Composition, Bioactivities, Microbiome, Safety Concerns, and Impact of Essential Oils on the Health Status of Domestic Animals
Abstract
:Featured Application
Abstract
1. Introduction
2. Eco-Friendly Extraction of Essential Oils
2.1. Steam Distillation
2.2. Microwave-Assisted Hydrodistillation
2.3. Other Methods
3. Chemical Constituents of Essential Oils
4. Some of the Bioactive Properties of EOs
4.1. Antimicrobial Activity
EOs Mechanism of Antibacterial Action
4.2. Antioxidant Properties
4.3. Anti-Inflammatory Activity
4.4. Insecticidal Activity
5. Effects of EO on the Health Status of Pets and Animals
6. Essential Oil, Gut Microbiota, and Host Health
7. Safety Considerations of Essential Oils
8. Limitations in the Use of Essential Oils
- Comprehensive studies are scarce on the toxicity of EOs, particularly concerning pets and animals, leading to a lack of robust evidence on their potential risks and benefits.
- The effects of EOs can vary significantly among different species of animals. This variability introduces complexity in establishing standardized dosages and safety guidelines applicable across diverse animal groups.
- Determining the appropriate dosage and application methods of EOs for animals is challenging due to factors like body weight, metabolism, and individual sensitivities.
- The chemical composition of EOs could vary based on factors like plant source, extraction method, and storage conditions. This lack of standardization poses challenges in predicting their precise effects on animals and requires careful consideration of each oil’s unique properties.
- Some EOs, even those derived from plants, can pose risks to animals. For instance, ingestion of tea tree oil has led to intoxication in both humans and animals, demonstrating the importance of informed usage.
9. Future Perspectives
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Possamai, M.C.; dos Santos, I.C.; Silva, E.S.; Gazim, Z.C.; Gonçalves, J.E.; Soares, A.A.; de Melo Germano, R.; Fanin, M.; de Sá, T.C.; Otutumi, L.K. In Vitro bacteriostatic activity of Origanum vulgare, Cymbopogon citratus, and Lippia alba essential oils in cat food bacterial isolates. Semin. Cienc. Agrar. 2019, 40, 3107–3122. [Google Scholar] [CrossRef]
- Van Raamsdonk, L.W.; Ozinga, W.A.; Hoogenboom, L.A.; Mulder, P.P.; Mol, J.G.; Groot, M.J.; Van der Fels-Klerx, H.J.; De Nijs, M. Exposure assessment of cattle via roughages to plants producing compounds of concern. Food Chem. 2015, 189, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Chaiyasut, C.; Sivamaruthi, B.S.; Wongwan, J.; Thiwan, K.; Rungseevijitprapa, W.; Klunklin, A.; Kunaviktikul, W. Effects of Litsea cubeba (Lour.) Persoon essential oil aromatherapy on mood states and salivary cortisol levels in healthy volunteers. Evid. Based Complement. Altern. Med. 2020, 2020, 4389239. [Google Scholar] [CrossRef] [PubMed]
- Lans, C. Do recent research studies validate the medicinal plants used in British Columbia, Canada for pet diseases and wild animals taken into temporary care? J. Ethnopharmacol. 2019, 236, 366–392. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023, 13, 1144. [Google Scholar] [CrossRef] [PubMed]
- Teoh, E.S. Secondary metabolites of plants. Med. Orchid. Asia 2015, 5, 59–73. [Google Scholar]
- Štrbac, F.; Krnjajić, S.; Stojanović, D.; Novakov, N.; Bosco, A.; Simin, N.; Ratajac, R.; Stanković, S.; Cringoli, G.; Rinaldi, L. Botanical control of parasites in veterinary medicine. One Health Triad 2023, 3, 215–222. [Google Scholar]
- Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Tiyajamorn, T.; Bharathi, M.; Chaiyasut, C. A narrative review on the bioactivity and health benefits of alpha-phellandrene. Sci. Pharm. 2022, 90, 57. [Google Scholar] [CrossRef]
- Castagna, F.; Palma, E.; Cringoli, G.; Bosco, A.; Nisticò, N.; Caligiuri, G.; Britti, D.; Musella, V. Use of Complementary Natural Feed for Gastrointestinal Nematodes Control in Sheep: Effectiveness and Benefits for Animals. Animals 2019, 9, 1037. [Google Scholar] [CrossRef]
- Bhatti, M.Z.; Ismail, H.; Kayani, W.K. Plant Secondary Metabolites: Therapeutic Potential and Pharmacological Properties. In Secondary Metabolites-Trends and Reviews, 1st ed.; Vijayakumar, R., Raja, S., Eds.; IntechOpen: London, UK, 2022; Volume 1. [Google Scholar] [CrossRef]
- Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Bharathi, M.; Kunaviktikul, W.; Klunklin, A.; Chanthapoon, C.; Chaiyasut, C. Essential oils, phytoncides, aromachology, and aromatherapy—A review. Appl. Sci. 2022, 12, 4495. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. The composition, pharmacological and economic importance of essential oil of Litsea cubeba (Lour.) Pers. Food Sci. Technol. 2022, 42, e35720. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Influence of Probiotic Supplementation on Health Status of the Dogs: A Review. Appl. Sci. 2021, 11, 11384. [Google Scholar] [CrossRef]
- Sonnenburg, J.L.; Bäckhed, F. Diet–Microbiota Interactions as Moderators of Human Metabolism. Nature 2016, 535, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Odamaki, T.; Kato, K.; Sugahara, H.; Hashikura, N.; Takahashi, S.; Xiao, J.; Abe, F.; Osawa, R. Age-Related Changes in Gut Microbiota Composition from Newborn to Centenarian: A Cross-Sectional Study. BMC Microbiol. 2016, 16, 90. [Google Scholar] [CrossRef] [PubMed]
- Hasan, N.; Yang, H. Factors Affecting the Composition of the Gut Microbiota, and Its Modulation. PeerJ 2019, 7, e7502. [Google Scholar] [CrossRef]
- Gorczyca, K.; Obuchowska, A.; Kimber-Trojnar, Z.; Wierzchowska-Opoka, M.; Leszczy´nska-Gorzelak, B. Changes in the Gut Microbiome and Pathologies in Pregnancy. Int. J. Environ. Res. Public Health 2022, 19, 9961. [Google Scholar] [CrossRef] [PubMed]
- Koren, O.; Goodrich, J.K.; Cullender, T.C.; Spor, A.; Laitinen, K.; Bäckhed, H.K.; Gonzalez, A.; Werner, J.J.; Angenent, L.T.; Knight, R.; et al. Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy. Cell 2012, 150, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.J.; Li, H.; Xie, P.F.; Li, Z.H.; Li, H.W.; Yin, Y.L.; Blachier, F.; Kong, X.F. Stages of Pregnancy and Weaning Influence the Gut Microbiota Diversity and Function in Sows. J. Appl. Microbiol. 2019, 127, 867–879. [Google Scholar] [CrossRef]
- Miko, E.; Csaszar, A.; Bodis, J.; Kovacs, K. The Maternal–Fetal Gut Microbiota Axis: Physiological Changes, Dietary Influence, and Modulation Possibilities. Life 2022, 12, 424. [Google Scholar] [CrossRef]
- Butel, M.-J.; Waligora-Dupriet, A.-J.; Wydau-Dematteis, S. The Developing Gut Microbiota and Its Consequences for Health. J. Dev. Orig. Health Dis. 2018, 9, 590–597. [Google Scholar] [CrossRef]
- Milani, C.; Mangifesta, M.; Mancabelli, L.; Lugli, G.A.; James, K.; Duranti, S.; Turroni, F.; Ferrario, C.; Ossiprandi, M.C.; van Sinderen, D.; et al. Unveiling Bifidobacterial Biogeography across the Mammalian Branch of the Tree of Life. ISME J. 2017, 11, 2834–2847. [Google Scholar] [CrossRef] [PubMed]
- Genovese, A.G.; McLean, M.K.; Khan, S.A. Adverse reactions from essential oil-containing natural flea products exempted from Environmental Protection Agency regulations in dogs and cats. J. Vet. Emerg. Crit. Care 2012, 22, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Abdo, A.A.A.; Shu, Y.; Zhang, Z.; Liang, T. The Extraction and Impact of Essential Oils on Bioactive Films and Food Preservation, with Emphasis on Antioxidant and Antibacterial Activities—A Review. Foods 2023, 12, 4169. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Chouhan, K.B.; Mandal, V. Decrypting solvent-free microwave as a dual green extraction: Studying simultaneous extraction of essential oil and phenolics from the same biomass-valorization and outperforming traditional approaches. J. Chem. Technol. Biotechnol. 2024, 99, 931–945. [Google Scholar] [CrossRef]
- Sareriya, K.J.; Vanzara, P.B.; Maiti, S. Optimization of Eucalyptus essential oil extraction by applying response surface methodology in traditional distillation and its adaption to solar thermal process. Sustain. Energy Res. 2024, 11, 25. [Google Scholar] [CrossRef]
- Elyemni, M.; Louaste, B.; El Ouadrhiri, F.; Bouia, A.; Eloutassi, N. Application of response surface methodology to optimize the extraction of essential oil from Rosmarinus officinalis using microwave-assisted hydrodistillation. J. Appl. Pharm. Sci. 2021, 11, 129–136. [Google Scholar]
- Mukherjee, S.; Chouhan, K.B.; Khan, A.; Meshram, S.; Srivastava, S.C.; Das, S.; Yadav, V.; Patra, A.; Mandal, V. An eco-extraction protocol based on blended mode microwave hydrodiffusion and gravity (MHG) principle for floral biomass valorisation through simultaneous recovery of volatile and non-volatile principles: The case of Tagetes erecta. Biomass Convers. Biorefin. 2024. [Google Scholar] [CrossRef]
- Hamzah, M.H.; Zulkefli, N.; Hamzah, A.F.; Shamsudin, R.; Man, H.C.; Ali, A.H.; Ali, M.M.; Maringgal, B.; Wondi, M.H. Optimization of Process Parameters Using Response Surface Methodology for Essential Oil Extraction from Canarium odontophyllum Kernels by Subcritical Water Treatment. Food Anal. Methods 2024, 17, 910–929. [Google Scholar] [CrossRef]
- Čmiková, N.; Galovičová, L.; Schwarzová, M.; Vukic, M.D.; Vukovic, N.L.; Kowalczewski, P.Ł.; Bakay, L.; Kluz, M.I.; Puchalski, C.; Kačániová, M. Chemical Composition and Biological Activities of Eucalyptus globulus Essential Oil. Plants 2023, 12, 1076. [Google Scholar] [CrossRef]
- Kozuharova, E.; Simeonov, V.; Batovska, D.; Stoycheva, C.; Valchev, H.; Benbassat, N. Chemical composition and comparative analysis of lavender essential oil samples from Bulgaria in relation to the pharmacological effects. Pharmacia 2023, 70, 395–403. [Google Scholar] [CrossRef]
- Keivanfar, L.; Nateghi, L.; Rashidi Nodeh, H. Comparing two different extraction techniques on chemical composition and antioxidant property of three essential oils of Ferulago contracta, Rosmarinus officinalis and Lavendula sublepoidota. J. Food Meas. Charact. 2023, 17, 3579–3591. [Google Scholar] [CrossRef]
- Afkar, S. Assessment of chemical compositions and antibacterial activity of the essential oil of Mentha piperita in response to salicylic acid. Nat. Prod. Res. 2023, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dangol, S.; Poudel, D.K.; Ojha, P.K.; Maharjan, S.; Poudel, A.; Satyal, R.; Rokaya, A.; Timsina, S.; Dosoky, N.S.; Satyal, P.; et al. Essential Oil Composition Analysis of Cymbopogon Species from Eastern Nepal by GC-MS and Chiral GC-MS, and Antimicrobial Activity of Some Major Compounds. Molecules 2023, 28, 543. [Google Scholar] [CrossRef] [PubMed]
- Soković, M.D.; Vukojević, J.; Marin, P.D.; Brkić, D.D.; Vajs, V.; Van Griensven, L.J.L.D. Chemical Composition of Essential Oils of Thymus and Mentha Species and Their Antifungal Activities. Molecules 2009, 14, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wu, N.; Fu, Y.J.; Wang, W.; Luo, M.; Zhao, C.J.; Zu, Y.G.; Liu, X.L. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ. Toxicol. Pharmacol. 2011, 32, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Subasinghe, U.; Gamage, M.; Hettiarachchi, D.S. Essential oil content and composition of Indian sandalwood (Santalum album) in Sri Lanka. J. For. Res. 2013, 24, 127–130. [Google Scholar] [CrossRef]
- Hussein, K.A.; Joo, J.H. Chemical composition of neem and lavender essential oils and their antifungal activity against pathogenic fungi causing ginseng root rot. Afr. J. Biotechnol. 2017, 16, 2349–2354. [Google Scholar]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Bampidis, V.; Azimonti, G.; Bastos, M.L.; Christensen, H.; Kos Durjava, M.; Kouba, M.; López-Alonso, M.; López Puente, S.; Marcon, F.; et al. Safety and efficacy of essential oil, oleoresin and tincture from Zingiber officinale Roscoe when used as sensory additives in feed for all animal species. EFSA J. 2020, 18, e06147. [Google Scholar] [PubMed]
- Daning, D.; Widyobroto, B.; Hanim, C.; Yusiati, L.M. Effect of Galangal (Alpinia galanga) essential oil supplementation on milk production, composition, and characteristics of fatty acids in dairy cows. Adv. Anim. Vet. Sci. 2022, 10, 192–202. [Google Scholar]
- Ruiz-Cano, D.; Sánchez-Carrasco, G.; El-Mihyaoui, A.B.; Arnao, M. Essential Oils and Melatonin as Functional Ingredients in Dogs. Animals 2022, 12, 2089. [Google Scholar] [CrossRef]
- Ibrahium, S.M.; Wahba, A.A.; Farghali, A.A.; Abdel-Baki, A.-A.S.; Mohamed, S.A.A.; Al-Quraishy, S.; Hassan, A.O.; Aboelhadid, S.M. Acaricidal Activity of Tea Tree and Lemon Oil Nanoemulsions against Rhipicephalus annulatus. Pathogens 2022, 11, 1506. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Bampidis, V.; Azimonti, G.; Bastos, M.L.; Christensen, H.; Fašmon Durjava, M.; Kouba, M.; López-Alonso, M.; López Puente, S.; Marcon, F.; et al. Safety and efficacy of feed additives consisting of essential oils from the bark and the leaves of Cinnamomum verum J. Presl (Cinnamon Bark Oil Cinnamon Leaf Oil) Use All Anim. Species (FEFANA asbl). EFSA J. 2022, 20, e07601. [Google Scholar]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Bampidis, V.; Azimonti, G.; Bastos, M.L.; Christensen, H.; Durjava, M.; Kouba, M.; López-Alonso, M.; López Puente, S.; Marcon, F.; et al. Safety and efficacy of a feed additive consisting of an essential oil from the seeds of Myristica fragrans Houtt. (nutmeg oil) for all animal species (FEFANA asbl). EFSA J. 2023, 21, e08066. [Google Scholar] [PubMed]
- Lupia, C.; Castagna, F.; Bava, R.; Naturale, M.D.; Zicarelli, L.; Marrelli, M.; Statti, G.; Tilocca, B.; Roncada, P.; Britti, D.; et al. Use of Essential Oils to Counteract the Phenomena of Antimicrobial Resistance in Livestock Species. Antibiotics 2024, 13, 163. [Google Scholar] [CrossRef] [PubMed]
- Brah, A.S.; Armah, F.A.; Obuah, C.; Akwetey, S.A.; Adokoh, C.K. Toxicity and therapeutic applications of citrus essential oils (CEOs): A review. Int. J. Food Prop. 2023, 26, 301–326. [Google Scholar] [CrossRef]
- Paiano, R.B.; de Sousa, R.L.M.; Bonilla, J.; Moreno, L.Z.; de Souza, E.D.F.; Baruselli, P.S.; Moreno, A.M. In Vitro effects of cinnamon, oregano, and thyme essential oils against Escherichia coli and Trueperella pyogenes isolated from dairy cows with clinical endometritis. Theriogenology 2023, 196, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.V.; Najar, B.; Bertelloni, F.; Pistelli, L.; Mancianti, F.; Nardoni, S. Chemical Composition and In Vitro Antimicrobial Efficacy of Sixteen Essential Oils against Escherichia coli and Aspergillus fumigatus Isolated from Poultry. Vet. Sci. 2018, 5, 62. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Tosi, G.; Massi, P.; Pistelli, L.; Mancianti, F. In Vitro Antimicrobial Activity of Essential Oils against Salmonella enterica Serotypes Enteritidis and Typhimurium Strains Isolated from Poultry. Molecules 2019, 24, 900. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Najar, B.; Pistelli, L.; Mancianti, F. Antibacterial and Antifungal Activity of Essential Oils against Pathogens Responsible for Otitis Externa in Dogs and Cats. Medicines 2017, 4, 21. [Google Scholar] [CrossRef]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Pistelli, L.; Mancianti, F. Antimicrobial Activity of Five Essential Oils against Bacteria and Fungi Responsible for Urinary Tract Infections. Molecules 2018, 23, 1668. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, R.; Rajni, E.; Saxena, R. Synergistic, antidermatophytic activity and chemical composition of essential oils against zoonotic dermatophytosis. Russ. J. Bioorg. Chem. 2022, 48, 1338–1347. [Google Scholar] [CrossRef]
- Stringaro, A.; Colone, M.; Cecchetti, S.; Zeppetella, E.; Spadaro, F.; Angiolella, L. “In Vivo” and “In Vitro” antimicrobial activity of Origanum vulgare essential oil and its two phenolic compounds on clinical isolates of Candida spp. Arch. Microbiol. 2022, 205, 15. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, Y.H.; Ye, M.; Wang, K.B.; Fan, L.M.; Su, F.W. Chemical composition and antifungal activity of essential oil from Origanum vulgare against Botrytis cinerea. Food Chem. 2021, 365, 130506. [Google Scholar] [CrossRef] [PubMed]
- Bismarck, D.; Dusold, A.; Heusinger, A.; Müller, E. Antifungal In Vitro Activity of Essential Oils against Clinical Isolates of Malassezia pachydermatis from Canine Ears: A Report from a Practice Laboratory. Complement. Med. Res. 2020, 27, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Saab, A.M.; Tundis, R.; Statti, G.A.; Menichini, F.; Lampronti, I.; Gambari, R.; Cinatl, J.; Doerr, H.W. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chem. Biodivers. 2008, 5, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Senthil Kumar, K.J.; Gokila Vani, M.; Wang, C.-S.; Chen, C.-C.; Chen, Y.-C.; Lu, L.-P.; Huang, C.-H.; Lai, C.-S.; Wang, S.-Y. Geranium and Lemon Essential Oils and Their Active Compounds Downregulate Angiotensin-Converting Enzyme 2 (ACE2), a SARS-CoV-2 Spike Receptor-Binding Domain, in Epithelial Cells. Plants 2020, 9, 770. [Google Scholar] [CrossRef]
- Battistini, R.; Rossini, I.; Ercolini, C.; Goria, M.; Callipo, M.R.; Maurella, C.; Pavoni, E.; Serracca, L. Antiviral Activity of Essential Oils Against Hepatitis A Virus in Soft Fruits. Food Environ. Virol. 2019, 11, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.E.; Benincasa, B.I.; Fachin, A.L.; Contini, S.H.T.; França, S.C.; Chagas, A.C.S.; Beleboni, R.O. Essential oils of Citrus aurantifolia, Anthemis nobile and Lavandula officinalis: In vitro anthelmintic activities against Haemonchus contortus. Parasit. Vectors 2018, 11, 269. [Google Scholar] [CrossRef]
- Schlieck, T.M.M.; Petrolli, T.G.; Bissacotti, B.F.; Copetti, P.M.; Bottari, N.B.; Morsch, V.M.; da Silva, A.S. Addition of a blend of essential oils (cloves, rosemary and oregano) and vitamin E to replace conventional chemical antioxidants in dog feed: Effects on food quality and health of beagles. Arch. Anim. Nutr. 2021, 75, 389–403. [Google Scholar] [CrossRef]
- de Oliveira, S.P.; Cunha, G.S.P.; Prates, J.P.B.; Fonseca, F.S.A.; de Souza, K.S.S.; Azevedo, A.M.; Xavier, A.; Santos, E.M.S.; Santos, H.O.; de Almeida, A.C. Antimicrobial Activity of Essential Oils Extracted from Clove and Lemongrass against Pathogenic Bacteria Isolated from Bovine, Swine and Poultry Feces. Semin. Cienc. Agrar. 2019, 40, 1937–1950. [Google Scholar] [CrossRef]
- Dorman, H.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Azhdarzadeh, F.; Hojjati, M. Chemical composition and antimicrobial activity of leaf, ripe and unripe peel of bitter orange (Citrus aurantium) essential oils. Nutr. Food Sci. Res. 2016, 3, 43–50. [Google Scholar] [CrossRef]
- Huang, D.F.; Xu, J.-G.; Liu, J.-X.; Zhang, H.; Hu, Q.P. Chemical constituents, antibacterial activity and mechanism of action of the essential oil from Cinnamomum cassia bark against four food-related bacteria. Microbiology 2014, 83, 357–365. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef]
- Cox, S.D.; Mann, C.M.; Markham, J.L.; Bell, H.C.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (Tea tree oil). J. Appl. Microbiol. 2000, 88, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.K.; Sharma, A.; Baek, K.H. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control. 2013, 32, 582–590. [Google Scholar] [CrossRef]
- Lv, F.; Liang, H.; Yuan, Q.; Li, C. In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Res. Int. 2011, 44, 3057–3064. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, X.; Zhou, H.; Zhao, C.; Lin, L. Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Bot. Stud. 2015, 56, 16. [Google Scholar] [CrossRef]
- Macwan, S.R.; Dabhi, B.K.; Aparnathi, K.D.; Prajapati, J.B. Essential Oils of Herbs and Spices: Their Antimicrobial Activity and Application in Preservation of Food. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 885–901. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Peng, Q.Y.; Liu, Y.R.; Ma, Q.G.; Zhang, J.Y.; Guo, Y.P.; Xue, Z.; Zhao, L.H. Effects of oregano essential oil as an antibiotic growth promoter alternative on growth performance, antioxidant status, and intestinal health of broilers. Poult. Sci. 2021, 100, 101163. [Google Scholar] [CrossRef]
- Johnson, A.M.; Anderson, G.; Arguelles-Ramos, M.; Ali, A.A.B. Effect of dietary essential oil of oregano on performance parameters, gastrointestinal traits, blood lipid profile, and antioxidant capacity of laying hens during the pullet phase. Front. Anim. Sci. 2022, 3, 1072712. [Google Scholar] [CrossRef]
- Gümüş, R.; Kara, A.; Özkanlar, S.; İmik, H.; Celep, N.A. Effects of dietary thyme and rosemary essential oils on biochemical parameters, antioxidant metabolism, small intestinal morphology and myofiber structure of superficial pectoral and biceps femoris muscles in broilers. Vet. Res. Forum. 2023, 14, 249–257. [Google Scholar] [PubMed]
- Righi, N.; Deghima, A.; Ismail, D.; Fernandes, P.A.; Baali, F.; Boumerfeg, S.; Baghiani, A.; Coimbra, M.A.; Coelho, E. Chemical composition and in vivo/in silico anti-inflammatory activity of an antioxidant, non-toxic essential oil from Thymus algeriensis Boiss & Reut. S. Afr. J. Bot. 2023, 157, 64–74. [Google Scholar]
- Grando, M.A.; Costa, V.; Genova, J.L.; Rupolo, P.E.; Azevedo, L.B.; Costa, L.B.; Carvalho, S.T.; Ribeiro, T.P.; Monteiro, D.P.; Carvalho, P.L.O. Blend of essential oils can reduce diarrheal disorders and improve liver antioxidant status in weaning piglets. Anim. Biosci. 2023, 36, 119–131. [Google Scholar] [CrossRef]
- Arooj, B.; Asghar, S.; Saleem, M.; Khalid, S.H.; Asif, M.; Chohan, T.; Khan, I.U.; Zubair, H.M.; Yaseen, H.S. Anti-inflammatory mechanisms of eucalyptol rich Eucalyptus globulus essential oil alone and in combination with flurbiprofen. Inflammopharmacology 2023, 31, 1849–1862. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Abebe, W.; Sousa, S.M.; Duarte, V.G.; Machado, M.I.; Matos, F.J. Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J. Ethnopharmacol. 2003, 89, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Shi, R.; Gao, T.; Hu, Y.; Zhou, J.; Li, C.; Wang, P.; Yang, H.; Xing, W.; Dong, L.; et al. Repeated Inhalation of Peppermint Essential Oil Improves Exercise Performance in Endurance-Trained Rats. Nutrients 2023, 15, 2480. [Google Scholar] [CrossRef]
- Medeiros, M.T.; Campos, D.R.; Soares, E.F.M.S.; Assis, J.D.; Oliveira, G.F.; Santos, L.O.; Silva, T.M.E.; Silva, M.P.D.; Cid, Y.P.; Scott, F.B.; et al. Larvicidal activity in vitro of essential oils against Cochliomyia hominivorax. Vet. Parasitol. 2023, 322, 110020. [Google Scholar] [CrossRef]
- Costa-Júnior, L.M.; Chaves, D.P.; Brito, D.R.B.; Santos, V.A.F.D.; Costa-Júnior, H.N.; Barros, A.T.M. A review on the occurrence of Cochliomyia hominivorax (Diptera: Calliphoridae) in Brazil. Rev. Bras. Parasitol. Vet. 2019, 28, 548–562. [Google Scholar] [CrossRef]
- Escobar, A.; Perez, M.; Romanelli, G.; Blustein, G. Thymol bioactivity: A review focusing on practical applications. Arab. J. Chem. 2020, 13, 9243–9269. [Google Scholar] [CrossRef]
- Dos Santos, J.V.B.; de Almeida Chaves, D.S.; de Souza, M.A.A.; Riger, C.J.; Lambert, M.M.; Campos, D.R.; Moreira, L.O.; Dos Santos Siqueira, R.C.; de Paulo Osorio, R.; Boylan, F.; et al. In vitro activity of essential oils against adult and immature stages of Ctenocephalides felis felis. Parasitology 2020, 147, 340–347. [Google Scholar] [CrossRef]
- Basij, M.; Sahebzadeh, N.; Shahriari, M.; Panahandeh, S. Insecticidal potential of Ajwain essential oil and its major components against Chilo suppressalis Walker. J. Plant Dis. Prot. 2023, 130, 735–745. [Google Scholar] [CrossRef]
- Pedroso, A.L.; Schonwald, M.K.; Dalla Corte, C.L.; Soares, F.A.A.; Sperança, A.; Godoi, B.; de Carvalho, N.R. Effects of Rosmarinus officinalis L. (Laminaceae) essential oil on adult and larvae of Drosophila melanogaster. Toxicol. Res. 2023, 12, 913–921. [Google Scholar] [CrossRef]
- Nardoni, S.; Pistelli, L.; Baronti, I.; Najar, B.; Pisseri, F.; Bandeira Reidel, R.V.; Papini, R.; Perrucci, S.; Mancianti, F. Traditional Mediterranean plants: Characterization and use of an essential oils mixture to treat Malassezia otitis externa in atopic dogs. Nat. Prod. Res. 2017, 31, 1891–1894. [Google Scholar] [CrossRef]
- Soares, N.M.M.; Bastos, T.S.; Kaelle, G.C.B.; de Souza, R.B.M.d.S.; de Oliveira, S.G.; Félix, A.P. Digestibility and palatability of the diet and intestinal functionality of dogs fed a blend of yeast cell wall and oregano essential oil. Animals 2023, 13, 2527. [Google Scholar] [CrossRef]
- Graham, L.; Wells, D.L.; Hepper, P.G. The influence of olfactory stimulation on the behaviour of dogs housed in a rescue shelter. Appl. Anim. Behav. Sci. 2005, 91, 143–153. [Google Scholar] [CrossRef]
- Blaskovic, M.; Rosenkrantz, W.; Neuber, A.; Sauter-Louis, C.; Mueller, R.S. The effect of a spot-on formulation containing polyunsaturated fatty acids and essential oils on dogs with atopic dermatitis. Vet. J. 2014, 199, 39–43. [Google Scholar] [CrossRef]
- Low, S.B.; Peak, R.M.; Smithson, C.W.; Perrone, J.; Gaddis, B.; Kontogiorgos, E. Evaluation of a topical gel containing a novel combination of essential oils and antioxidants for reducing oral malodor in dogs. Am. J. Vet. Res. 2014, 75, 653–657. [Google Scholar] [CrossRef]
- Goode, P.; Ellse, L.; Wall, R. Preventing tick attachment to dogs using essential oils. Ticks Tick Borne Dis. 2018, 9, 921–926. [Google Scholar] [CrossRef]
- Monteiro, C.; Ferreira, L.L.; de Paula, L.G.F.; de Oliveira Filho, J.G.; de Oliveira Silva, F.; Muniz, E.R.; Menezes, K.M.F.; de Camargo, F.R.; de Oliveira Nonato, R.; Martins, D.B.; et al. Thymol and eugenol microemulsion for Rhiphicephalus sanguineus sensu lato control: Formulation development, field efficacy, and safety on dogs. Vet. Parasitol. 2021, 296, 109501. [Google Scholar] [CrossRef]
- Batista, L.C.; Cid, Y.P.; De Almeida, A.P.; Prudêncio, E.R.; Riger, C.J.; De Souza, M.A.; Coumendouros, K.; Chaves, D.S. In vitro efficacy of essential oils and extracts of Schinus molle L. against Ctenocephalides felis felis. Parasitology 2016, 143, 627–638. [Google Scholar] [CrossRef]
- Nardoni, S.; Costanzo, A.G.; Mugnaini, L.; Pisseri, F.; Rocchigiani, G.; Papini, R.; Mancianti, F. Open-field study comparing an essential oil-based shampoo with miconazole/chlorhexidine for haircoat disinfection in cats with spontaneous microsporiasis. J. Feline Med. Surg. 2017, 19, 697–701. [Google Scholar] [CrossRef]
- Mugnaini, L.; Nardoni, S.; Pinto, L.; Pistelli, L.; Leonardi, M.; Pisseri, F.; Mancianti, F. In vitro and in vivo antifungal activity of some essential oils against feline isolates of Microsporum canis. J. Mycol. Med. 2012, 22, 179–184. [Google Scholar] [CrossRef]
- Ellis, S.L.; Wells, D.L. The influence of olfactory stimulation on the behaviour of cats housed in a rescue shelter. Appl. Anim. Behav. Sci. 2010, 123, 56–62. [Google Scholar] [CrossRef]
- Štrbac, F.; Krnjajić, S.; Stojanović, D.; Ratajac, R.; Simin, N.; Orčić, D.; Rinaldi, L.; Ciccone, E.; Maurelli, M.P.; Cringoli, G.; et al. In vitro and in vivo anthelmintic efficacy of peppermint (Mentha x piperita L.) essential oil against gastrointestinal nematodes of sheep. Front. Vet. Sci. 2023, 10, 1232570. [Google Scholar] [CrossRef]
- Hassan, M.A.; Abo-Elmaaty, A.M.A.; Zaglool, A.W.; Mohamed, S.A.M.; Abou-Zeid, S.M.; Farag, M.R.; Alagawany, M.; Di Cerbo, A.; Azzam, M.M.; Alhotan, R.; et al. Origanum vulgare Essential Oil Modulates the AFB1-Induced Oxidative Damages, Nephropathy, and Altered Inflammatory Responses in Growing Rabbits. Toxins 2023, 15, 69. [Google Scholar] [CrossRef]
- El-Sayed, Y.; Khalil, W.; Fayez, N.; Mohamed Abdel-Fattah, A.F. Enhancing effect of oregano essential oil and Bacillus subtilis on broiler immune function, intestinal morphology and growth performance. BMC Vet. Res. 2024, 20, 112. [Google Scholar] [CrossRef]
- Uyarlar, C.; Rahman, A.; Gultepe, E.E.; Cetingul, I.S.; Bayram, I. Effect of a Dietary Essential Oil Blend in Dairy Cows during the Dry and Transition Period on Blood and Metabolic Parameters of Dams and Their Calves. Animals 2024, 14, 150. [Google Scholar] [CrossRef]
- Xu, F.; Wang, J.; Zhu, E.; Feng, Y.; Xu, T.; Ru, X.; Gu, S.; Liu, X. Research Note: Effects of the intermittent feeding of microencapsulation essential oil on laying performance, egg quality, immune response, intestinal morphology, and oxidation status of laying hens. Poult. Sci. 2024, 103, 103600. [Google Scholar] [CrossRef]
- Zhao, B.C.; Wang, T.H.; Chen, J.; Qiu, B.H.; Xu, Y.R.; Li, J.L. Essential oils improve nursery pigs’ performance and appetite via modulation of intestinal health and microbiota. Anim. Nutr. 2024, 16, 174–188. [Google Scholar] [CrossRef]
- Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Bharathi, M.; Chaiyasut, C. Role of the Gut-Brain Axis, Gut Microbial Composition, Diet, and Probiotic Intervention in Parkinson’s Disease. Microorganisms 2022, 10, 1544. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Alagarsamy, K.; Thangaleela, S.; Bharathi, M.; Kesika, P.; Chaiyasut, C. Composition, Microbiota, Mechanisms, and Anti-Obesity Properties of Rice Bran. Foods 2023, 12, 1300. [Google Scholar] [CrossRef]
- Feng, J.; Lu, M.; Wang, J.; Zhang, H.; Qiu, K.; Qi, G.; Wu, S. Dietary oregano essential oil supplementation improves intestinal functions and alters gut microbiota in late-phase laying hens. J. Anim. Sci. Biotechnol. 2021, 12, 72. [Google Scholar] [CrossRef]
- Kabat, A.M.; Srinivasan, N.; Maloy, K.J. Modulation of immune development and function by intestinal microbiota. Trends Immunol. 2014, 35, 507–517. [Google Scholar] [CrossRef]
- Chen, X.; Xu, J.; Ren, E.; Su, Y.; Zhu, W. Co-occurrence of early gut colonization in neonatal piglets with microbiota in the maternal and surrounding delivery environments. Anaerobe 2018, 49, 30–40. [Google Scholar] [CrossRef]
- Li, N.; Huang, S.; Jiang, L.; Wang, W.; Li, T.; Zuo, B.; Li, Z.; Wang, J. Differences in the gut microbiota establishment and metabolome characteristics between low- and normal-birth-weight piglets during early-life. Front. Microbiol. 2018, 9, 1798. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, Y.; Hao, Y.; Fang, J.; Feng, J. Effects of Supplementation with Oregano Essential Oil during Late Gestation and Lactation on Serum Metabolites, Antioxidant Capacity and Fecal Microbiota of Sows. Animals 2024, 14, 753. [Google Scholar] [CrossRef]
- Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial Signature of Dysbiosis in Gut Microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef]
- Ismail, H.T.H. The Ameliorative Efficacy of Thymus vulgaris Essential Oil against Escherichia coli O157:H7-Induced Hematological Alterations, Hepatorenal Dysfunction and Immune-Inflammatory Disturbances in Experimentally Infected Rats. Environ. Sci. Pollut. Res. 2022, 29, 41476–41491. [Google Scholar] [CrossRef]
- Burt, S.A.; van der Zee, R.; Koets, A.P.; de Graaff, A.M.; van Knapen, F.; Gaastra, W.; Haagsman, H.P.; Veldhuizen, E.J. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157:H7. Appl. Environ. Microbiol. 2007, 73, 4484–4490. [Google Scholar] [CrossRef]
- Tett, A.; Pasolli, E.; Masetti, G.; Ercolini, D.; Segata, N. Prevotella Diversity, Niches and Interactions with the Human Host. Nat. Rev. Microbiol. 2021, 19, 585–599. [Google Scholar] [CrossRef]
- Szajewska, H.; Kołodziej, M. Systematic Review with Meta-Analysis: Lactobacillus rhamnosus GG in the Prevention of Antibiotic Associated Diarrhoea in Children and Adults. Aliment. Pharmacol. Ther. 2015, 42, 1149–1157. [Google Scholar] [CrossRef]
- Magossi, G.; Schmidt, K.N.; Winders, T.M.; Carlson, Z.E.; Holman, D.B.; Underdahl, S.R.; Swanson, K.C.; Amat, S. A single intranasal dose of essential oil spray confers modulation of the nasopharyngeal microbiota and short-term inhibition of Mannheimia in feedlot cattle: A pilot study. Sci. Rep. 2024, 14, 823. [Google Scholar] [CrossRef]
- Cardoso, L.; Owatari, M.S.; Chaves, F.C.M.; Ferreira, T.H.; Costa, D.S.; Furtado, W.E.; Tedesco, M.; Honorato, L.A.; Mouriño, J.L.P.; Martins, M.L. Lippia sidoides essential oil at concentration of 0.25% provided improvements in microbiota and intestine integrity of Danio rerio. Braz. J. Vet. Med. 2024, 46, e005323. [Google Scholar] [CrossRef]
- He, W.; Rahimnejad, S.; Wang, L.; Song, K.; Lu, K.; Zhang, C. Effects of organic acids and essential oils blend on growth, gut microbiota, immune response and disease resistance of Pacific white shrimp (Litopenaeus vannamei) against Vibrio parahaemolyticus. Fish. Shellfish. Immunol. 2017, 70, 164–173. [Google Scholar] [CrossRef]
- Huyben, D.; Chiasson, M.; Lumsden, J.S.; Pham, P.H.; Chowdhury, M.A.K. Dietary microencapsulated blend of organic acids and plant essential oils affects intestinal morphology and microbiome of rainbow trout (Oncorhynchus mykiss). Microorganisms 2021, 9, 2063. [Google Scholar] [CrossRef]
- Andrés, S.; Gini, C.; Ceciliani, F.; Gutiérrez-Expósito, D.; Arteche-Villasol, N.; Martín, A.; Cremonesi, P.; Faré, F.; Ghaffari, M.H.; Giráldez, F.J.; et al. Essential oil supplementation in milk replacers: Short- and long-term impacts on feed efficiency, the faecal microbiota and the plasma metabolome in dairy calves. J. Dev. Orig. Heal. Dis. 2024, 15, e5. [Google Scholar] [CrossRef]
- Štrbac, F.; Bosco, A.; Pušić, I.; Stojanović, D.; Simin, N.; Cringoli, G.; Rinaldi, L.; Ratajac, R. The use of essential oils against sheep gastrointestinal nematodes. In Animal Health Perspectives, 1st ed.; Abbas, R.Z., Khan, A., Liu, P., Saleemi, M.K., Eds.; Unique Scientific Publishers: Faisalabad, Pakistan, 2022; Volume 1, pp. 86–94. [Google Scholar]
- Vostinaru, O.; Heghes, S.C.; Filip, L. Safety profile of essential oils. In Essential Oils-Bioactive Compounds, New Perspectives and Applications, 1st ed.; de Oliveira, M.S., da Costa, W.A., Silva, S.G., Eds.; IntechOpen: London, UK, 2020; Volume 1. [Google Scholar] [CrossRef]
- Katiki, L.M.; Chagas, A.C.; Takahira, R.K.; Juliani, H.R.; Ferreira, J.F.; Amarante, A.F. Evaluation of Cymbopogon schoenanthus essential oil in lambs experimentally infected with Haemonchus contortus. Vet. Parasitol. 2012, 186, 312–318. [Google Scholar] [CrossRef]
- Katiki, L.M.; Araujo, R.C.; Ziegelmeyer, L.; Gomes, A.C.P.; Gutmanis, G.; Rodrigues, L.; Bueno, M.S.; Veríssimo, C.; Louvandini, H.; Ferreira, J.F.S.; et al. Evaluation of encapsulated anethole and carvone in lambs artificially- and naturally-infected with Haemonchus contortus. Exp. Parasitol. 2019, 197, 36–42. [Google Scholar] [CrossRef]
- Woolf, A. Essential oil poisoning. J. Toxicol. Clin. Toxicol. 1999, 37, 721–727. [Google Scholar] [CrossRef]
- Lans, C.; Turner, N.; Khan, T. Medicinal plant treatments for fleas and ear problems of cats and dogs in British Columbia, Canada. Parasitol. Res. 2008, 103, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Veerakumari, L. Botanical anthelmintics. Asian J. Sci. Technol. 2015, 6, 1881–1894. [Google Scholar]
- Prakash, P.; Radha Kumar, M.; Pundir, A.; Puri, S.; Prakash, S.; Kumari, N.; Thakur, M.; Rathour, S.; Jamwal, R.; Janjua, S. Documentation of commonly used ethnoveterinary medicines from wild plants of the high mountains in Shimla District, Himachal Pradesh, India. Horticulturae 2021, 7, 351. [Google Scholar] [CrossRef]
- Borges, D.G.L.; Borges, F.D.A. Plants and their medicinal potential for controlling gastrointestinal nematodes in ruminants. Nematoda 2016, 3, e92016. [Google Scholar] [CrossRef]
- de Aquino Mesquita, M.; Silva Júnior, J.B.E.; Panassol, A.M.; de Oliveira, E.F.; Vasconcelos, A.L.; de Paula, H.C.; Bevilaqua, C.M. Anthelmintic activity of Eucalyptus staigeriana encapsulated oil on sheep gastrointestinal nematodes. Parasitol. Res. 2013, 112, 3161–3165. [Google Scholar] [CrossRef] [PubMed]
- Maes, C.; Bouquillon, S.; Fauconnier, M.L. Encapsulation of Essential Oils for the Development of Biosourced Pesticides with Controlled Release: A Review. Molecules 2019, 24, 2539. [Google Scholar] [CrossRef]
- Junkuszew, A.; Milerski, M.; Bojar, W.; Szczepaniak, K.; Le Scouarnec, J.; Tomczuk, K.; Dudko, P.; Studzińska, M.B.; Demkowska-Kutrzepa, M.; Bracik, K. Effect of various antiparasitic treatments on lamb growth and mortality. Small Rumin. Res. 2015, 123, 306–313. [Google Scholar] [CrossRef]
Phytocompounds | Source of EOs | References |
---|---|---|
(Concentration in %) | ||
Geranial (35.07%) | Lippia alba | [1] |
Neral (27.8%) | ||
Trans-caryophyllene (6.72%) | ||
Geranial/α-citral (42.88%) | Cymbopogon citratus | |
β-Citral (32.15%) | ||
Myrcene (9.82%) | ||
Carvacrol (18.97%) | Origanum vulgare | |
Trans-sabinene hydrate (17.75%) | ||
Terpinen-4-ol (7.57%) | ||
Thymol (48.9%) | Thymus vulgaris | [35] |
p-Cymene (19.0%) | ||
γ-Terpinene (4.1%) | ||
Carvacrol (3.5%) | ||
β-Caryophyllene (3.5%) | ||
Carvacrol (12.8%) | Thymus tosevii | |
α-Terpinyl acetate (12.3%) | ||
cis-Myrtanol (11.2%) | ||
Thymol (10.4%) | ||
Menthol (37.4%) | Mentha piperita | |
Menthyl acetate (17.4%) | ||
Menthone (12.7%) | ||
Limonene (6.9%) | ||
Carvone (49.5%) | Mentha spicata | |
Menthone (21.9%) | ||
Limonene (5.8%) | ||
1,8-Cineole (26.54%) | Rosmarinus officinalis L. | [36] |
α-Pinene (20.14%) | ||
Camphor (12.88%) | ||
Camphene (11.38%) | ||
β-Pinene (6.95%) | ||
cis-α-Santalol (39%) | Santalum album | [37] |
cis-β-Santalol (17.38%) | ||
β-Curcumen-12-ol (9.71%) | ||
n-Hexadecanoic acid (78.25%) | Azadirachta indica | [38] |
Tetradecanoic acid (7.24%) | ||
Silane, triethylfluoro-(3.96%) | ||
1,6-Octadien-3-ol, 3,7-dimethyl- (41.74%) | Lavandula angustifolia | |
Silane, triethylfluoro-(36.71%) | ||
Bicyclo [2.2.1] heptan-2-one, 1,7,7-trimethyl-, (+)-(6.91%) | ||
α-Zingiberene (36.78%) | Zingiber officinale | [39] |
β-Sesquiphellandrene (10.25%) | ||
ar-Curcumene (9.51%) | ||
α-Farnesene (6.84%) | ||
Camphene (3.80%) | ||
β-Bisabolene (3.65%) | ||
1,8-Sineol (24.38%) | Alpinia galanga | [40] |
cis-β-Farnesene (12.19%) | ||
β-Pinene (8.48%) | ||
Phenol, 4-(2-propenyl)-, acetate (6.01%) | ||
(S)-4-(1-Acetoxyallyl) phenyl acetate (5.66%) | ||
Trans-Anethole * | Pimpinella anisum | [41] |
γ-Himachalene * | ||
Linalool * | Ocimum basilicum | |
1,8-Cineole * | ||
Methyl eugenol * | ||
Limonene * | Citrus bergamia | |
Linalyl acetate * | ||
γ-Terpinene * | ||
Linalool * | ||
Eugenol * | Cinnamomum zeylanicum | |
Cinnamyl acetate * | ||
Terpinen-4-ol * | Malaleuca alternifolia | |
α-Terpineol * | ||
1,8-Cineole * | ||
α-Terpinene * | ||
γ-Terpinene * | ||
Eugenol * | Syzygium aromaticum | [41] |
β-Caryophyllene * | ||
1,8-Cineole * | Eucalyptus globulus | |
α-Pinene * | ||
Anethole * | Foeniculum vulgare | |
Fenchone * | ||
Geranial * | Zingiber officinale | |
Neral * | ||
β-Caryophyllene * | Hypericum perforatum | |
α-Pinene * | ||
Linalyl acetate * | Lavandula angustifolia | |
Linalool * | ||
Terpinen-4-ol * | ||
Ocimene * | ||
Geranial * | Cymbopogon citratus | |
Neral * | ||
1,8-Cineole * | Thymus mastichina | |
Linalool * | ||
Menthol * | Mentha piperita | |
Menthone * | ||
α-Thuyone * | Rosmarinus officinalis | |
α-Pinene * | ||
Camphene * | ||
Camphor * | ||
Lyratol * | Artemisia vulgaris | |
1,8-cineole * | ||
α-Thuyone * | Salvia officinalis | |
Camphor * | ||
1,8-Cineole * | ||
α-Humulene * | ||
Carvacrol * | Satureja montana | |
p-Cymene * | ||
1,8-Cineole * | Thymus vulgaris | |
β-Phellandrene * | ||
Camphor * | ||
Terpinene (52.24%) | Melaleuca alternifolia | [42] |
Dihydro-α-terpineol (5.97) | ||
Diterpene (2.87%) | ||
(L)-alpha-terpineol (18.32%) | Citrus limon | |
Alpha-terpinol (13.43%) | ||
Trans-4-thujanol (9.64%) | ||
α- Terpinolene (5.81%) | ||
Citral propylene glycol acetal (5.73%) | ||
Geranial propylene glycol acetal (4.00%) | ||
α-Terpineol acetate (3.60%) | ||
(E)-Cinnamaldehyde (69.0%) | Cinnamomum verum J. Presl | [43] |
Eugenol (6.43%) | (Bark oil) | |
β-Caryophyllene (6.33%) | ||
Linalool (5.02%) | ||
Eugenol (79.0%) | Cinnamomum verum J. Presl | |
Eugenyl acetate (2.71%) | (Leaf oil) | |
Benzyl benzoate (3.54%) | ||
(E)-Cinnamaldehyde (0.86%) | ||
Sabinene * | Myristica fragrans Houtt. | [44] |
α-Pinene (pin-2(3)-ene) * | ||
Myristicin * | ||
β-Pinene (pin-2(10) ene) * | ||
4-Terpineno * | ||
Limonene * | ||
γ-Terpinene * |
Study Subjects | Essential Oil | Dose and Duration | Results | References |
---|---|---|---|---|
Dogs | A mixture of EOs of 6% clove, 2% rosemary, 1% oregano, 3.3% vitamin E, and 87.7% soybean oil (vehicle). | 1% of test mixture in dry feed. The control and test groups had 380 g of feed daily for 28 days. Then, the animals were swapped with a 15-day washout period. | Improved the antioxidant status of the study subjects. | [60] |
Dogs with otitis | Mixture 1: Citrus paradisi (0.5%), Salvia sclarea (0.5%), Ocimum basilicum (0.5%), Rosmarinus officinalis (1%). Mixture 2: Citrus limon (1%), R. officinalis (1%), Anthemis nobilis (0.5%), S. sclarea (0.5%). Mixture 3: S. sclarea (1%), Lavandula hybrida (1%), R. officinalis (1%). Mixture 4: C. limon (1%), R. officinalis (0.5%), C. paradisi (1%), A. nobilis (0.5%). Mixture 5: Thymus vulgaris (0.5%), A. nobilis (1%), C. paradisi (0.5%), L. hybrida (1%). | 200 μL of oil mix per ear once daily for 2 weeks | Mixture 2 showed better improvement in canine otitis. | [85] |
Dogs | Diet 1: Control; Diet 2: 1.5 kg/ton of yeast cell wall and oregano EO (1.5 YCO); Diet 3: 3.0 kg/ton of yeast cell wall and oregano EO (3.0 YCO). | 1.5 kg/ton YCO or 3.0 kg/ton YCO twice a day for 20 days | Dogs treated with the YCO blend showed signs of enhanced intestinal function. Beneficial bacterial diversity was increased. The concentrations of histamine, phenol, and ammonia were reduced. | [86] |
Dogs | EOs of Lavandula angustifolia, Anthennis nobilis, Cymbopogon citrates and Mentha piperita. | * EO was diffused using an oil burner into the dogs’ places for 4 h per day for five consecutive days. After 2 days of break, the next EO was used. | L. angustifolia and A. nobilis EOs improved the behaviors and relaxation of dogs in the rescue shelter. | [87] |
Dogs with CAD | PUFAs: (6 mg/mL of α-linolenic and 30 mg/mL of linoleic acid); EOs (neem oil, rosemary extract, lavender oil, clove oil, tea tree oil, oregano extract, peppermint extract and cedar bark extract) * | Dogs < 10, 10 to 20, and 20 to 40 kg received 0.6, 1.2, and 2.4 mL, respectively. once a week for 8 weeks. | The topical preparation containing PUFAs and EOs ameliorates the clinical signs of CAD and is safe for dogs. | [88] |
Dogs | Placebo or active gel ** containing EO compounds (menthol and thymol) and polyphenolic antioxidants (phloretin and ferulic acid). | 12 mm length (and 0.75 mm width) of gel/each side of the mouth. Twice daily for 4 weeks. | A daily application of tested formulation following an initial dental cleaning reduced halitosis in dogs. | [89] |
Dogs | EOs of turmeric or orange; excipient only (negative control); N,N-Diethyl-3-methylbenzamide (DEET) (positive control) | 2.5% (v/v) of turmeric or orange EO diluted in water with a 1% coco glucoside excipient. Ten sprays per day for 28 days. | Dogs treated with turmeric EO showed a significantly reduced percentage of ticks attached to their legs or bellies compared to controls. | [90] |
Dogs infested with ticks | Microemulsion containing 0.5 mg/mL of thymol and 0.5 mg/ mL of eugenol. | After ticks infestation, each dog of the treatment goup was sprayed with 10 mL of freshly prepared microemulsion/kg on the same day. | The microemulsion reduced the number of tick larvae in dogs and reduced the larval hatching. The microemulsion was stable and safe. | [91] |
Cats infected with Microsporum canis (dermatophytosis) | EO treatment: oral itraconazole + Shampoo containing Thymus serpyllum (2%), O. vulgare (5%), and R. officinalis (5%), EOs. Conventional treatment: (oral itraconazole + 2% miconazole/ 2% chlorhexidine shampoo | Oral itraconazole (5 mg/kg/day) for 1 week, every 2 weeks for at least 6 weeks. Washed twice a week using 5 mL of shampoo during treatment. | The treatment was effective, and EO shampoo could be natural alternative cat dermatophytosis treatment. | [93] |
Cats infected with Microsporum canis (dermatophytosis) | EO mixture containing 2% Thymus serpillum, 5% O. vulgare, and 5% R. officinalis in sweet almond oil | EO mixture was applied to the lesion for one month. Itrafungol® (5 mg/kg/day) for 1 week, washout period for 1 week (3 cycles)-served as efficacy control. | Four out of seven cats that received EO treatment showed recovery on both clinically and culturally. No adverse effects were observed in any of the treated cats. | [94] |
Sheep | EO of Mentha piperita diluted in sunflower oil at 1: 4.5 ratio. | EO treatment: Regular diet (barley and maize grains) with 150 mg/kg EO. Diet and 3.8 mg/kg of albendazole (Positive control). Diet and 50 mL of sunflower oil/ animal (negative control). For 14 days. | EO of M. piperita has potent anthelmintic efficacy. It could be used to control gastrointestinal nematodes in sheep. | [96] |
Rabbit | O. vulgare EO | Control, AFB1 group (0.3 mg AFB1/kg diet), OEO group (1 g OEO/kg diet), and Combination group (1 g OEO/kg + 0.3 mg AFB1/kg diet) for 8 weeks. | OEO supplementation improved the harmful effects of AFB1. Improved the antioxidant levels, Decreased the inflammation, and reversed oxidative DNA damage in rabbits. | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivamaruthi, B.S.; Kesika, P.; Daungchana, N.; Sisubalan, N.; Chaiyasut, C. Composition, Bioactivities, Microbiome, Safety Concerns, and Impact of Essential Oils on the Health Status of Domestic Animals. Appl. Sci. 2024, 14, 6882. https://doi.org/10.3390/app14166882
Sivamaruthi BS, Kesika P, Daungchana N, Sisubalan N, Chaiyasut C. Composition, Bioactivities, Microbiome, Safety Concerns, and Impact of Essential Oils on the Health Status of Domestic Animals. Applied Sciences. 2024; 14(16):6882. https://doi.org/10.3390/app14166882
Chicago/Turabian StyleSivamaruthi, Bhagavathi Sundaram, Periyanaina Kesika, Nitiwan Daungchana, Natarajan Sisubalan, and Chaiyavat Chaiyasut. 2024. "Composition, Bioactivities, Microbiome, Safety Concerns, and Impact of Essential Oils on the Health Status of Domestic Animals" Applied Sciences 14, no. 16: 6882. https://doi.org/10.3390/app14166882
APA StyleSivamaruthi, B. S., Kesika, P., Daungchana, N., Sisubalan, N., & Chaiyasut, C. (2024). Composition, Bioactivities, Microbiome, Safety Concerns, and Impact of Essential Oils on the Health Status of Domestic Animals. Applied Sciences, 14(16), 6882. https://doi.org/10.3390/app14166882