Implementation of a Small-Sized Mobile Robot with Road Detection, Sign Recognition, and Obstacle Avoidance
Abstract
:1. Introduction
2. Preliminary
2.1. Equipment
2.2. Mechanical Model
3. Methods
3.1. Rode Detection
3.2. Sign Recognition
3.3. Obstacle Avoidance
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alatise, M.B.; Hancke, G.P. A review on challenges of autonomous mobile robot and sensor fusion methods. IEEE Access 2020, 8, 39830–39846. [Google Scholar] [CrossRef]
- Zghair, N.A.K.; Al-Araji, A.S. A one decade survey of autonomous mobile robot systems. Int. J. Electr. Comput. Eng. 2021, 11, 4891. [Google Scholar] [CrossRef]
- Loganathan, A.; Ahmad, N.S. A systematic review on recent advances in autonomous mobile robot navigation. Eng. Sci. Technol. Int. J. 2023, 40, 101343. [Google Scholar] [CrossRef]
- Amsters, R.; Slaets, P. Turtlebot 3 as a robotics education platform. In Proceedings of the Robotics in Education: Current Research and Innovations 10; Springer: Cham, Switzerland, 2020; pp. 170–181. [Google Scholar] [CrossRef]
- Guizzo, E.; Ackerman, E. The turtlebot3 teacher [resources_hands On]. IEEE Spectr. 2017, 54, 19–20. [Google Scholar] [CrossRef]
- Stan, A.C. A decentralised control method for unknown environment exploration using Turtlebot 3 multi-robot system. In Proceedings of the 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Ploiești, Romania, 30 June–2 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Ma’arif, A.; Nuryono, A.A. Vision-based line following robot in webots. In Proceedings of the 2020 FORTEI-International Conference on Electrical Engineering (FORTEI-ICEE), Yogyakarta, Indonesia, 24–25 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 24–28. [Google Scholar] [CrossRef]
- Zhang, H.; Hernandez, D.E.; Su, Z.; Su, B. A low cost vision-based road-following system for mobile robots. Appl. Sci. 2018, 8, 1635. [Google Scholar] [CrossRef]
- Cáceres Hernández, D.; Kurnianggoro, L.; Filonenko, A.; Jo, K.H. Real-time lane region detection using a combination of geometrical and image features. Sensors 2016, 16, 1935. [Google Scholar] [CrossRef] [PubMed]
- Soori, M.; Arezoo, B.; Dastres, R. Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cogn. Robot. 2023, 3, 54–70. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Y.; Lu, Y.; Hua, T.; Pan, T.; Zhang, W.; Tao, D.; Wang, L. Deep learning for event-based vision: A comprehensive survey and benchmarks. arXiv 2023, arXiv:2302.08890. [Google Scholar]
- DeSouza, G.N.; Kak, A.C. Vision for mobile robot navigation: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 237–267. [Google Scholar] [CrossRef]
- Masana, M.; Liu, X.; Twardowski, B.; Menta, M.; Bagdanov, A.D.; Van De Weijer, J. Class-incremental learning: Survey and performance evaluation on image classification. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 5513–5533. [Google Scholar] [CrossRef]
- Deepan, P.; Sudha, L. Object classification of remote sensing image using deep convolutional neural network. In The Cognitive Approach in Cloud Computing and Internet of Things Technologies for Surveillance Tracking Systems; Elsevier: Amsterdam, The Netherlands, 2020; pp. 107–120. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Wu, X.; Sahoo, D.; Hoi, S.C.H. Recent advances in deep learning for object detection. Neurocomputing 2020, 396, 39–64. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 7464–7475. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016, Proceedings, Part I 14; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar] [CrossRef]
- Li, Z.; Yang, L.; Zhou, F. FSSD: Feature fusion single shot multibox detector. arXiv 2017, arXiv:1712.00960. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1440–1448. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef]
- Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3523–3542. [Google Scholar] [CrossRef]
- Hafiz, A.M.; Bhat, G.M. A survey on instance segmentation: State of the art. Int. J. Multimed. Inf. Retr. 2020, 9, 171–189. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2961–2969. [Google Scholar] [CrossRef]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT: Real-time instance segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 9157–9166. [Google Scholar] [CrossRef]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT++ Better Real-Time Instance Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 44, 1108–1121. [Google Scholar] [CrossRef]
- Mo, Y.; Wu, Y.; Yang, X.; Liu, F.; Liao, Y. Review the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing 2022, 493, 626–646. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), 2018; Springer: Cham, Switzerland, 2018; pp. 801–818. [Google Scholar] [CrossRef]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A review of machine learning interpretability methods. Entropy 2020, 23, 18. [Google Scholar] [CrossRef]
- Longo, L.; Goebel, R.; Lecue, F.; Kieseberg, P.; Holzinger, A. Explainable artificial intelligence: Concepts, applications, research challenges and visions. In Proceedings of the International Cross-Domain Conference for Machine Learning and Knowledge Extraction; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–16. [Google Scholar] [CrossRef]
- Cui, Y.; Guo, D.; Yuan, H.; Gu, H.; Tang, H. Enhanced YOLO Network for Improving the Efficiency of Traffic Sign Detection. Appl. Sci. 2024, 14, 555. [Google Scholar] [CrossRef]
- Cheng, C.; Sha, Q.; He, B.; Li, G. Path Planning and Obstacle Avoidance for AUV: A Review. Ocean Eng. 2021, 235, 109355. [Google Scholar] [CrossRef]
- Wenzel, P.; Schön, T.; Leal-Taixé, L.; Cremers, D. Vision-based mobile robotics obstacle avoidance with deep reinforcement learning. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 14360–14366. [Google Scholar] [CrossRef]
- Zhu, G.; Shen, Z.; Liu, L.; Zhao, S.; Ji, F.; Ju, Z.; Sun, J. AUV Dynamic Obstacle Avoidance Method Based on Improved PPO Algorithm. IEEE Access 2022, 10, 121340–121351. [Google Scholar] [CrossRef]
- Liu, C.-C.; Lee, T.-T.; Xiao, S.-R.; Lin, Y.-C.; Lin, Y.-Y.; Wong, C.-C. Real-time FPGA-based balance control method for a humanoid robot pushed by external forces. Appl. Sci. 2020, 10, 2699. [Google Scholar] [CrossRef]
- Yang, X.; Wu, F.; Li, R.; Yao, D.; Meng, L.; He, A. Real-time path planning for obstacle avoidance in intelligent driving sightseeing cars using spatial perception. Appl. Sci. 2023, 13, 11183. [Google Scholar] [CrossRef]
- Guo, T.; Sun, Y.; Liu, Y.; Liu, L.; Lu, J. An Automated Guided Vehicle Path Planning Algorithm Based on Improved A* and Dynamic Window Approach Fusion. Appl. Sci. 2023, 13, 10326. [Google Scholar] [CrossRef]
- Escobar-Naranjo, J.; Caiza, G.; Ayala, P.; Jordan, E.; Garcia, C.A.; Garcia, M.V. Autonomous Navigation of Robots: Optimization with DQN. Appl. Sci. 2023, 13, 7202. [Google Scholar] [CrossRef]
Device | Processor/Graphics | Power |
---|---|---|
Nvidia Jetson AGX Xavier | NVIDIA Volta GPU with 64 Tensor cores | Max 30 W |
Intel NUC10i5FNB | Intel® Core™ i5-10210U Processor | Max 25 W |
OpenCR | STM32F746ZGT6 | Max 54 W |
XM-430 | ARM CORTEX-M3 (72 MHz, 32Bit) | Max 27 W |
Essentials | Parameters |
---|---|
Measuring Range | 0.15 m–12 m |
Sampling Frequency | 5.5 Hz |
Angular Range | ≤1° |
Power Consumption | 0.5 W |
Number | Data Augmentation Methods |
---|---|
1 | None |
2 | Saturation |
3 | Hue |
4 | Gaussian noise (Gaussian) |
5 | Random |
6 | Blur |
7 | Crop |
8 | Mosaic, Hue |
9 | Blur, Gaussian |
10 | Crop, Random, Mosaic |
11 | Exposure, Hue, Random |
12 | Exposure, Blur, Gaussian |
13 | Random, Crop, Saturation |
14 | Blur, Mosaic, Gaussian |
15 | Saturation, Exposure, Hue |
16 | Crop, Saturation, Random, Mosaic |
17 | Hue, Blur, Mosaic, Random |
18 | Exposure, Blur, Random, Crop |
19 | Mosaic, Gaussian, Random, Crop |
20 | Saturation, Hue, Blur, Gaussian |
21 | Saturation Hue, Blur, Random, Crop |
22 | Exposure, Mosaic, Gaussian, Random, Crop |
23 | Saturation, Exposure, Hue, Gaussian, Random |
24 | Hue, Blur, Mosaic, Gaussian, Random, Crop |
25 | Saturation, Exposure, Hue, Blur, Gaussian, Crop |
26 | Saturation, Exposure, Hue, Blur, Mosaic, Gaussian |
27 | Saturation, Hue, Blur, Mosaic, Gaussian, Random |
28 | ALL |
Number | AP50 | AP55 | AP60 | AP65 | AP70 | AP75 | AP80 | AP85 | AP90 | AP95 | AP@ 50:5:95 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 16.49% | 12.07% | 8.45% | 3.54% | 1.51% | 0.20% | 0.06% | 0.00% | 0.00% | 0.00% | 4.23% |
2 | 30.55% | 21.05% | 19.80% | 9.51% | 4.67% | 1.49% | 0.36% | 0.15% | 0.15% | 0.15% | 8.79% |
3 | 18.96% | 13.52% | 7.58% | 3.88% | 1.57% | 0.06% | 0.00% | 0.00% | 0.00% | 0.00% | 4.56% |
4 | 21.61% | 16.45% | 12.26% | 5.02% | 2.49% | 0.85% | 0.00% | 0.00% | 0.00% | 0.00% | 5.87% |
5 | 68.8% | 64.48% | 47.93% | 42.18% | 27.3% | 17.89% | 9.39% | 4.75% | 0.65% | 0.48% | 28.39% |
6 | 21.62% | 15.7% | 10.41% | 6.56% | 4.94% | 2.38% | 0.63% | 0.00% | 0.00% | 0.00% | 6.22% |
7 | 71.19% | 67.94% | 60.70% | 50.07% | 35.86% | 23.00% | 15.96% | 10.64% | 3.14% | 0.00% | 33.85% |
8 | 65.64% | 63.77% | 51.21% | 36.87% | 23.4% | 13.8% | 7.81% | 2.98% | 0.00% | 0.00% | 26.55% |
9 | 16.50% | 16.50% | 14.93% | 13.86% | 10.51% | 3.08% | 1.18% | 0.04% | 0.04% | 0.00% | 7.66% |
10 | 71.33% | 67.73% | 65.66% | 64.41% | 34.68% | 26.58% | 8.53% | 0.87% | 0.24% | 0.00% | 34.00% |
11 | 84.36% | 77.53% | 71.94% | 65.87% | 40.06% | 20.73% | 7.08% | 1.54% | 1.43% | 0.00% | 37.05% |
12 | 25.97% | 21.76% | 14.1% | 9.14% | 3.37% | 1.84% | 0.47% | 0.07% | 0.00% | 0.00% | 7.67% |
13 | 77.32% | 72.95% | 67.97% | 62.18% | 41.7% | 26.28% | 12.29% | 4.23% | 1.18% | 0.00% | 36.61% |
14 | 64.46% | 63.1% | 56.48% | 44.02% | 31.29% | 22.64% | 12% | 8.82% | 3.43% | 0.11% | 30.64% |
15 | 23.17% | 17.75% | 11.4% | 7.45% | 5.06% | 3.39% | 3.26% | 1.72% | 0.03% | 0.00% | 7.32% |
16 | 70.11% | 65.6% | 60.7% | 54.94% | 42.02% | 25.75% | 17.37% | 5.63% | 1.83% | 0.00% | 34.40% |
17 | 74.73% | 72.88% | 64.68% | 56.10% | 45.95% | 37.04% | 16.38% | 5.87% | 0.24% | 0.00% | 37.39% |
18 | 74.73% | 72.88% | 64.68% | 56.10% | 45.95% | 37.04% | 16.38% | 5.87% | 0.24% | 0.00% | 37.39% |
19 | 70.00% | 65.04% | 56.77% | 46.81% | 35.95% | 27.87% | 13.95% | 5.99% | 0.47% | 0.19% | 32.30% |
20 | 41.92% | 23.91% | 13.78% | 9.85% | 8.2% | 5.39% | 0.71% | 0.00% | 0.00% | 0.00% | 10.38% |
21 | 78.21% | 73.79% | 55.7% | 45.88% | 13.71% | 30.29% | 7.84% | 1.43% | 0.00% | 0.00% | 30.69% |
22 | 74.54% | 63.54% | 59.02% | 51.48% | 37.56% | 18.04% | 6.68% | 3.38% | 0.08% | 0.00% | 31.43% |
23 | 78.50% | 71.6% | 66.33% | 43.72% | 30.93% | 21.41% | 9.41% | 2.04% | 0.44% | 0.00% | 32.44% |
24 | 62.34% | 58.51% | 43.77% | 29.51% | 15.19% | 9.01% | 4.40% | 1.55% | 0.00% | 0.00% | 22.43% |
25 | 79.17% | 66.27% | 55.98% | 51.78% | 34.79% | 19.99% | 10.83% | 1.55% | 0.00% | 0.00% | 32.04% |
26 | 74.19% | 71.16% | 63.62% | 53.87% | 42.43% | 26.35% | 14.44% | 10.20% | 2.02% | 0.00% | 35.83% |
27 | 66.87% | 66.02% | 60.52% | 53.55% | 43.26% | 26.14% | 11.73% | 3.19% | 1.88% | 0.00% | 33.32% |
28 | 68.63% | 57.54% | 55.40% | 43.02% | 28.17% | 8.45% | 3.07% | 0.45% | 0.06% | 0.00% | 26.48% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, C.-C.; Weng, K.-D.; Yu, B.-Y.; Chou, Y.-S. Implementation of a Small-Sized Mobile Robot with Road Detection, Sign Recognition, and Obstacle Avoidance. Appl. Sci. 2024, 14, 6836. https://doi.org/10.3390/app14156836
Wong C-C, Weng K-D, Yu B-Y, Chou Y-S. Implementation of a Small-Sized Mobile Robot with Road Detection, Sign Recognition, and Obstacle Avoidance. Applied Sciences. 2024; 14(15):6836. https://doi.org/10.3390/app14156836
Chicago/Turabian StyleWong, Ching-Chang, Kun-Duo Weng, Bo-Yun Yu, and Yung-Shan Chou. 2024. "Implementation of a Small-Sized Mobile Robot with Road Detection, Sign Recognition, and Obstacle Avoidance" Applied Sciences 14, no. 15: 6836. https://doi.org/10.3390/app14156836
APA StyleWong, C. -C., Weng, K. -D., Yu, B. -Y., & Chou, Y. -S. (2024). Implementation of a Small-Sized Mobile Robot with Road Detection, Sign Recognition, and Obstacle Avoidance. Applied Sciences, 14(15), 6836. https://doi.org/10.3390/app14156836