A New Adaptive Strategy for Enhancing the Stability of Isolated Grids through the Integration of Renewable Energy and V2G Management
Abstract
:1. Introduction
2. Methodology
2.1. Advancement of a Power Smoothing Methodology Using MA for Energy Applications
- denotes the PV output power;
- signifies the power output smoothed via the MA method;
- denotes the count of samples contained within the time frame;
- serves as the iteration index.
2.2. New Control Methodology
3. Study on Real-Time Testing of an Isolated Microgrid
3.1. Test Bench for the Experimental Implementation
3.2. Practical Implementation of the Proposal
Algorithm 1: Pseudo-code for implementing the V2GSUN method |
Input: Membership functions for Fuzzy rules Sampling time Initial window: WindowSize |
Output: window: WindowSize |
Process: |
Initialization: Connect to Modbus devices at IP and port. Read initial values from system. |
Define Fuzzy Logic System: input variables ) with ranges [0–15]. input variables ) with ranges [0–100]. input variables ) with ranges [59.1–60.9]. output variable ) with range [100–1000]. membership functions for fuzzy rules for decision-making []. |
Real-time Data Processing (loop indefinitely): |
Measure elapsed time (t = 100 [ms]) Read current from Modbus. Inputs = [] = evalfis(inputs, fis) window = ) Update Modbus with new power values (). |
End |
End |
Algorithm 2: Pseudo-code for implementing the WS feature |
) Add new sample to moving average vector ma. Adjust length of vector ma to match . Calculate moving average () of V2GSUN. |
3.3. Case Base Implementation under Actual Laboratory Conditions
4. Data Analysis and Interpretation
- Study Scenario 1-Li-Ion Storage System with Moderate SoC level: aimed to maintain the Li-Ion BESS’s SoC within the range of 20% to 80% initially.
- Study Scenario 2-Li-Ion Storage System with Low SoC level: In this undercharging scenario, the Li-Ion BESS began with an SoC below 20%, prioritizing EV charging.
4.1. Study Scenario 1: Li-Ion Storage System with Moderate SoC Level
4.2. Study Scenario 2: Li-Ion Storage System with Low SoC Level
4.3. Sensibility Analysis for Implementing V2G
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sayed, E.T.; Olabi, A.G.; Alami, A.H.; Radwan, A.; Mdallal, A.; Rezk, A.; Abdelkareem, M.A. Renewable Energy and Energy Storage Systems. Energies 2023, 16, 1415. [Google Scholar] [CrossRef]
- Notton, G.; Nivet, M.-L.; Voyant, C.; Paoli, C.; Darras, C.; Motte, F.; Fouilloy, A. Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renew. Sustain. Energy Rev. 2018, 87, 96–105. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, C.; Gao, P.; Wang, H.; Li, X.; Zhong, L.; Wei, W.; Sun, Y. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catal. Sci. Technol. 2017, 7, 4580–4598. [Google Scholar] [CrossRef]
- Alva, G.; Liu, L.; Huang, X.; Fang, G. Thermal energy storage materials and systems for solar energy applications. Renew. Sustain. Energy Rev. 2017, 68, 693–706. [Google Scholar] [CrossRef]
- Takahashi, A.; Kajitani, T.; Funabiki, S. Parameter determination for reducing ESS capacity in PV power smoothing control using spline function. Electr. Eng. Jpn. 2022, 215, e23367. [Google Scholar] [CrossRef]
- Atif, A.; Khalid, M. Saviztky-Golay Filtering for Solar Power Smoothing and Ramp Rate Reduction Based on Controlled Battery Energy Storage. IEEE Access 2020, 8, 33806–33817. [Google Scholar] [CrossRef]
- Syed, M.A.; Khalid, M. Moving Regression Filtering With Battery State of Charge Feedback Control for Solar PV Firming and Ramp Rate Curtailment. IEEE Access 2021, 9, 13198–13211. [Google Scholar] [CrossRef]
- Albarakati, A.J.; Boujoudar, Y.; Azeroual, M.; Jabeur, R.; Aljarbouh, A.; El Moussaoui, H.; Lamhamdi, T.; Ouaaline, N. Real-Time Energy Management for DC Microgrids Using Artificial Intelligence. Energies 2021, 14, 5307. [Google Scholar] [CrossRef]
- Fendri, D.; Chaabene, M. Application of Hybrid Petri Nets for the Energy Dispatching of an Isolated Micro-Grid. Int. J. Appl. Metaheuristic Comput. 2020, 11, 61–72. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, W. Decentralised coordination control strategy of the PV generator, storage battery and hydrogen production unit in islanded AC microgrid. IET Renew. Power Gener. 2020, 14, 1053–1062. [Google Scholar] [CrossRef]
- Deepak, K.; Mandal, R.K.; Verma, V. Improvement of power quality by using novel controller for hybrid renewable energy sources based microgrid. Int. J. Emerg. Electr. Power Syst. 2024, 25, 289–303. [Google Scholar] [CrossRef]
- Villa-Avila, E.; Arevalo, P.; Aguado, R.; Ochoa-Correa, D.; Iniguez-Moran, V.; Jurado, F.; Tostado-Veliz, M. Enhancing Energy Power Quality in Low-Voltage Networks Integrating Renewable Energy Generation: A Case Study in a Microgrid Laboratory. Energies 2023, 16, 5386. [Google Scholar] [CrossRef]
- Susanto, J.; Shahnia, F. Optimal Capacity of a Battery Energy Storage System Based on Solar Variability Index to Smooth out Power Fluctuations in PV-Diesel Microgrids. Energies 2023, 16, 5658. [Google Scholar] [CrossRef]
- Torres, J.; Blanco, M.; Lafoz, M.; Navarro, G.; Najera, J.; Santos-Herran, M. Dimensioning Methodology of Energy Storage Systems for Power Smoothing in a Wave Energy Conversion Plant Considering Efficiency Maps and Filtering Control Techniques. Energies 2020, 13, 3380. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Li, L.; Liu, Z. A Hybrid Energy Storage System Strategy for Smoothing Photovoltaic Power Fluctuation Based on Improved HHO-VMD. Int. J. Photoenergy 2023, 2023, 9633843. [Google Scholar] [CrossRef]
- Hossain, M.B.; Islam, M.R.; Muttaqi, K.M.M.; Sutanto, D.; Agalgaonkar, A.P.P. A Compensation Strategy for Mitigating Intermittencies Within a PV Powered Microgrid Using a Hybrid Multilevel Energy Storage System. IEEE Trans. Ind. Appl. 2023, 59, 5074–5086. [Google Scholar] [CrossRef]
- Rubino, L.; Rubino, G.; Esempio, R.; Rubino, L.; Rubino, G.; Esempio, R. Linear Programming-Based Power Management for a Multi-Feeder Ultra-Fast DC Charging Station. Energies 2023, 16, 121. [Google Scholar] [CrossRef]
- Al Shereiqi, A.; Al-Hinai, A.; Albadi, M.; Al-Abri, R. Optimal Sizing of a Hybrid Wind-Photovoltaic-Battery Plant to Mitigate Output Fluctuations in a Grid-Connected System. Energies 2020, 13, 3015. [Google Scholar] [CrossRef]
- Costa, V.B.F.; Scianni, L.; Miranda, R.C.; Bonatto, B. Assessment of the status and trends of photovoltaic distributed generation in Brazil: An in-depth approach based on big data processing. Sol. Energy 2023, 249, 694–711. [Google Scholar] [CrossRef]
- Atif, A.; Khalid, M. Fuzzy logic controller for solar power smoothing based on controlled battery energy storage and varying low pass filter. IET Renew. Power Gener. 2020, 14, 3824–3833. [Google Scholar] [CrossRef]
- Saripalli, B.P.; Singh, G.; Singh, S. Supercapacitors based energy storage system for mitigating solar photovoltaic output power fluctuations. World J. Eng. 2023, 20, 815–834. [Google Scholar] [CrossRef]
- Arcos-Aviles, D.; Pascual, J.; Guinjoan, F.; Marroyo, L.; Garcia-Gutierrez, G.; Gordillo-Orquera, R.; Llanos-Proano, J.; Sanchis, P.; Motoasca, T.E. An Energy Management System Design Using Fuzzy Logic Control: Smoothing the Grid Power Profile of a Residential Electro-Thermal Microgrid. IEEE Access 2021, 9, 25172–25188. [Google Scholar] [CrossRef]
- Nasef, S.A.; Hassan, A.A.; ElMadany, H.T.; Zahran, M.B.; El-Shaer, M.K.; Abdelaziz, A.Y. Optimal Power Management and Control of Hybrid Photovoltaic-Battery for Grid-Connected Doubly-Fed Induction Generator Based Wind Energy Conversion System. Int. J. Renew. Energy Res. 2022, 12, 408–421. [Google Scholar]
- Aly, M.; Ahmed, E.M.; Rezk, H.; Mohamed, E.A. Marine Predators Algorithm Optimized Reduced Sensor Fuzzy-Logic Based Maximum Power Point Tracking of Fuel Cell-Battery Standalone Applications. IEEE Access 2021, 9, 27987–28000. [Google Scholar] [CrossRef]
- Agrawal, H.P.; Bansal, H.O.; Kumar, R.; Sisodia, Y.S. Design and real-time validation of PI and Fuzzy Logic tuned photovoltaic integrated DSTATCOM to improve power quality. Environ. Sci. Pollut. Res. 2022, 29, 90158–90177. [Google Scholar] [CrossRef]
- Kanagaraj, N. Hybrid Renewable Energy Source Combined Dynamic Voltage Restorer for Power Quality Improvement. Comput. Syst. Sci. Eng. 2022, 40, 517–538. [Google Scholar] [CrossRef]
- Atoui, A.; Seghir Boucherit, M.; Benmansour, K.; Barkat, S.; Djerioui, A.; Houari, A. Unified fuzzy logic controller and power management for an isolated residential hybrid PV/diesel/battery energy system. Clean Energy 2022, 6, 671–681. [Google Scholar] [CrossRef]
- Kotb, K.M.; Elmorshedy, M.F.; Salama, H.S.; Dan, A. Enriching the stability of solar/wind DC microgrids using battery and superconducting magnetic energy storage based fuzzy logic control. J. Energy Storage 2022, 45, 103751. [Google Scholar] [CrossRef]
- Assem, H.; Azib, T.; Bouchafaa, F.; Laarouci, C.; Belhaouas, N.; Hadj Arab, A. Adaptive Fuzzy Logic-Based Control and Management of Photovoltaic Systems with Battery Storage. Int. Trans. Electr. Energy Syst. 2023, 2023, 9065061. [Google Scholar] [CrossRef]
- Naik, K.A.; Gupta, C.P.; Fernandez, E. Wind power smoothing in partial load region with advanced fuzzy-logic based pitch-angle controller. Wind. Eng. 2022, 46, 52–68. [Google Scholar] [CrossRef]
- Muyeen, S.M.; Ali, M.H.; Takahashi, R.; Murata, T.; Tamura, J. Wind generator output power smoothing by using pitch controller. Int. Rev. Electr. Eng.-IREE 2007, 2, 310–321. [Google Scholar] [CrossRef]
- Naik, K.A.; Gupta, C.P. Output Power Smoothing and Voltage Regulation of a Fixed Speed Wind Generator in the Partial Load Region Using STATCOM and a Pitch Angle Controller. Energies 2018, 11, 58. [Google Scholar] [CrossRef]
- Villa-Avila, E.; Arevalo, P.; Ochoa-Correa, D.; Iniguez-Moran, V.; Jurado, F. Innovative Power Smoothing Technique for Enhancing Renewable Integration in Insular Power Systems Using Electric Vehicle Charging Stations. Appl. Sci. 2024, 14, 375. [Google Scholar] [CrossRef]
- Espinoza, J.L.; Gonzalez, L.G.; Sempertegui, R. Micro grid Laboratory as a Tool for Research on Non-Conventional Energy Sources in Ecuador. In Proceedings of the 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 8–10 November 2017; Proceedings Paper. [Google Scholar]
SoC [%] | VH | H | M | VL | L | |
M | MS | S | S | MS | S | |
VL | VHS | HS | MS | NS | S | |
VH | VHS | VHS | MS | VHS | HS | |
H | MS | HS | S | HS | MS | |
L | HS | MS | S | S | NS | |
Frequency [Hz] | VH | VHS | VHS | MS | VHS | HS |
H | MS | HS | S | HS | MS | |
M | MS | S | S | MS | S | |
VL | VHS | HS | MS | NS | S | |
L | HS | MS | S | S | NS |
(50%) Initial | Variance without Compensation | Variance with Compensation | Variance Reduction (%) | Renewable Energy Delivered without Compensation | Renewable Energy Delivered with Compensation | Energy Difference |
---|---|---|---|---|---|---|
MA | 15.66 | 13.07 | 16.55 | 3.21 | 3.17 | 0.03 |
RR | 15.91 | 13.65 | 14.2 | 3.21 | 3.15 | 0.05 |
V2GSUN | 15.62 | 12.58 | 19.43 | 3.23 | 3.20 | 0.04 |
Variance of Reduction Frequency (%) | |
---|---|
Case base | 1.5617 |
MA | 1.6263 |
RR | 1.5610 |
V2GSUN | 1.3782 |
(20%) Initial | Variance without Compensation | Variance with Compensation | Variance Reduction (%) | Renewable Energy Delivered without Compensation | Renewable Energy Delivered with Compensation | Energy Difference |
---|---|---|---|---|---|---|
V2GSUN | 15.63 | 13.12 | 16.05 | 3.21 | 3.06 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villa-Ávila, E.; Arévalo, P.; Ochoa-Correa, D.; Iñiguez-Morán, V.; Jurado, F. A New Adaptive Strategy for Enhancing the Stability of Isolated Grids through the Integration of Renewable Energy and V2G Management. Appl. Sci. 2024, 14, 6380. https://doi.org/10.3390/app14146380
Villa-Ávila E, Arévalo P, Ochoa-Correa D, Iñiguez-Morán V, Jurado F. A New Adaptive Strategy for Enhancing the Stability of Isolated Grids through the Integration of Renewable Energy and V2G Management. Applied Sciences. 2024; 14(14):6380. https://doi.org/10.3390/app14146380
Chicago/Turabian StyleVilla-Ávila, Edisson, Paul Arévalo, Danny Ochoa-Correa, Vinicio Iñiguez-Morán, and Francisco Jurado. 2024. "A New Adaptive Strategy for Enhancing the Stability of Isolated Grids through the Integration of Renewable Energy and V2G Management" Applied Sciences 14, no. 14: 6380. https://doi.org/10.3390/app14146380
APA StyleVilla-Ávila, E., Arévalo, P., Ochoa-Correa, D., Iñiguez-Morán, V., & Jurado, F. (2024). A New Adaptive Strategy for Enhancing the Stability of Isolated Grids through the Integration of Renewable Energy and V2G Management. Applied Sciences, 14(14), 6380. https://doi.org/10.3390/app14146380