Impact of Storage Conditions on Fruit Color, Firmness and Total Soluble Solids of Hydroponic Tomatoes Grown at Different Salinity Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Storage Conditions
2.3. Quality Parameters
2.3.1. Refractometric Index “Brix”
2.3.2. Color
2.3.3. Firmness
2.4. Statistical Analysis
3. Results and Discussion
3.1. Tomato Fruit Refractometric Index “Brix”
3.2. Tomato Fruit Color
3.3. Tomato Fruit Firmness
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roccotiello, E.; Nicosia, E.; Pierdona, L.; Marescotti, P.; Ciardiello, M.A.; Giangrieco, I.; Mari, A.; Zennaro, D.; Dozza, D.; Brancucci, M.; et al. Tomato (Solanum lycopersicum L.) accumulation and allergenicity in response to nickel stress. Sci. Rep. 2022, 12, 5432. [Google Scholar] [CrossRef]
- Hernández-Pérez, O.I.; Valdez-Aguilar, L.A.; Alia-Tejacal, I.; Cartmill, A.D.; Cartmill, D.L. Tomato fruit yield, quality, and nutrient status in response to potassium: Calcium balance and electrical conductivity in the nutrient solution. J. Soil Sci. Plant Nutr. 2020, 20, 484–492. [Google Scholar] [CrossRef]
- Torres Mendonça, A.J.; Silva, A.A.R.d.; Lima, G.S.d.; Soares, L.A.d.A.; Nunes Oliveira, V.K.; Gheyi, H.R.; Lacerda, C.F.d.; Azevedo, C.A.V.d.; Lima, V.L.A.d.; Fernandes, P.D. Salicylic Acid Modulates Okra Tolerance to Salt Stress in Hydroponic System. Agriculture 2022, 12, 1687. [Google Scholar] [CrossRef]
- da Silva, A.A.R.; Sousa, P.F.d.N.; de Lima, G.S.; Soares, L.A.d.A.; Gheyi, H.R.; Azevedo, C.A.V. Hydrogen peroxide reduces the effect of salt stress on growth and postharvest quality of hydroponic mini watermelon. Water Air Soil Pollut. 2022, 233, 198. [Google Scholar] [CrossRef]
- Statistical Report, Ministry of Environment, Water and Agriculture, Kingdom of Saudi Arabia. Available online: https://www.mewa.gov.sa/ar/InformationCenter/DocsCenter/YearlyReport/Pages/default.aspx (accessed on 31 December 2021).
- Jones, J.B. Hydroponics: A Practical Guide for the Soilless Grower, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 3167–6423. [Google Scholar]
- Wilson, L.J.R.; Salas, R.A. Productivity and Quality of Aquaponically Grown Tomato (Solanum lycopersicum L.) Supplemented with Different Nutrient Solutions. Sci. Humanit. J. 2017, 11, 64–98. [Google Scholar]
- Niederwieser, J.G. Guide to Hydroponic Vegetable Production, 2nd ed.; Agricultural Research Council, Roodepoort Vegetable and Ornamental Plant Institute: Pretoria, South Africa, 2001. [Google Scholar]
- Gruda, N.S. Does soilless culture have an influence on product quality of vegetables? J. Appl. Bot. Food Qual. 2009, 82, 141–147. [Google Scholar]
- Addo, J.; Osei, M.; Mochiah, M.; Bonsu, K.; Choi, H.; Kim, J. Assessment of farmer level postharvest losses along the tomato value Chain in three agro-ecological zones of Ghana. Int. J. 2015, 2, 2311–2476. [Google Scholar]
- Umeohia, U.E.; Olapade, A.A. Quality Attributes, Physiology, and Postharvest Technologies of Tomatoes (Lycopersicum esculentum)—A Review. Am. J. Food Sci. Technol. 2024, 12, 42–64. [Google Scholar] [CrossRef]
- Bae, T.M.; Seo, J.S.; Kim, J.G.; Kim, D.K.; Chun, J.P.; Hwang, Y.S. Effect of preharvest application of chitosan on the growth and quality of peach fruit (Prunus persica L.). Korean J. Agric. Sci. 2018, 45, 601–614. [Google Scholar] [CrossRef]
- Kader, A.; Rolle, R. The Role of Post-Harvest Management in Assuring the Quality and Safety of Horticultural Produce; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004; Volume 152. [Google Scholar]
- Kemps, B.; Leon, L.; Best, S.; De Baerdemaeker, J.; De Ketelaere, B. Assessment of the quality parameters in grapes using VIS/NIR spectroscopy. Biosyst. Eng. 2010, 105, 507–513. [Google Scholar] [CrossRef]
- Godana, E.A.; Satheesh, N.; Taye, A.H. Effect of storage methods and ripening stages on postharvest quality of tomato (Lycopersicom esculentum Mill) cv. Chali. Annals. Food Sci. Technol. 2015, 1, 127–137. [Google Scholar]
- Lubes, G.; Goodarzi, M. Analysis of Volatile Compounds by Advanced Analytical Techniques and Multivariate Chemometrics. Chem. Rev. 2017, 117, 6399–6422. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zuo, J.; Li, P.; Yan, Z.; Gao, L.; Wang, Q.; Jiang, A. Effect of methyl jasmonate on the quality of harvested broccoli after simulated transport. Food Chem. 2020, 319, 126561. [Google Scholar] [CrossRef] [PubMed]
- Al-Dairi, M.; Pathare, P.B.; Al-Yahyai, R. Chemical and nutritional quality changes of tomato during postharvest transportation and storage. J. Saudi Soc. Agric. Sci. 2021, 20, 401–408. [Google Scholar] [CrossRef]
- Zoran, I.S.; Nikolaos, K.; Ljubomir, S. Tomato fruit quality from organic and conventional production. In Organic Agriculture Towards Sustainability; Pilipavicius, V., Ed.; Chapter 7; INTECH: London, UK, 2014; pp. 147–169. [Google Scholar]
- Munhuewyi, K. Postharvest Losses and Changes in Quality of Vegetables from Retail to Consumer: A Case Study of Tomato, Cabbage and Carrot. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa. Available online: https://scholar.sun.ac.za/items/0ced2d05-d80f-4110-b948-d57f780968b1 (accessed on 31 December 2021).
- Gautam, S.; Acedo, A.; Schreinemachers, P.; Subedi, B. Volume and value of postharvest losses: The case of tomatoes in Nepal. Br. Food J. 2017, 119, 2547–2558. [Google Scholar] [CrossRef]
- Chebanga, F.; Mukumbi, K.; Moses, M.; Mtaita, T. Postharvest losses to agricultural product traders in Mutare, Zimbabwe. J. Sci. Agric. 2018, 2, 26–38. [Google Scholar]
- Singh, V.; Hedayetullah, M.; Zaman, P.; Meher, J. Postharvest technology of fruits and vegetables: An overview. J. Postharvest Technol. 2014, 2, 124–135. [Google Scholar]
- Caixeta-Filho, J.; Pera, T. Post-harvest losses during the transportation of grains from farms to aggregation points. Int. J. Logist. Econ. Glob. 2018, 7, 209–247. [Google Scholar]
- Kwon, J.K.; Kim, S.H.; Jeon, J.G.; Kang, Y.K.; Jang, K.Y. Development of environmental control system for high-quality shiitake mushroom (Lentinus edodes (Berk.) Sing.) Production. J. Biosyst. Eng. 2018, 43, 342–351. [Google Scholar]
- Alsailawi, H.A.; Mudhafar, M.; Abdulrasool, M.M. Effect of Frozen Storage on the Quality of Frozen Foods-A Review. J. Chem. Chem. Eng. 2020, 14, 86–96. [Google Scholar] [CrossRef]
- Jung, J.; Shim, J.; Chung, S.; Hwang, Y.; Lee, W.; Lee, H. Changes in quality parameters of tomatoes during storage: A review. Korean J. Agric. Sci. 2019, 46, 239–256. [Google Scholar] [CrossRef]
- Arah, I.K.; Kumah, E.K.; Anku, E.K.; Amaglo, H. An overview of post-harvest losses in tomato production in Africa: Causes and possible prevention strategies. J. Biol. Agric. Healthc. 2015, 5, 78–88. [Google Scholar]
- Choi, J.H.; Jeong, M.C.; Kim, D.M. Changes in quality parameters of tomatoes harvested at different mature stages during storage. Korean J. Food Preserv. 2013, 20, 151–157. [Google Scholar] [CrossRef]
- Zhang, P.; Dai, Y.D.; Masateru, S.; Natsumi, M.; Kengo, I. Interactions of salinity stress and flower thinning on tomato growth, yield, and water use efficiency. Commun. Soil Sci. Plant Anal. 2017, 48, 2601–2611. [Google Scholar] [CrossRef]
- Chaichi, M.R.; Keshavarz-Afshar, R.; Lu, B.; Rostamza, M. Growth and nutrient uptake of tomato in response to application of saline water, biological fertilizer, and surfactant. J. Plant Nutr. 2017, 40, 457–466. [Google Scholar] [CrossRef]
- Khairi, A.; Falah, M.A.F.; Suyantohadi, A.; Takahashi, N.; Nishina, H. Effect of Storage Temperatures on Color of Tomato Fruit (Solanum lycopersicum Mill.) Cultivated under Moderate Water Stress Treatment. Agric. Agric. Sci. Procedia 2015, 3, 178–183. [Google Scholar] [CrossRef]
- Ullah, J. Storage of Fresh Tomatoes to Determine the Level of (cacl2) Coating and Optimum Temperature for Extended Shelf Life. A Post Doctoral Fellowship Report, Asian Institute of Technology Bangkok, Thailand. 2009. Available online: https://www.coursehero.com/file/22474283/Storage-of-fresh-tomatoes-to-dertermine-the-level-of-Cacl2-coating-and-optimum-temperature-for-ext/ (accessed on 31 December 2021).
- Islam, M.Z.; Mele, M.A.; Choi, K.; Kang, H. Nutrient and salinity concentrations effects on quality and storability of cherry tomato fruits grown by hydroponic system. Post Harvest Technol. 2017, 77, 385–393. [Google Scholar] [CrossRef]
- Al-Dairi, M.; Pathare, P.B.; Al-Mahdouri, A. Effect of storage conditions on postharvest quality of tomatoes: A case study at market-level. J. Agric. Mar. Sci. 2021, 26, 13–20. [Google Scholar]
- Karabulut, O.A.; Smilanick, J.L.; Crisosto, C.H.; Palou, L. Control of brown rot of stone fruits by brief heated water immersion treatments. Crop Prot. 2010, 29, 903–906. [Google Scholar] [CrossRef]
- Kuehni, R.G. Color-tolerance data and the tentative CIE 1976 L*a*b* formula. J. Opt. Soc. Am. 1976, 66, 497–500. [Google Scholar] [CrossRef]
- Bal, L.M.; Kar, A.; Satya, S.; Naik, S.N. Kinetics of colour change of bamboo shoot slices during microwave drying. Int. J. Food Sci. Technol. 2011, 46, 827–833. [Google Scholar] [CrossRef]
- García-Moreira, D.P.; Hernández-Guzmán, H.; Pacheco, N.; Cuevas-Bernardino, J.C.; Herrera-Pool, E.; Moreno, I.; López-Vidaña, E.C. Solar and Convective Drying: Modeling, Color, Texture, Total Phenolic Content, and Antioxidant Activity of Peach (Prunus persica (L.) Batsch) Slices. Processes 2023, 11, 1280. [Google Scholar] [CrossRef]
- Saito, T.; Fukuda, N.; Nishimura, S. Effects of salinity treatment duration and planting density on size and sugar content of hydroponically grown tomato fruits. J. Jpn. Soc. Hortic. Sci. 2006, 75, 392–398. [Google Scholar] [CrossRef]
- Krauss, S.; Schnitzler, W.H.; Grassmann, J.; Woitke, M. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. J. Agric. Food Chem. 2006, 54, 441–448. [Google Scholar] [CrossRef]
- Tigist, M.; Workneh, T.S.; Woldetsadik, K. Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Technol. 2013, 50, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Messina, V.; Dominguez, P.G.; Sancho, A.M.; de Reca, N.W.; Carrari, F.; Grigioni, G. Tomato quality during short-term storage assessed by colour and electronic nose. Int. J. Electrochem. 2012, 2012, 1–7. [Google Scholar] [CrossRef]
- Javanmardi, J.; Kubota, C. Variation of Lycopene, Antioxidant Activity, Total Soluble Solids and Weight Loss of Tomato During Postharvest Storage. Postharvest Biol. Technol. 2006, 41, 151–155. [Google Scholar] [CrossRef]
- Tadesse, T.N.; Ibrahim, A.M.; Abtew, W.G. Degradation and formation of fruit color in tomato (Solanum lycopersicum L.) in response to storage temperature. Am. J. Food Technol. 2015, 10, 147–157. [Google Scholar] [CrossRef]
- Cherono, K.; Sibomana, M.S.; Workneh, T.S. Effect of infield handling conditions and time to pre-cooling on the shelf-life and quality of tomatoes. Braz. J. Food Technol. 2018, 21, 1–12. [Google Scholar] [CrossRef]
- Turk, R.; Seniz, V.; Ozdemir, N.; Suzen, M.A. Changes in The Chlorophyll Carotenoid and Lycopene Contents of Tomatoes in Relation to Temperature. Int. Soc. Hortic. Sci. Acta Hortic. 1994, 368, 856–862. [Google Scholar] [CrossRef]
- Kim, M.; Moon, Y.E.; Han, S.G.; Yun, S.K.; Joa, J.H.; Park, J.S. Impact of Cold Stress on Physiological Responses and Fruit Quality of Shiranuhi Mandarin in Response to Cold Conditions. Horticulturae 2023, 9, 906. [Google Scholar] [CrossRef]
Storage Treatment: ST (Day—Temperature) | Abbreviations |
---|---|
ST-0 (Day 1—22 °C)—the control: fresh tomato fruits | ST0-22 |
ST-1 (Day 4—12 °C) | ST4-12 |
ST-2 (Day 4—22 °C) | ST4-22 |
ST-3 (Day 8—12 °C) | ST8-12 |
ST-4 (Day 8—22 °C) | ST 8-22 |
ST-5 (Day 12—12 °C) | ST12-12 |
ST-6 (Day 12—22 °C) | ST12-22 |
ST-7 (Day 16—12 °C) | ST16-12 |
ST-8 (Day 20—12 °C) | ST20-12 |
ST-9 (Day 24—12 °C) | ST24-12 |
Tomato Varieties | Salinity Levels | ||
---|---|---|---|
S-1 (2.5 dS m−1) | S-2 (6.0 dS m−1) | S-3 (9.5 dS m−1) | |
Ghandowra-F1 | 7.25 c,* | 7.87 b | 8.24 a |
Forester- F1 | 6.91 c | 7.68 b | 7.89 a |
Feisty-Red | 6.94 c | 7.35 b | 7.80 a |
Tomato Varieties | Salinity Levels | ||
---|---|---|---|
S-1 (2.5 dS m−1) | S-2 (6.0 dS m−1) | S-3 (9.5 dS m−1) | |
Ghandowra-F1 | 1.92 b,* | 2.51 a | 2.31 a |
Forester- F1 | 2.62 a | 2.69 a | 1.36 c |
Feisty-Red | 1.27 a | 1.42 a | 1.54 a |
Storage Treatment | Tomato Varieties | |||
---|---|---|---|---|
Abbreviation | Day-°C | Ghandowra-F1 | Forester-F1 | Feisty-Red |
ST-0 | (0–22; Control) | 1.72 h,* | 1.70 h | 1.05 g |
ST-1 | (4–12) | 1.72 h | 1.70 h | 1.14 f |
ST-2 | (4–22) | 1.89 g | 1.88 g | 1.15 f |
ST-3 | (8–12) | 2.05 f | 2.03 f | 1.25 e |
ST-4 | (8–22) | 2.25 e | 2.23 e | 1.37 d |
ST-5 | (12–12) | 2.46 c | 2.44 c | 1.50 bc |
ST-6 | (12–22) | 2.73 a | 2.70 a | 1.66 a |
ST-7 | (16–12) | 2.50 a | 2.48 b | 1.52 b |
ST-8 | (20–12) | 2.43 d | 2.41 d | 1.48 c |
ST-9 | (24–12) | 2.70 a | 2.67 a | 1.63 a |
LSD0.05 | 0.03 | 0.03 | 0.05 | |
Pr > F | 0.0001 | 0.0001 | 0.0001 | |
CV | 2.09 | 2.26 | 5.65 | |
SE | 0.02 | 0.02 | 0.03 |
Tomato Varieties | Salinity Levels (dS m−1) | ||
---|---|---|---|
S-1 (2.5) | S-2 (6) | S-3 (9.5) | |
Ghandowra-F1 | 7.87 b,* | 8.52 a | 8.71 a |
Forester- F1 | 7.94 b | 8.59 a | 8.68 a |
Feisty-Red | 7.32 c | 7.91 b | 8.08 a |
Storage Treatment | Tomato Varieties | |||
---|---|---|---|---|
Abbreviation | Day-°C | Ghandowra-F1 | Forester-F1 | Feisty-Red |
ST-0 | (0–22; Control) | 9.37 a,* | 9.41 a | 8.85 a |
ST-1 | (4–12) | 9.37 a | 9.41 a | 8.82 a |
ST-2 | (4–22) | 9.34 b | 9.22 b | 8.61 b |
ST-3 | (8–12) | 9.36 ab | 9.40 a | 8.60 b |
ST-4 | (8–22) | 8.45 c | 8.48 c | 7.81 c |
ST-5 | (12–12) | 7.84 d | 7.88 d | 7.25 d |
ST-6 | (12–22) | 7.69 f | 7.72 f | 7.11 f |
ST-7 | (16–12) | 7.77 e | 7.80 e | 7.18 e |
ST-8 | (20–12) | 7.56 g | 7.60 g | 6.99 g |
ST-9 | (24–12) | 7.04 h | 7.07 h | 6.51 h |
LSD0.05 | 0.02 | 0.03 | 0.01 | |
Pr > F | 0.0001 | 0.0001 | 0.0001 | |
CV | 0.42 | 0.25 | 1.18 | |
SE | 0.01 | 0.02 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Gaadi, K.A.; Zeyada, A.M.; Tola, E.; Alhamdan, A.M.; Ahmed, K.A.M.; Madugundu, R.; Edrris, M.K. Impact of Storage Conditions on Fruit Color, Firmness and Total Soluble Solids of Hydroponic Tomatoes Grown at Different Salinity Levels. Appl. Sci. 2024, 14, 6315. https://doi.org/10.3390/app14146315
Al-Gaadi KA, Zeyada AM, Tola E, Alhamdan AM, Ahmed KAM, Madugundu R, Edrris MK. Impact of Storage Conditions on Fruit Color, Firmness and Total Soluble Solids of Hydroponic Tomatoes Grown at Different Salinity Levels. Applied Sciences. 2024; 14(14):6315. https://doi.org/10.3390/app14146315
Chicago/Turabian StyleAl-Gaadi, Khalid A., Ahmed M. Zeyada, ElKamil Tola, Abdullah M. Alhamdan, Khalid A. M. Ahmed, Rangaswamy Madugundu, and Mohamed K. Edrris. 2024. "Impact of Storage Conditions on Fruit Color, Firmness and Total Soluble Solids of Hydroponic Tomatoes Grown at Different Salinity Levels" Applied Sciences 14, no. 14: 6315. https://doi.org/10.3390/app14146315
APA StyleAl-Gaadi, K. A., Zeyada, A. M., Tola, E., Alhamdan, A. M., Ahmed, K. A. M., Madugundu, R., & Edrris, M. K. (2024). Impact of Storage Conditions on Fruit Color, Firmness and Total Soluble Solids of Hydroponic Tomatoes Grown at Different Salinity Levels. Applied Sciences, 14(14), 6315. https://doi.org/10.3390/app14146315