Leveraging Blockchain Usage to Enhance Slag Exchange
Abstract
:1. Introduction
2. Background
2.1. Slag Circularity
2.2. Blockchain Applications
3. Materials and Methods
3.1. Research Methodology
3.2. Actors
3.3. Data Model
3.4. Use Case
4. Results
4.1. Implementation
Algorithm 1: Function bid-accept. |
4.2. Deployment
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, L.; Li, H.; Mei, H.; Rao, L.; Wang, H.; Lv, N. Generation, utilization, and environmental impact of ladle furnace slag: A minor review. Sci. Total Environ. 2023, 895, 165070. [Google Scholar] [CrossRef] [PubMed]
- Shi, C. Characteristics and cementitious properties of ladle slag fines from steel production. Cem. Concr. Res. 2002, 32, 459–462. [Google Scholar] [CrossRef]
- The European Green Deal-European Commission. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 8 April 2024).
- Holappa, L.; Kekkonen, M.; Jokilaakso, A.; Koskinen, J. A Review of Circular Economy Prospects for Stainless Steelmaking Slags. J. Sustain. Metall. 2021, 7, 806–817. [Google Scholar] [CrossRef]
- Branca, T.A.; Colla, V.; Algermissen, D.; Granbom, H.; Martini, U.; Morillon, A.; Pietruck, R.; Rosendahl, S. Reuse and Recycling of By-Products in the Steel Sector: Recent Achievements Paving the Way to Circular Economy and Industrial Symbiosis in Europe. Metals 2020, 10, 345. [Google Scholar] [CrossRef]
- Yi, H.; Xu, G.; Cheng, H.; Wang, J.; Wan, Y.; Chen, H. An Overview of Utilization of Steel Slag. Procedia Environ. Sci. 2012, 16, 791–801. [Google Scholar] [CrossRef]
- Dong, Q.; Wang, G.; Chen, X.; Tan, J.; Gu, X. Recycling of steel slag aggregate in portland cement concrete: An overview. J. Clean. Prod. 2021, 282, 124447. [Google Scholar] [CrossRef]
- Gencel, O.; Karadag, O.; Oren, O.H.; Bilir, T. Steel slag and its applications in cement and concrete technology: A review. Constr. Build. Mater. 2021, 283, 122783. [Google Scholar] [CrossRef]
- Fisher, L.; Barron, A. The recycling and reuse of steelmaking slags — A review. Resour. Conserv. Recycl. 2019, 146, 244–255. [Google Scholar] [CrossRef]
- Ichinose, D. Landfill Scarcity and the Cost of Waste Disposal. Environ. Resour. Econ. 2024, 87, 629–653. [Google Scholar] [CrossRef]
- Murphy, T.; Howard, I. Balancing Availability, Quality, Economics, and the Environment When Using Steel Slag within Pavements. In Geo-Congress 2023; ASCE: Reston, VA, USA, 2023; Volume 2023, pp. 408–418. ISSN 0895-0563. [Google Scholar] [CrossRef]
- Murphy, T.R. Integrating Steel Slag Aggregates Into Asphalt Paving by Harmonizing Availability, Quality, Economics, and the Environment. Ph.D Thesis, Mississippi State University, Starkville, MS, USA, 2023. [Google Scholar]
- Nakamoto, S. Bitcoin: A Peer-To-Peer Electronic Cash System. Decentralized Business Review 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 10 July 2024).
- Pavloff, U.; Amoussou-Guenou, Y.; Tucci-Piergiovanni, S. Ethereum Proof-of-Stake under Scrutiny. In Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, Tallinn, Estonia, 27–31 March 2023; pp. 212–221. [Google Scholar] [CrossRef]
- Pournader, M.; Shi, Y.; Seuring, S.; Koh, S.L. Blockchain applications in supply chains, transport and logistics: A systematic review of the literature. Int. J. Prod. Res. 2020, 58, 2063–2081. [Google Scholar] [CrossRef]
- Chang, S.E.; Chen, Y. When Blockchain Meets Supply Chain: A Systematic Literature Review on Current Development and Potential Applications. IEEE Access 2020, 8, 62478–62494. [Google Scholar] [CrossRef]
- Kummer, S.; Herold, D.M.; Dobrovnik, M.; Mikl, J.; Schäfer, N. A Systematic Review of Blockchain Literature in Logistics and Supply Chain Management: Identifying Research Questions and Future Directions. Future Internet 2020, 12, 60. [Google Scholar] [CrossRef]
- Voorter, J.; Koolen, C. The Traceability of Construction and Demolition Waste in Flanders via Blockchain Technology: A Match Made in Heaven? J. Eur. Environ. Plan. Law 2021, 18, 347–369. [Google Scholar] [CrossRef]
- Rejeb, A.; Appolloni, A.; Rejeb, K.; Treiblmaier, H.; Iranmanesh, M.; Keogh, J.G. The role of blockchain technology in the transition toward the circular economy: Findings from a systematic literature review. Resour. Conserv. Recycl. Adv. 2023, 17, 200126. [Google Scholar] [CrossRef]
- Belt, A.; Kok, S. A Reality Check for Blockchain in Commodity Trading; Technical Report; Boston Consulting Group: Auckland, New Zealand, 2018. [Google Scholar]
- Perera, S.; Nanayakkara, S.; Rodrigo, M.N.N.; Senaratne, S.; Weinand, R. Blockchain technology: Is it hype or real in the construction industry? J. Ind. Inf. Integr. 2020, 17, 100125. [Google Scholar] [CrossRef]
- Queiroz, M.M.; Telles, R.; Bonilla, S.H. Blockchain and supply chain management integration: A systematic review of the literature. Supply Chain Manag. Int. J. 2019, 25, 241–254. [Google Scholar] [CrossRef]
- Shi, Z.; de Laat, C.; Grosso, P.; Zhao, Z. Integration of Blockchain and Auction Models: A Survey, Some Applications, and Challenges. IEEE Commun. Surv. Tutor. 2023, 25, 497–537. [Google Scholar] [CrossRef]
- Salian, A.; Shah, S.; Shah, J.; Samdani, K. Review of blockchain enabled decentralized energy trading mechanisms. In Proceedings of the 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India, 29–30 March 2019; IEEE: New York, NY, USA, 2019; pp. 1–7. [Google Scholar]
- Küster, K.K.; Aoki, A.R.; Lambert-Torres, G. Transaction-based operation of electric distribution systems: A review. Int. Trans. Electr. Energy Syst. 2020, 30, e12194. [Google Scholar] [CrossRef]
- Sreekumar, A.; Sakthivelu, A.; Kiesling, L. Auction Theory and Device Bidding Functions for Transactive Energy Systems: A Review. Curr. Sustain./Renew. Energy Rep. 2023, 10, 102–111. [Google Scholar] [CrossRef]
- Corsini, F.; Gusmerotti, N.M.; Frey, M. Fostering the Circular Economy with Blockchain Technology: Insights from a Bibliometric Approach. Circ. Econ. Sustain. 2023, 3, 1819–1839. [Google Scholar] [CrossRef]
- Regueiro, C.; Gómez-Goiri, A.; Pedrosa, N.; Semertzidis, C.; Iturbe, E.; Mansell, J. Blockchain-based refurbishment certification system for enhancing the circular economy. Blockchain Res. Appl. 2023, 5, 100172. [Google Scholar] [CrossRef]
- The Go Programming Language. Available online: https://go.dev (accessed on 10 July 2024).
- Shalaby, S.; Abdellatif, A.A.; Al-Ali, A.; Mohamed, A.; Erbad, A.; Guizani, M. Performance Evaluation of Hyperledger Fabric. In Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2–5 February 2020; pp. 608–613. [Google Scholar] [CrossRef]
- Git Repository with the Code. Available online: https://git.code.tecnalia.com/hypercog-public/leveraging-blockchain-usage-to-enhance-slag-exchange (accessed on 10 July 2024).
- Sonarqube. Available online: https://www.sonarsource.com/products/sonarqube/ (accessed on 10 July 2024).
- Node.js. Available online: https://nodejs.org (accessed on 10 July 2024).
- Express Framework. Available online: https://expressjs.com (accessed on 10 July 2024).
- Vue.js. Available online: https://vuejs.org (accessed on 10 July 2024).
- Bodin, U.; Dhanrajani, S.; Abdalla, A.H.; Diani, M.; Klenk, F.; Colledani, M.; Palm, E.; Schelén, O. Demand-supply matching through auctioning for the circular economy. Procedia Manuf. 2021, 54, 82–87. [Google Scholar] [CrossRef]
- Raja Santhi, A.; Muthuswamy, P. Influence of Blockchain Technology in Manufacturing Supply Chain and Logistics. Logistics 2022, 6, 15. [Google Scholar] [CrossRef]
- Arulprakash, M.; Jebakumar, R. Commit-reveal strategy to increase the transaction confidentiality in order to counter the issue of front running in blockchain. AIP Conf. Proc. 2022, 2460, 020016. [Google Scholar] [CrossRef]
- Sahai, S.; Singh, N.; Dayama, P. Enabling Privacy and Traceability in Supply Chains using Blockchain and Zero Knowledge Proofs. In Proceedings of the 2020 IEEE International Conference on Blockchain (Blockchain), Rhodes, Greece, 2–6 November 2020; pp. 134–143. [Google Scholar] [CrossRef]
- Gopalakrishnan, P.K.; Hall, J.; Behdad, S. Cost analysis and optimization of Blockchain-based solid waste management traceability system. Waste Manag. 2021, 120, 594–607. [Google Scholar] [CrossRef] [PubMed]
- Zafar, S.; Hassan, S.F.U.; Mohammad, A.; Al-Ahmadi, A.A.; Ullah, N. Implementation of a Distributed Framework for Permissioned Blockchain-Based Secure Automotive Supply Chain Management. Sensors 2022, 22, 7367. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Song, B.; Li, L.; Jin, D. Fire product traceability system based on blockchain and IPFS. In Proceedings of the Second International Conference on Electronic Information Engineering, Big Data and Computer Technology (EIBDCT 2023); SPIE: Bellingham, WA, USA, 2023; Volume 2023, p. 12642. [Google Scholar] [CrossRef]
- Wernerfelt, B. A resource-based view of the firm. Strateg. Manag. J. 1984, 5, 171–180. [Google Scholar] [CrossRef]
- Barney, J. Firm resources and sustained competitive advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Pongnumkul, S.; Siripanpornchana, C.; Thajchayapong, S. Performance Analysis of Private Blockchain Platforms in Varying Workloads. In Proceedings of the 2017 26th International Conference on Computer Communication and Networks (ICCCN), Vancouver, BC, Canada, 31 July–3 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Kuzlu, M.; Pipattanasomporn, M.; Gurses, L.; Rahman, S. Performance Analysis of a Hyperledger Fabric Blockchain Framework: Throughput, Latency and Scalability. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; pp. 536–540. [Google Scholar] [CrossRef]
- Melo, C.; Gonçalves, G.; Silva, F.A.; Soares, A. A comprehensive hyperledger fabric performance evaluation based on resources capacity planning. Clust. Comput. 2024, 1–16. [Google Scholar] [CrossRef]
- Mineral Commodity Summaries 2024; Technical Report; USGS: Reston, VA, USA, 2024. Available online: https://pubs.usgs.gov/publication/mcs2024 (accessed on 10 July 2024).
- Statistics 2021; Technical Report; Euroslag. Available online: https://www.euroslag.com/products/statistics/statistics-2021/ (accessed on 10 July 2024).
- Taherdoost, H. A Critical Review of Blockchain Acceptance Models—Blockchain TechnologyAdoption Frameworks and Applications. Computers 2022, 11, 24. [Google Scholar] [CrossRef]
- AlShamsi, M.; Al-Emran, M.; Shaalan, K. A Systematic Review on Blockchain Adoption. Appl. Sci. 2022, 12, 4245. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Goiri, A.; Gutierrez-Aguero, I.; Garcia-Estevez, D. Leveraging Blockchain Usage to Enhance Slag Exchange. Appl. Sci. 2024, 14, 6243. https://doi.org/10.3390/app14146243
Gómez-Goiri A, Gutierrez-Aguero I, Garcia-Estevez D. Leveraging Blockchain Usage to Enhance Slag Exchange. Applied Sciences. 2024; 14(14):6243. https://doi.org/10.3390/app14146243
Chicago/Turabian StyleGómez-Goiri, Aitor, Ivan Gutierrez-Aguero, and David Garcia-Estevez. 2024. "Leveraging Blockchain Usage to Enhance Slag Exchange" Applied Sciences 14, no. 14: 6243. https://doi.org/10.3390/app14146243
APA StyleGómez-Goiri, A., Gutierrez-Aguero, I., & Garcia-Estevez, D. (2024). Leveraging Blockchain Usage to Enhance Slag Exchange. Applied Sciences, 14(14), 6243. https://doi.org/10.3390/app14146243