photodetectors Based on Epitaxial ZnGa2O4 Thin Films. Sci. Rep. 2018, 8, 14056. [Google Scholar] [CrossRef]
- Mendoza, F.; Makarov, V.; Weiner, B.R.; Morell, G. Solar-blind field-emission diamond ultraviolet detector. Appl. Phys. Lett. 2015, 107, 201605. [Google Scholar] [CrossRef]
- Muscarella, L.A.; Petrova, D.; Cervasio, R.J.; Farawar, A.; Lugier, O.; McLure, C.; Slaman, M.J.; Wang, J.; Ehrler, B.; Hauff, E.V.; et al. Air-Stable and Oriented Mixed Lead Halide Perovskite (FA/MA) by the One-Step Deposition Method Using Zinc Iodide and an Alkylammonium Additive. ACS Appl. Mater. Interfaces 2019, 11, 17555–17562. [Google Scholar] [CrossRef]
- Cruz, S.H.T.; Saliba, M.; Mayer, M.T.; Santiesteban, H.J.; Mathew, X.; Nienhaus, L.; Tress, W.; Erodici, M.P.; Sher, M.J.; Bawendi, M.G.; et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy Environ. Sci. 2018, 11, 78–86. [Google Scholar] [CrossRef]
- Baena, J.P.C.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T.J.; Kandada, A.R.S.; Zakeeruddin, S.M.; et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 2015, 8, 2928–2934. [Google Scholar] [CrossRef]
- Wu, G.; Zhou, J.; Meng, R.; Xue, B.; Zhou, H.; Tang, Z.; Zhang, Y. Air-stable formamidinium/methylammonium mixed lead iodide perovskite integral microcrystals with low trap density and high photo-responsivity. Phys. Chem. Chem. Phys. 2019, 21, 3106–3113. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Song, Z.; Tao, P.; Lei, H.; Gui, P.; Mei, J.; Wang, H.; Fang, G. Self-powered, ultraviolet-visible perovskite photodetector based on TiO2 nanorods. RSC Adv. 2016, 6, 6205–6208. [Google Scholar] [CrossRef]
- Wang, H.; Kim, D.H. Perovskite-based photodetectors: Materials and devices. Chem. Soc. Rev. 2017, 46, 5204–5236. [Google Scholar] [CrossRef] [PubMed]
- Dualeh, A.; Gao, P.; Seok, S.I.; Nazeeruddin, M.K.; Grätzel, M. Thermal behavior of methylammonium lead-trihalide perovskite photovoltaic light harvesters. Chem. Mater. 2014, 26, 6160–6164. [Google Scholar] [CrossRef]
- Lin, Q.; Armin, A.; Burn, P.L.; Meredith, P. Organohalide perovskites for solar energy conversion. Acc. Chem. Res. 2016, 49, 545–553. [Google Scholar] [CrossRef]
- Wu, B.; Nguyen, H.T.; Ku, Z.; Han, G.; Giovanni, D.; Mathews, N.; Sum, T.C. Discerning the surface and bulk recombination kinetics of organic–inorganic halide perovskite single crystals. Adv. Energy Mater. 2016, 6, 1600551. [Google Scholar] [CrossRef]
- Uddin, A.; Upama, M.B.; Yi, H.; Duan, L. Encapsulation of organic and perovskite solar cells: A review. Coatings 2019, 9, 65. [Google Scholar] [CrossRef]
- Aguiar, J.A.; Wozny, S.; Holesinger, T.G.; Aoki, T.; Patel, M.K.; Yang, M.; Zhu, K. In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells. Energy Environ. Sci. 2016, 9, 2372–2382. [Google Scholar] [CrossRef]
- Koh, T.M.; Fu, K.; Fang, Y.; Chen, S.; Sum, T.C.; Mathews, N.; Baikie, T. Formamidinium-containing metal-halide: An alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 2014, 118, 16458–16462. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shirai, Y.; Yang, X.; Yue, Y.; Chen, W.; Wu, Y.; Han, L. High-Quality Mixed-Organic-Cation Perovskites from a Phase-Pure Non-stoichiometric Intermediate (FAI) 1−x-PbI2 for Solar Cells. Adv. Mater. 2015, 27, 4918–4923. [Google Scholar] [CrossRef] [PubMed]
- Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.Y.; Ummadisingu, A.; Zakeeruddin, S.M.; Gratzel, M. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Weng, C.Y. Optoelectronic properties of MAPbI 3 perovskite/titanium dioxide heterostructures on porous silicon substrates for cyan sensor applications. Nanoscale Res. Lett. 2015, 10, 404. [Google Scholar] [CrossRef] [PubMed]
- Gujar, T.P.; Unger, T.; Schönleber, A.; Fried, M.; Panzer, F.; van Smaalen, S.; Thelakkat, M. The role of PbI2 in CH3NH3PbI3 perovskite stability, solar cell parameters and device degradation. Phys. Chem. Chem. Phys. 2018, 20, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Bahtiar, A.; Rahmanita, S.; Inayatie, Y.D. Pin-hole free perovskite film for solar cells application prepared by controlled two-step spin-coating method. IOP Conf. Ser. Mater. Sci. Eng. 2017, 196, 012037. [Google Scholar] [CrossRef]
- Slimi, B.; Mollar, M.; ben Assaker, I.; Kriaa, I.; Chtourou, R.; Mari, B. Perovskite FA1-xMAxPbI3 for Solar Cells: Films Formation and Properties. Energy Procedia 2016, 102, 87–95. [Google Scholar] [CrossRef]
- Xu, X.; Ma, C.; Xie, Y.M.; Cheng, Y.; Tian, Y.; Li, M.; Tsang, S.W. Air-processed mixed-cation Cs0.15 FA0.85 PbI3 planar perovskite solar cells derived from a PbI2–CsI–FAI intermediate complex. J. Mater. Chem. A 2018, 6, 7731–7740. [Google Scholar] [CrossRef]
- Bai, S.; Cheng, N.; Yu, Z.; Liu, P.; Wang, C.; Zhao, X.Z. Cubic: Column composite structure (NH2CH = NH2) × (CH3NH3)1−xPbI3 for efficient hole-transport material-free and insulation layer—62—Free perovskite solar cells with high stability. Electrochim. Acta 2016, 190, 775–779. [Google Scholar] [CrossRef]
- Jia, Y.H.; Neutzner, S.; Zhou, Y.; Yang, M.; Tapia, J.M.F.; Li, N.; Zhao, N. Role of Excess FAI in Formation of High-Efficiency FAPbI3-Based Light-Emitting Diodes. Adv. Funct. Mater. 2020, 30, 1906875. [Google Scholar] [CrossRef]
- Yang, Z.; Chueh, C.C.; Liang, P.W.; Crump, M.; Lin, F.; Zhu, Z.; Jen, A.K.Y. Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells. Nano Energy 2016, 22, 328–337. [Google Scholar] [CrossRef]
- Ni, X.; Lei, L.; Yu, Y.; Xie, J.; Li, M.; Yang, S.; Wang, M.; Liu, J.; Zhang, H.; Ye, B. Effect of Br content on phase stability and performance of H2N = CHNH2Pb (I1−xBrx) 3 perovskite thin films. Nanotechnology 2019, 30, 165402. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, S.; Umezawa, H.; Pernot, J.; Suzuki, M. Power Electronics Device Applications of Diamond Semiconductors; Woodhead Publishing: Sawston, UK, 2018; pp. 99–189. [Google Scholar]
- Rehman, W.; Milot, R.L.; Eperon, G.E.; Wehrenfennig, C.; Boland, J.L.; Snaith, H.J.; Johnston, M.B.; Herz, L.M. Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites. Adv. Mater. 2015, 27, 7938–7944. [Google Scholar] [CrossRef]
- Myronov, M. Molecular Beam Epitaxy of High Mobility Silicon, Silicon Germanium and Germanium Quantum Well Heterostructures. In Molecular Beam Epitaxy; Elsevier: Amsterdam, The Netherlands, 2018; pp. 37–54. [Google Scholar]
Sample Name | Resistivity (ρ) (Ω-cm) | Mobility (μ) (cm2/V∙s) | Carrier Concentration (n) (×1013 cm−3) |
---|---|---|---|
FABr 0 | 0.7604 (0.7704) | 5.23 (5.01) | 2.607 (2.506) |
FABr 5 | 0.2415 (0.2519) | 11.67 (11.47) | 3.012 (2.821) |
FABr 10 | 0.2847 (0.2975) | 12.89 (12.64) | 3.841 (3.564) |
FABr 15 | 0.2198 (0.2249) | 14.61 (14.29) | 5.619 (5.358) |
FABr 20 | 0.1977 (0.2077) | 26.57 (25.48) | 5.864 (5.469) |
FABr 25 | 0.8211 (0.8474) | 18.02 (17.48) | 4.782 (4.242) |
Sample Name | Responsivity (R) (mA/W) | Detectivity (D) (Jones) | EQE (%) |
---|---|---|---|
FABr 0 | 24.5 (21.1) | 1.82 × 1012 (1.74 × 1012) | 19 (16) |
FABr 5 | 37.4 (34.4) | 5.12 × 1012 (4.98 × 1012) | 28 (27) |
FABr 10 | 50.7 (46.7) | 2.61 × 1013 (2.38 × 1013) | 39 (36) |
FABr 15 | 60.9 (56.8) | 3.07 × 1013 (2.89 × 1013) | 47 (44) |
FABr 20 | 76.7 (72.2) | 4.89 × 1013 (4.67 × 1013) | 60 (56) |
FABr 25 | 53.9 (50.2) | 2.67 × 1013 (2.44 × 1013) | 42 (39) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, D.J.; Kim, S.; Choi, H.W. Effect of Methylammonium Iodide (MACl) on MAPbI3-Based Perovskite UV-C Photodetectors. Appl. Sci. 2024, 14, 6223. https://doi.org/10.3390/app14146223
Shin DJ, Kim S, Choi HW. Effect of Methylammonium Iodide (MACl) on MAPbI3-Based Perovskite UV-C Photodetectors. Applied Sciences. 2024; 14(14):6223. https://doi.org/10.3390/app14146223
Chicago/Turabian StyleShin, Dong Jae, Sangmo Kim, and Hyung Wook Choi. 2024. "Effect of Methylammonium Iodide (MACl) on MAPbI3-Based Perovskite UV-C Photodetectors" Applied Sciences 14, no. 14: 6223. https://doi.org/10.3390/app14146223
APA StyleShin, D. J., Kim, S., & Choi, H. W. (2024). Effect of Methylammonium Iodide (MACl) on MAPbI3-Based Perovskite UV-C Photodetectors. Applied Sciences, 14(14), 6223. https://doi.org/10.3390/app14146223