Invasive Prenatal Diagnostics: A Cornerstone of Perinatal Management
Abstract
:1. Introduction to Prenatal Diagnostics
2. Techniques of Invasive Diagnostics
2.1. Amniocentesis
2.1.1. Genetic Analysis
2.1.2. Intra-Amniotic Infections
2.1.3. TORCH Infections
2.1.4. Biochemical Analysis
2.2. Chorionic Villus Sampling (CVS)
3. Technological Advances in Prenatal Diagnostics
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fuchs, F.; Riis, P. Antenatal Sex Determination. Nature 1956, 177, 330. [Google Scholar] [CrossRef] [PubMed]
- Serr, D.M.; Sachs, L.; Danon, M. The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report). Bull. Res. Counc. Isr. 1955, 5, 137–138. [Google Scholar]
- Dewhurst, C. Diagnosis of sex before birth. Lancet 1956, 267, 471–472. [Google Scholar] [CrossRef] [PubMed]
- Shettles, L.B. Nuclear morphology of cells in human amniotic fluid in relation to sex of infant. Am. J. Obstet. Gynecol. 1956, 71, 834–838. [Google Scholar] [CrossRef]
- Makowski, E.L.; Prem, K.A.; Kaiser, I.H. Detection of sex of fetuses by the incidence of sex chromatin body in nuclei of cells in amniotic fluid. Science 1956, 123, 542–543. [Google Scholar] [CrossRef]
- James, F. Sexing fœtuses by examination of amniotic fluid. Lancet 1956, 267, 202–203. [Google Scholar] [CrossRef]
- Steele, M.; Breg, W.R. Chromosome analysis of human amniotic-fluid cells. Lancet 1966, 287, 383–385. [Google Scholar] [CrossRef]
- Jacobson, C.B.; Barter, R.H. Intrauterine diagnosis and management of genetic defects. Am. J. Obstet. Gynecol. 1967, 99, 796–807. [Google Scholar] [CrossRef]
- Highman, J.H. Obstetric radiology. Postgrad. Med. J. 1970, 46, 32–39. [Google Scholar] [CrossRef]
- Richey, L.E. Intravenous Placentography. Radiology 1963, 80, 645–649. [Google Scholar] [CrossRef]
- Stewart, A.; Webb, J.; Giles, D.; Hewitt, D. Malignant disease in childhood and diagnostic irradiation in utero. Lancet 1956, 268, 447. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.; Webb, J.; Hewitt, D. A Survey of Childhood Malignancies. BMJ 1958, 1, 1495–1508. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.; Kneale, G. Changes in the cancer risk associated with obstetric radiography. Lancet 1968, 291, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.M.C.; Doll, R.; Hill, A.B. Incidence of Leukaemia after Exposure to Diagnostic Radiation in Utero. BMJ 1960, 2, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Donald, I.; Macvicar, J.; Brown, T. Investigation of abdominal masses by pulsed ultrasound. Lancet 1958, 271, 1188–1195. [Google Scholar] [CrossRef]
- Campbell, S. A Short History of Sonography in Obstetrics and Gynaecology. Facts Views Vis. ObGyn 2013, 5, 213–229. [Google Scholar] [PubMed]
- Thompson, H.E.; Holmes, J.H.; Gottesfeld, K.R.; Taylor, E. Fetal development as determined by ultrasonic pulse echo techniques. Am. J. Obstet. Gynecol. 1965, 92, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Willocks, J.; Donald, I.; Campbell, S.; Dunsmore, I.R. Intrauterine growth assessed by ultrasonic foetal cephalometry. BJOG Int. J. Obstet. Gynaecol. 1967, 74, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S. The prediction of fetal maturity by ultrasonic measurement of the biparietal diameter. BJOG Int. J. Obstet. Gynaecol. 1969, 76, 603–609. [Google Scholar] [CrossRef]
- Campbell, S.; Wilkin, D. Ultrasonic measurement of fetal abdomen circumference in the estimation of fetal weight. BJOG Int. J. Obstet. Gynaecol. 1975, 82, 689–697. [Google Scholar] [CrossRef]
- Robinson, H.P. Sonar Measurement of Fetal Crown-Rump Length as Means of Assessing Maturity in First Trimester of Pregnancy. BMJ 1973, 4, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.; Johnstone, F.; Holt, E.; May, P. Anencephaly: Early ultrasonic diagnosis and active management. Lancet 1972, 300, 1226–1227. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S. Early prenatal diagnosis of neural tube defects by ultrasound. Clin. Obstet. Gynecol. 1977, 20, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Hadlock, F.P.; Harrist, R.B.; Sharman, R.S.; Deter, R.L.; Park, S.K. Estimation of fetal weight with the use of head, body, and femur measurements—A prospective study. Am. J. Obstet. Gynecol. 1985, 151, 333–337. [Google Scholar] [CrossRef]
- Benacerraf, B.R.; Barss, V.A.; Laboda, L.A. A sonographic sign for the detection in the second trimester of the fetus with Down’s syndrome. Am. J. Obstet. Gynecol. 1985, 151, 1078–1079. [Google Scholar] [CrossRef]
- Nicolaides, K.H.; Azar, G.; Byrne, D.; Mansur, C.; Marks, K. Fetal nuchal translucency: Ultrasound screening for chromosomal defects in first trimester of pregnancy. BMJ 1992, 304, 867–869. [Google Scholar] [CrossRef]
- Hyett, J.; Moscoso, G.; Papapanagiotou, G.; Perdu, M.; Nicolaides, K.H. Abnormalities of the heart and great arteries in chromosomally normal fetuses with increased nuchal translucency thickness at 11–13 weeks of gestation. Ultrasound Obstet. Gynecol. 1996, 7, 245–250. [Google Scholar] [CrossRef]
- Souka, A.P.; Snijders, R.J.M.; Novakov, A.; Soares, W.; Nicolaides, K.H. Defects and syndromes in chromosomally normal fetuses with increased nuchal translucency thickness at 10–14 weeks of gestation. Ultrasound Obstet. Gynecol. 1998, 11, 391–400. [Google Scholar] [CrossRef]
- Matias, A.; Gomes, C.; Flack, N.; Montenegro, N.; Nicolaides, K.H. Screening for chromosomal abnormalities at 10–14 weeks: The role of ductus venosus blood flow. Ultrasound Obstet. Gynecol. 1998, 12, 380–384. [Google Scholar] [CrossRef]
- Cicero, S.; Curcio, P.; Papageorghiou, A.; Sonek, J.; Nicolaides, K. Absence of nasal bone in fetuses with trisomy 21 at 11–14 weeks of gestation: An observational study. Lancet 2001, 358, 1665–1667. [Google Scholar] [CrossRef]
- Huggon, I.C.; Defigueiredo, D.B.; Allan, L.D. Tricuspid regurgitation in the diagnosis of chromosomal anomalies in the fetus at 11–14 weeks of gestation. Heart 2003, 89, 1071–1073. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.; Souter, V.; Tul, N.; Snijders, R.; Nicolaides, K.H. A screening program for trisomy 21 at 10–14 weeks using fetal nuchal translucency, maternal serum free beta-human chorionic gonadotropin and pregnancy-associated plasma protein-A. Ultrasound Obstet. Gynecol. 1999, 13, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Bindra, R.; Heath, V.; Liao, A.; Spencer, K.; Nicolaides, K.H. One-stop clinic for assessment of risk for trisomy 21 at 11–14 weeks: A prospective study of 15 030 pregnancies. Ultrasound Obstet. Gynecol. 2002, 20, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.; Spencer, C.E.; Power, M.; Moakes, A.; Nicolaides, K.H. One stop clinic for assessment of risk for fetal anomalies: A report of the first year of prospective screening for chromosomal anomalies in the first trimester. BJOG Int. J. Obstet. Gynaecol. 2000, 107, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Kagan, K.O.; Cicero, S.; Staboulidou, I.; Wright, D.; Nicolaides, K.H. Fetal nasal bone in screening for trisomies 21, 18 and 13 and Turner syndrome at 11–13 weeks of gestation. Ultrasound Obstet. Gynecol. 2009, 33, 259–264. [Google Scholar] [CrossRef]
- Kagan, K.O.; Valencia, C.; Livanos, P.; Wright, D.; Nicolaides, K.H. Tricuspid regurgitation in screening for trisomies 21, 18 and 13 and Turner syndrome at 11 + 0 to 13 + 6 weeks of gestation. Ultrasound Obstet. Gynecol. 2009, 33, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Maiz, N.; Valencia, C.; Kagan, K.O.; Wright, D.; Nicolaides, K.H. Ductus venosus Doppler in screening for trisomies 21, 18 and 13 and Turner syndrome at 11–13 weeks of gestation. Ultrasound Obstet. Gynecol. 2009, 33, 512–517. [Google Scholar] [CrossRef]
- Santorum, M.; Wright, D.; Syngelaki, A.; Karagioti, N.; Nicolaides, K.H. Accuracy of First-Trimester Combined Test in Screening for Trisomies 21, 18 and 13. Obstet. Gynecol. Surv. 2017, 72, 631–632. [Google Scholar] [CrossRef]
- Kagan, K.O.; Sonek, J.; Kozlowski, P. Antenatal screening for chromosomal abnormalities. Arch. Gynecol. Obstet. 2022, 305, 825–835. [Google Scholar] [CrossRef]
- Karim, J.N.; Roberts, N.W.; Salomon, L.J.; Papageorghiou, A.T. Systematic review of first-trimester ultrasound screening for detection of fetal structural anomalies and factors that affect screening performance. Ultrasound Obstet. Gynecol. 2017, 50, 429–441. [Google Scholar] [CrossRef]
- Syngelaki, A.; Chelemen, T.; Dagklis, T.; Allan, L.; Nicolaides, K.H. Challenges in the diagnosis of fetal non-chromosomal abnormalities at 11–13 weeks. Prenat. Diagn. 2011, 31, 90–102. [Google Scholar] [CrossRef]
- Syngelaki, A.; Guerra, L.; Ceccacci, I.; Efeturk, T.; Nicolaides, K.H. Impact of holoprosencephaly, exomphalos, megacystis and increased nuchal translucency on first-trimester screening for chromosomal abnormalities. Ultrasound Obstet. Gynecol. 2017, 50, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Vayna, A.M.; Veduta, A.; Duta, S.; Panaitescu, A.M.; Stoica, S.; Buinoiu, N.; Nedelea, F.; Peltecu, G. Diagnosis of Fetal Structural Anomalies at 11 to 14 Weeks. J. Ultrasound Med. 2018, 37, 2063–2073. [Google Scholar] [CrossRef]
- Salomon, L.J.; Alfirevic, Z.; Bilardo, C.M.; Chalouhi, G.E.; Ghi, T.; Kagan, K.O.; Lau, T.K.; Papageorghiou, A.T.; Raine-Fenning, N.J.; Stirnemann, J.; et al. ISUOG Practice Guidelines: Performance of first-trimester fetal ultrasound scan. Ultrasound Obstet. Gynecol. 2013, 41, 102–113. [Google Scholar] [CrossRef] [PubMed]
- International Society of Ultrasound in Obstetrics and Gynecology; Bilardo, C.M.; Chaoui, R.; Hyett, J.A.; Kagan, K.O.; Karim, J.N.; Papageorghiou, A.T.; Poon, L.C.; Salomon, L.J.; Syngelaki, A.; et al. ISUOG Practice Guidelines (updated): Performance of 11–14-week ultrasound scan. Ultrasound Obstet. Gynecol. 2023, 61, 127–143. [Google Scholar] [PubMed]
- Lo, Y.M.D.; Corbetta, N.; Chamberlain, P.F.; Rai, V.; Sargent, I.L.; Redman, C.W.; Wainscoat, J.S. Presence of fetal DNA in maternal plasma and serum. Lancet 1997, 350, 485–487. [Google Scholar] [CrossRef]
- Bianchi, D.W.; Chiu, R.W. Sequencing of Circulating Cell-free DNA during Pregnancy. N. Engl. J. Med. 2018, 379, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Gray, K.J.; Wilkins-Haug, L.E. Have we done our last amniocentesis? Updates on cell-free DNA for Down syndrome screening. Pediatr. Radiol. 2018, 48, 461–470. [Google Scholar] [CrossRef]
- Ashoor, G.; Syngelaki, A.; Poon, L.C.; Rezende, J.C.; Nicolaides, K.H. Fetal fraction in maternal plasma cell-free DNA at 11–13 weeks’ gestation: Relation to maternal and fetal characteristics. Ultrasound Obstet. Gynecol. 2013, 41, 26–32. [Google Scholar] [CrossRef]
- Green, E.D.; Rubin, E.M.; Olson, M.V. The future of DNA sequencing. Nature 2017, 550, 179–181. [Google Scholar] [CrossRef]
- Abel, D.E.; Alagh, A. Benefits and limitations of noninvasive prenatal aneuploidy screening. J. Am. Acad. Physician Assist. 2020, 33, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, D.W. Cherchez la femme: Maternal incidental findings can explain discordant prenatal cell-free DNA se-quencing results. Genet. Med. 2018, 20, 910–917. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, D.W.; Chudova, D.; Sehnert, A.J.; Bhatt, S.; Murray, K.; Prosen, T.L.; Garber, J.E.; Wilkins-Haug, L.; Vora, N.L.; Warsof, S.; et al. Noninvasive Prenatal Testing and Incidental Detection of Occult Maternal Malignancies. JAMA 2015, 314, 162–169. [Google Scholar] [CrossRef]
- Curnow, K.J.; Wilkins-Haug, L.; Ryan, A.; Kırkızlar, E.; Stosic, M.; Hall, M.P.; Sigurjonsson, S.; Demko, Z.; Rabinowitz, M.; Gross, S.J. Detection of triploid, molar, and vanishing twin pregnancies by a single-nucleotide polymorphism–based noninvasive prenatal test. Am. J. Obstet. Gynecol. 2015, 212, 79.e1–79.e9. [Google Scholar] [CrossRef] [PubMed]
- Dharajiya, N.G.; Grosu, D.S.; Farkas, D.H.; McCullough, R.M.; Almasri, E.; Sun, Y.; Kim, S.K.; Jensen, T.J.; Saldivar, J.-S.; Topol, E.J.; et al. Incidental Detection of Maternal Neoplasia in Noninvasive Prenatal Testing. Clin. Chem. 2018, 64, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Pertile, M.D.; Halks-Miller, M.; Flowers, N.; Barbacioru, C.; Kinnings, S.L.; Vavrek, D.; Seltzer, W.K.; Bianchi, D.W. Rare autosomal trisomies, revealed by maternal plasma DNA sequencing, suggest increased risk of feto-placental disease. Sci. Transl. Med. 2017, 9, eaan1240. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, E.; Gil, M.M.; Nicolaides, K.H.; Ordoñez, E.; Cirigliano, V.; Dierickx, H.; Willems, P.J.; Jani, J.C. Performance of screening for aneuploidies by cell-free DNA analysis of maternal blood in twin pregnancies. Ultrasound Obstet. Gynecol. 2015, 45, 61–66. [Google Scholar] [CrossRef] [PubMed]
- ACOG Practice Bulletin 226 Clinical Management Guidelines for Obstetrician-Gynecologists Screening for Fetal Chromosomal Abnormalities. 2020. Available online: http://journals.lww.com/greenjournal (accessed on 3 June 2024).
- Allyse, M.; Chandrasekharan, S. Too much, too soon? Commercial provision of noninvasive prenatal screening for subchromosomal abnormalities and beyond. Genet. Med. 2015, 17, 958–961. [Google Scholar] [CrossRef] [PubMed]
- Norton, M.E.; Biggio, J.R.; Kuller, J.A.; Blackwell, S.C. The role of ultrasound in women who undergo cell-free DNA screening. Am. J. Obstet. Gynecol. 2017, 216, B2–B7. [Google Scholar] [CrossRef]
- Practice Bulletin No. 163: Screening for Fetal Aneuploidy. Obstet. Gynecol. 2016, 127, e123–e137.
- Suciu, I.; Galeva, S.; Azim, S.A.; Pop, L.; Toader, O. First-trimester screening-biomarkers and cell-free DNA. J. Matern. Neonatal Med. 2019, 34, 3983–3989. [Google Scholar] [CrossRef] [PubMed]
- Maxam, A.M.; Gilbert, W. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 1977, 74, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [PubMed]
- Margulies, M.; Egholm, M.; Altman, W.E.; Attiya, S.; Bader, J.S.; Bemben, L.A.; Berka, J.; Braverman, M.S.; Chen, Y.-J.; Chen, Z.; et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437, 376–380. [Google Scholar] [CrossRef]
- Mujezinovic, F.; Alfirevic, Z. Procedure-related complications of amniocentesis and chorionic villous sampling: A systematic review. Obstet. Gynecol. 2007, 110, 687–694. [Google Scholar] [CrossRef]
- Ochshorn, Y.; Bar-Shira, A.; Jonish, A.; Yaron, Y. Rapid Prenatal Diagnosis of Aneuploidy for Chromosomes 21, 18, 13, and X by Quantitative Fluorescence Polymerase Chain Reaction. Fetal Diagn. Ther. 2006, 21, 326–331. [Google Scholar] [CrossRef]
- Leung, W.C.; Lau, E.T.; Lao, T.T.; Tang, M.H.Y. Can amnio-polymerase chain reaction alone replace conventional cytogenetic study for women with pos-itive biochemical screening for fetal Down syndrome? Obstet. Gynecol. 2003, 101 Pt 1, 856–861. [Google Scholar] [CrossRef]
- Brockhoff, G. Complementary Tumor Diagnosis by Single Cell–Based Cytogenetics Using Multi-marker Fluorescence In Situ Hybridization (mFISH). Curr. Protoc. 2023, 3, e942. [Google Scholar] [CrossRef]
- Bayani, J.; Squire, J.A. Fluorescence in situ Hybridization (FISH). Curr. Protoc. Cell Biol. 2004, 23, 22.4.1–22.4.52. [Google Scholar] [CrossRef]
- Kallioniemi, A.; Kallioniemi, O.-P.; Sudar, D.; Rutovitz, D.; Gray, J.W.; Waldman, F.; Pinkel, D. Comparative Genomic Hybridization for Molecular Cytogenetic Analysis of Solid Tumors. Science 1992, 258, 818–821. [Google Scholar] [CrossRef]
- Bayani, J.; Squire, J.A. Comparative genomic hybridization. Curr. Protoc. Cell Biol. 2005, 25, 22.1. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, W.W.; Chari, R.; Chi, B.; Lam, W.L. Recent advances in array comparative genomic hybridization technologies and their applications in human genetics. Eur. J. Hum. Genet. 2006, 14, 139–148. [Google Scholar] [CrossRef]
- Simpson, J.L. Invasive procedures for prenatal diagnosis: Any future left? Best Pract. Res. Clin. Obstet. Gynaecol. 2012, 26, 625–638. [Google Scholar] [CrossRef]
- Shaffer, L.G.; Dabell, M.P.; Fisher, A.J.; Coppinger, J.; Bandholz, A.M.; Ellison, J.W.; Ravnan, J.B.; Torchia, B.S.; Ballif, B.C.; Rosenfeld, J.A. Experience with microarray-based comparative genomic hybridization for prenatal diagnosis in over 5000 pregnancies. Prenat. Diagn. 2012, 32, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Hillman, S.C.; McMullan, D.J.; Hall, G.; Togneri, F.S.; James, N.; Maher, E.J.; Meller, C.H.; Williams, D.; Wapner, R.J.; Maher, E.R.; et al. Use of prenatal chromosomal microarray: Prospective cohort study and systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2013, 41, 610–620. [Google Scholar] [CrossRef]
- Wapner, R.J.; Martin, C.L.; Levy, B.; Ballif, B.C.; Eng, C.M.; Zachary, J.M.; Savage, M.; Platt, L.D.; Saltzman, D.; Grobman, W.A.; et al. Chromosomal Microarray versus Karyotyping for Prenatal Diagnosis. N. Engl. J. Med. 2012, 367, 2175–2184. [Google Scholar] [CrossRef] [PubMed]
- Breman, A.; Pursley, A.N.; Hixson, P.; Bi, W.; Ward, P.; Bacino, C.A.; Shaw, C.; Lupski, J.R.; Beaudet, A.; Patel, A.; et al. Prenatal chromosomal microarray analysis in a diagnostic laboratory; experience with >1000 cases and review of the literature. Prenat. Diagn. 2012, 32, 351–361. [Google Scholar] [CrossRef]
- Lovrecic, L.; Remec, Z.I.; Volk, M.; Rudolf, G.; Writzl, K.; Peterlin, B. Clinical utility of array comparative genomic hybridisation in prenatal setting. BMC Med. Genet. 2016, 17, 81. [Google Scholar] [CrossRef]
- De Wit, M.C.; Srebniak, M.I.; Govaerts, L.C.P.; Van Opstal, D.; Galjaard, R.J.H.; Go, A.T.J.I. Additional value of prenatal genomic array testing in fetuses with isolated structural ultrasound abnor-malities and a normal karyotype: A systematic review of the literature. Ultrasound Obstet. Gynecol. 2014, 43, 139–146. [Google Scholar] [CrossRef]
- Tanner, L.M.; Alitalo, T.; Stefanovic, V. Prenatal array comparative genomic hybridization in a well-defined cohort of high-risk pregnancies. A 3-year implementation results in a public tertiary academic referral hospital. Prenat. Diagn. 2021, 41, 422–433. [Google Scholar] [CrossRef]
- Egloff, M.; Hervé, B.; Quibel, T.; Jaillard, S.; Le Bouar, G.; Uguen, K.; Saliou, A.-H.; Valduga, M.; Perdriolle, E.; Coutton, C.; et al. Diagnostic yield of chromosomal microarray analysis in fetuses with isolated increased nuchal translucency: A French multicenter study. Ultrasound Obstet. Gynecol. 2018, 52, 715–721. [Google Scholar] [CrossRef]
- Metzker, M.L. Sequencing technologies—The next generation. Nat. Rev. Genet. 2010, 11, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Hehir-Kwa, J.Y.; Pfundt, R.; Veltman, J.A. Exome sequencing and whole genome sequencing for the detection of copy number variation. Expert Rev. Mol. Diagn. 2015, 15, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.M.; Ajay, S.S.; Rajan, V.; Brown, C.; Bluske, K.; Burns, N.J.; Chawla, A.; Coffey, A.J.; Malhotra, A.; Scocchia, A.; et al. Copy-number variants in clinical genome sequencing: Deployment and interpretation for rare and undiagnosed disease. Genet. Med. 2019, 21, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, S.H.; Spielmann, M.; Mundlos, S.; Veltman, J.A.; Gilissen, C. Comparison of Exome and Genome Sequencing Technologies for the Complete Capture of Protein-Coding Regions. Hum. Mutat. 2015, 36, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Collins, R.L.; Brand, H.; Karczewski, K.J.; Zhao, X.; Alföldi, J.; Francioli, L.C.; Khera, A.V.; Lowther, C.; Gauthier, L.D.; Wang, H.; et al. A structural variation reference for medical and population genetics. Nature 2020, 581, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Kosugi, S.; Momozawa, Y.; Liu, X.; Terao, C.; Kubo, M.; Kamatani, Y. Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biol. 2019, 20, 117. [Google Scholar] [CrossRef]
- Coutelier, M.; Holtgrewe, M.; Jäger, M.; Flöttman, R.; Mensah, M.A.; Spielmann, M.; Krawitz, P.; Horn, D.; Beule, D.; Mundlos, S. Combining callers improves the detection of copy number variants from whole-genome sequencing. Eur. J. Hum. Genet. 2021, 30, 178–186. [Google Scholar] [CrossRef]
- Leung, G.K.C.; Mak, C.C.Y.; Fung, J.L.F.; Wong, W.H.S.; Tsang, M.H.Y.; Yu, M.H.C.; Pei, S.L.C.; Yeung, K.S.; Mok, G.T.K.; Lee, C.P.; et al. Identifying the genetic causes for prenatally diagnosed structural congenital anomalies (SCAs) by whole-exome sequencing (WES). BMC Med. Genom. 2018, 11, 93. [Google Scholar] [CrossRef]
- Vora, N.L.; Gilmore, K.; Brandt, A.; Gustafson, C.; Strande, N.; Ramkissoon, L.; Hardisty, E.; Foreman, A.K.M.; Wilhelmsen, K.; Owen, P.; et al. Correction: An approach to integrating exome sequencing for fetal structural anomalies into clinical practice. Anesthesia Analg. 2020, 22, 1426. [Google Scholar] [CrossRef]
- Qin, Y.; Yao, Y.; Liu, N.; Wang, B.; Liu, L.; Li, H.; Gao, T.; Xu, R.; Wang, X.; Zhang, F.; et al. Prenatal whole-exome sequencing for fetal structural anomalies: A retrospective analysis of 145 Chinese cases. BMC Med. Genom. 2023, 16, 262. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhu, X.; Sun, G.; Gao, Z.; Kong, X. Whole-exome sequencing in deceased fetuses with ultrasound anomalies: A retrospective analysis. BMC Med. Genom. 2023, 16, 25. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yin, F.; Chai, Y.; Jin, J.; Zhang, P.; Tan, Q.; Chen, Z. Prenatal diagnosis of fetuses with ultrasound anomalies by whole-exome sequencing in Luoyang city, China. Front. Genet. 2024, 14, 1301439. [Google Scholar] [CrossRef] [PubMed]
- Di Girolamo, R.; Rizzo, G.; Khalil, A.; Alameddine, S.; Lisi, G.; Liberati, M.; Novelli, A.; D’Antonio, F. Whole exome sequencing in fetuses with isolated increased nuchal translucency: A systematic review and meta-analysis. J. Matern. Fetal Neonatal. Med. 2023, 36, 2193285. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Liu, F.; Yang, Y.; Zhang, Q.; Huang, J.; Liu, X. Prenatal whole-exome sequencing in fetuses with increased nuchal translucency. Mol. Genet. Genom. Med. 2023, 11, e2246. [Google Scholar] [CrossRef]
- Shreeve, N.; Sproule, C.; Choy, K.W.; Dong, Z.; Gajewska-Knapik, K.; Kilby, M.D.; Mone, F. Incremental yield of whole-genome sequencing over chromosomal microarray analysis and exome se-quencing for congenital anomalies in prenatal period and infancy: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2024, 63, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Romero, R.; Chaiworapongsa, T.; Espinoza, J. Micronutrients and intrauterine infection, preterm birth and the fetal in-flammatory response syndrome. J. Nutr. 2003, 133 (Suppl. S2), 1668S–1673S. [Google Scholar] [CrossRef]
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.H.; Romero, R.; Bin Moon, J.; Shim, S.-S.; Kim, M.; Kim, G.; Jun, J.K. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am. J. Obstet. Gynecol. 2001, 185, 1130–1136. [Google Scholar] [CrossRef]
- Bierstone, D.; Wagenaar, N.; Gano, D.L.; Guo, T.; Georgio, G.; Groenendaal, F.; De Vries, L.S.; Varghese, J.; Glass, H.C.; Chung, C.; et al. Association of Histologic Chorioamnionitis with Perinatal Brain Injury and Early Childhood Neurodevelopmental Outcomes Among Preterm Neonates. JAMA Pediatr. 2018, 172, 534–541. [Google Scholar] [CrossRef]
- Anblagan, D.; Pataky, R.; Evans, M.J.; Telford, E.J.; Serag, A.; Sparrow, S.; Piyasena, C.; Semple, S.I.; Wilkinson, A.G.; Bastin, M.E.; et al. Association between preterm brain injury and exposure to chorioamnionitis during fetal life. Sci. Rep. 2016, 6, 37932. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.J.; Romero, R.; Park, J.Y.; Lee, J.; Conde-Agudelo, A.; Hong, J.-S.; Yoon, B.H. Evidence that antibiotic administration is effective in the treatment of a subset of patients with intra-amniotic infection/inflammation presenting with cervical insufficiency. Am. J. Obstet. Gynecol. 2019, 221, 140.e1–140.e18. [Google Scholar] [CrossRef]
- Yoneda, S.; Shiozaki, A.; Yoneda, N.; Ito, M.; Shima, T.; Fukuda, K.; Ueno, T.; Niimi, H.; Kitajima, I.; Kigawa, M.; et al. Antibiotic Therapy Increases the Risk of Preterm Birth in Preterm Labor without Intra-Amniotic Microbes, but may Prolong the Gestation Period in Preterm Labor with Microbes, Evaluated by Rapid and High-Sensitive PCR System. Am. J. Reprod. Immunol. 2016, 75, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.H.; Romero, R.; Park, J.Y.; Oh, K.J.; Lee, J.; Conde-Agudelo, A.; Hong, J.-S. Antibiotic administration can eradicate intra-amniotic infection or intra-amniotic inflammation in a subset of patients with preterm labor and intact membranes. Am. J. Obstet. Gynecol. 2019, 221, 142.e1–142.e22. [Google Scholar] [CrossRef]
- Chalupska, M.; Kacerovsky, M.; Stranik, J.; Gregor, M.; Maly, J.; Jacobsson, B.; Musilova, I. Intra-Amniotic Infection and Sterile Intra-Amniotic Inflammation in Cervical Insufficiency with Pro-lapsed Fetal Membranes: Clinical Implications. Fetal Diagn. Ther. 2021, 48, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.; Park, K.; Kim, S.-N.; Jeong, E.; Lee, S.; Yoon, H. Predictive value of intra-amniotic and serum markers for inflammatory lesions of preterm placenta. Placenta 2011, 32, 732–736. [Google Scholar] [CrossRef]
- Kim, S.M.; Romero, R.; Lee, J.; Chaemsaithong, P.; Lee, M.-W.; Chaiyasit, N.; Lee, H.-J.; Yoon, B.H. About one-half of early spontaneous preterm deliveries can be identified by a rapid matrix metalloproteinase-8 (MMP-8) bedside test at the time of mid-trimester genetic amniocentesis. J. Matern. Fetal Neonatal Med. 2016, 29, 2414–2422. [Google Scholar] [CrossRef]
- Myntti, T.; Rahkonen, L.; Nupponen, I.; Pätäri-Sampo, A.; Tikkanen, M.; Sorsa, T.; Juhila, J.; Andersson, S.; Paavonen, J.; Stefanovic, V. Amniotic Fluid Infection in Preterm Pregnancies with Intact Membranes. Dis. Markers 2017, 2017, 8167276. [Google Scholar] [CrossRef]
- Dulay, A.T.; Buhimschi, I.A.; Zhao, G.; Bahtiyar, M.O.; Thung, S.F.; Cackovic, M.; Buhimschi, C.S. Compartmentalization of acute phase reactants Interleukin-6, C-Reactive Protein and Procalcitonin as biomarkers of intra-amniotic infection and chorioamnionitis. Cytokine 2015, 76, 236–243. [Google Scholar] [CrossRef]
- Cobo, T.; Tsiartas, P.; Kacerovsky, M.; Holst, R.; Hougaard, D.M.; Skogstrand, K.; Wennerholm, U.; Hagberg, H.; Jacobsson, B. Maternal inflammatory response to microbial invasion of the amniotic cavity: Analyses of multiple proteins in the maternal serum. Acta Obstet. Gynecol. Scand. 2012, 92, 61–68. [Google Scholar] [CrossRef]
- Chow, S.S.; Craig, M.E.; Jones, C.A.; Hall, B.; Catteau, J.; Lloyd, A.R.; Rawlinson, W.D. Differences in amniotic fluid and maternal serum cytokine levels in early midtrimester women without evidence of infection. Cytokine 2008, 44, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Boroń, D.G.; Świetlicki, A.; Potograbski, M.; Kurzawińska, G.; Wirstlein, P.; Boroń, D.; Drews, K.; Seremak-Mrozikiewicz, A. Galectin-1 and Galectin-9 Concentration in Maternal Serum: Implications in Pregnancies Complicated with Preterm Prelabor Rupture of Membranes. J. Clin. Med. 2022, 11, 6330. [Google Scholar] [CrossRef] [PubMed]
- Joo, E.; Hong, S.; Park, K.H.; Kim, H.J.; Lee, M.J.; Shin, S. Predictive potential of various plasma inflammation-, angiogenesis-, and extracellular matrix remodeling-associated mediators for intra-amniotic inflammation and/or microbial invasion of the amniotic cavity in preterm labor. Arch. Gynecol. Obstet. 2024, 310, 413–426. [Google Scholar] [CrossRef]
- Neu, N.; Duchon, J.; Zachariah, P. TORCH infections. Clin. Perinatol. 2015, 42, 77–103, viii. [Google Scholar] [CrossRef] [PubMed]
- Torgerson, P.R.; Mastroiacovo, P. The global burden of congenital toxoplasmosis: A systematic review. Bull. World Health Organ. 2013, 91, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Losa, A.; Carvalho, I.; Sousa, B.; Ashworth, J.; Guedes, A.; Carreira, L.; Pinho, L.; Godinho, C. Diagnosis of Congenital Toxoplasmosis: Challenges and Management Outcomes. Cureus 2024, 16, e52971. [Google Scholar] [CrossRef] [PubMed]
- SYROCOT (Systematic Review on Congenital Toxoplasmosis) Study Group. Effectiveness of prenatal treatment for congenital toxoplasmosis: A meta-analysis of individual patients’ data. Lancet 2007, 369, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Bollani, L.; Auriti, C.; Achille, C.; Garofoli, F.; De Rose, D.U.; Meroni, V.; Salvatori, G.; Tzialla, C. Congenital Toxoplasmosis: The State of the Art. Front. Pediatr. 2022, 10, 894573. [Google Scholar] [CrossRef] [PubMed]
- Saso, A.; Bamford, A.; Grewal, K.; Noori, M.; Hatcher, J.; D’Arco, F.; Guy, E.; Lyall, H. Fifteen-minute consultation: Management of the infant born to a mother with toxoplasmosis in pregnancy. Arch. Dis. Child.-Educ. Pract. 2020, 105, 262–269. [Google Scholar] [CrossRef]
- Peyron, F.; Wallon, M.; Kieffer, F.; Garweg, J. Toxoplasmosis. In Infectious Diseases of the Fetus and Newborn Infant; Elsevier: Philadelphia, PA, USA, 2016; pp. 949–1042. [Google Scholar]
- Pass, R.F.; Arav-Boger, R. Maternal and fetal cytomegalovirus infection: Diagnosis, management, and prevention. F1000Research 2018, 7, 255. [Google Scholar] [CrossRef]
- Stagno, S.; Pass, R.F.; Cloud, G.; Britt, W.J.; Henderson, R.E.; Walton, P.D.; Veren, D.A.; Page, F.; Alford, C.A. Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, and clinical outcome. JAMA 1986, 256, 1904–1908. [Google Scholar] [CrossRef] [PubMed]
- Macé, M.; Sissoeff, L.; Rudent, A.; Grangeot-Keros, L. A serological testing algorithm for the diagnosis of primary CMV infection in pregnant women. Prenat. Diagn. 2004, 24, 861–863. [Google Scholar] [CrossRef] [PubMed]
- Lazzarotto, T.; Varani, S.; Spezzacatena, P.; Gabrielli, L.; Pradelli, P.; Guerra, B.; Landini, M.P. Maternal IgG Avidity and IgM Detected by Blot as Diagnostic Tools to Identify Pregnant Women at Risk of Transmitting Cytomegalovirus. Viral Immunol. 2000, 13, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Ville, Y. The megalovirus. Ultrasound Obstet. Gynecol. 1998, 12, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Lazzarotto, T.; Guerra, B.; Lanari, M.; Gabrielli, L.; Landini, M.P. New advances in the diagnosis of congenital cytomegalovirus infection. J. Clin. Virol. 2008, 41, 192–197. [Google Scholar] [CrossRef]
- Ruellan-Eugene, G.; Barjot, P.; Campet, M.; Vabret, A.; Herlicoviez, M.; Muller, G.; Levy, G.; Guillois, B.; Freymuth, F. Evaluation of virological procedures to detect fetal human cytomegalovirus infection: Avidity of IgG antibodies, virus detection in amniotic fluid and maternal serum. J. Med Virol. 1996, 50, 9–15. [Google Scholar] [CrossRef]
- Guerra, B.; Lazzarotto, T.; Quarta, S.; Lanari, M.; Bovicelli, L.; Nicolosi, A.; Landini, M.P. Prenatal diagnosis of symptomatic congenital cytomegalovirus infection. Am. J. Obstet. Gynecol. 2000, 183, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Enders, G.; Bäder, U.; Lindemann, L.; Schalasta, G.; Daiminger, A. Prenatal diagnosis of congenital cytomegalovirus infection in 189 pregnancies with known outcome. Prenat. Diagn. 2001, 21, 362–377. [Google Scholar] [CrossRef]
- D’Antonio, F.; Marinceu, D.; Prasad, S.; Khalil, A. Effectiveness and safety of prenatal valacyclovir for congenital cytomegalovirus infection: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2023, 61, 436–444. [Google Scholar] [CrossRef]
- Chatzakis, C.; Shahar-Nissan, K.; Faure-Bardon, V.; Picone, O.; Hadar, E.; Amir, J.; Egloff, C.; Vivanti, A.; Sotiriadis, A.; Leruez-Ville, M.; et al. The effect of valacyclovir on secondary prevention of congenital cytomegalovirus infection, following primary maternal infection acquired periconceptionally or in the first trimester of pregnancy. An individual patient data meta-analysis. Am. J. Obstet. Gynecol. 2024, 230, 109–117.e2. [Google Scholar] [CrossRef]
- World Health Organization. Global Vaccination Plan 2011–2020; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Ou, A.C.; Zimmerman, L.A.; Alexander, J.P., Jr.; Crowcroft, N.S.; O’Connor, P.M.; Knapp, J.K. Progress Toward Rubella and Congenital Rubella Syndrome Elimination—Worldwide, 2012–2022. MMWR Morb. Mortal Wkly. Rep. 2024, 73, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Vynnycky, E.; Knapp, J.K.; Papadopoulos, T.; Cutts, F.T.; Hachiya, M.; Miyano, S.; Reef, S.E. Estimates of the global burden of Congenital Rubella Syndrome, 1996–2019. Int. J. Infect. Dis. 2023, 137, 149–156. [Google Scholar] [CrossRef]
- Reddy, A.K.; Renganathan, S.N.; Jayamohan, A.E.; Lakshmanan, P.M. Gregg syndrome aka embryopathia rubeolaris: CT illustration. BMJ Case Rep. 2014, 2014, bcr2014204204. [Google Scholar] [CrossRef] [PubMed]
- Bouthry, E.; Picone, O.; Hamdi, G.; Grangeot-Keros, L.; Ayoubi, J.-M.; Vauloup-Fellous, C. Rubella and pregnancy: Diagnosis, management and outcomes. Prenat. Diagn. 2014, 34, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S. Current Prevalence of Rubella Antibodies in Pregnant Women at a Japanese Perinatal Center. JMA J. 2022, 5, 543–545. [Google Scholar] [CrossRef]
- Itakura, A.; Satoh, S.; Aoki, S.; Fukushima, K.; Hasegawa, J.; Hyodo, H.; Kamei, Y.; Kondoh, E.; Makino, S.; Matsuoka, R.; et al. Guidelines for obstetrical practice in Japan: Japan Society of Obstetrics and Gynecology and Japan Association of Obstetricians and Gynecologists 2020 edition. J. Obstet. Gynaecol. Res. 2022, 49, 5–53. [Google Scholar] [CrossRef] [PubMed]
- Santis, M.; Cavaliere, A.; Straface, G.; Caruso, A. Rubella infection in pregnancy. Reprod. Toxicol. 2006, 21, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Armah, N.B.; Sagoe, K.W.; Nuamah, M.; Yawson, A.E.; Nartey, E.T.; Essuman, V.A.; Yao, N.-A.; Baidoo, K.K.; Fynn, J.A.; Tetteh, D.; et al. Rubella virus IgM and IgG antibodies with avidity in pregnant women and outcomes at a tertiary facility in Ghana. PLoS ONE 2022, 17, e0279733. [Google Scholar] [CrossRef]
- Shukla, S.; Maraqa, N.F. Congenital Rubella; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Lamont, R.F.; Sobel, J.D.; Vaisbuch, E.; Kusanovic, J.P.; Mazaki-Tovi, S.; Kim, S.K.; Uldbjerg, N.; Romero, R. Parvovirus B19 infection in human pregnancy. BJOG Int. J. Obstet. Gynaecol. 2011, 118, 175–186. [Google Scholar] [CrossRef]
- Human parvovirus B19 infections in United Kingdom 1984–86. Lancet 1987, 1, 738–739.
- Yaegashi, N.; Niinuma, T.; Chisaka, H.; Watanabe, T.; Uehara, S.; Okamura, K.; Moffatt, S.; Sugamura, K.; Yajima, A. The incidence of, and factors leading to, parvovirus B19-related hydrops fetalis following maternal infec-tion; report of 10 cases and meta-analysis. J. Infect. 1998, 37, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, A.; Samuelsen, S.; Bruu, A.-L.; Jenum, P.; Eskild, A. Maternal human parvovirus B19 infection and the risk of fetal death and low birthweight: A case-control study within 35 940 pregnant women. BJOG Int. J. Obstet. Gynaecol. 2009, 116, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Ergaz, Z.; Ornoy, A. Parvovirus B19 in pregnancy. Reprod. Toxicol. 2006, 21, 421–435. [Google Scholar] [CrossRef] [PubMed]
- Enders, M.; Weidner, A.; Zoellner, I.; Searle, K.; Enders, G. Fetal morbidity and mortality after acute human parvovirus B19 infection in pregnancy: Prospective evaluation of 1018 cases. Prenat. Diagn. 2004, 24, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Voordouw, B.; Rockx, B.; Jaenisch, T.; Fraaij, P.; Mayaud, P.; Vossen, A.; Koopmans, M. Performance of Zika Assays in the Context of Toxoplasma gondii, Parvovirus B19, Rubella Virus, and Cytomegalovirus (TORCH) Diagnostic Assays. Clin. Microbiol. Rev. 2019, 33, e00130-18. [Google Scholar] [CrossRef] [PubMed]
- Obeid Mohamed, S.O.; Osman Mohamed, E.M.; Ahmed Osman, A.A.; Abdellatif MohamedElmugadam, F.A.; Abdalla Ibrahim, G.A. A Meta-Analysis on the Seroprevalence of Parvovirus B19 among Patients with Sickle Cell Disease. BioMed Res. Int. 2019, 2019, 2757450. [Google Scholar] [CrossRef] [PubMed]
- Giorgio, E.; De Oronzo, M.A.; Iozza, I.; Di Natale, A.; Cianci, S.; Garofalo, G.; Giacobbe, A.M.; Politi, S. Parvovirus B19 during pregnancy: A review. J. Prenat. Med. 2010, 4, 63–66. [Google Scholar] [PubMed]
- Dittmer, F.P.; Guimarães, C.d.M.; Peixoto, A.B.; Pontes, K.F.M.; Bonasoni, M.P.; Tonni, G.; Júnior, E.A. Parvovirus B19 Infection and Pregnancy: Review of the Current Knowledge. J. Pers. Med. 2024, 14, 139. [Google Scholar] [CrossRef] [PubMed]
- Attwood, L.O.; Holmes, N.E.; Hui, L. Identification and management of congenital parvovirus B19 infection. Prenat. Diagn. 2020, 40, 1722–1731. [Google Scholar] [CrossRef]
- Von Kaisenberg, C.S.; Jonat, W. Fetal parvovirus B19 infection. Ultrasound Obstet. Gynecol. 2001, 18, 280–288. [Google Scholar] [CrossRef]
- Melo, A.O.; Malinger, G.; Ximenes, R.; Szejnfeld, P.O.; Sampaio, S.A.; De Filippis, A.B. Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: Tip of the iceberg? Ultrasound Obstet. Gynecol. 2016, 47, 6–7. [Google Scholar] [CrossRef] [PubMed]
- Eppes, C.; Rac, M.; Dunn, J.; Versalovic, J.; Murray, K.O.; Suter, M.A.; Cortes, M.S.; Espinoza, J.; Seferovic, M.D.; Lee, W.; et al. Testing for Zika virus infection in pregnancy: Key concepts to deal with an emerging epidemic. Am. J. Obstet. Gynecol. 2017, 216, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Chimelli, L.; Moura Pone, S.; Avvad-Portari, E.; Farias Meira Vasconcelos, Z.; Araújo Zin, A.; Prado Cunha, D.; Raposo Thompson, N.; Lopes Moreira, M.E.; Wiley, C.A.; da Silva Pone, M.V. Persistence of Zika Virus after Birth: Clinical, Virological, Neuroimaging, and Neuropathological Documentation in a 5-Month Infant with Congenital Zika Syndrome. J. Neuropathol. Exp. Neurol. 2018, 77, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Driggers, R.W.; Ho, C.-Y.; Korhonen, E.M.; Kuivanen, S.; Jääskeläinen, A.J.; Smura, T.; Rosenberg, A.; Hill, D.A.; DeBiasi, R.L.; Vezina, G.; et al. Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities. N. Engl. J. Med. 2016, 374, 2142–2151. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Reyes, J.; Navarro, E.; Herrera, M.J.; Goenaga, E.; Ospina, M.L.; Parra, E.; Mercado, M.; Chaparro, P.; Beltran, M.; Gunturiz, M.L.; et al. Severe Neurologic Disorders in 2 Fetuses with Zika Virus Infection, Colombia. Emerg. Infect. Dis. 2017, 23, 982–984. [Google Scholar] [CrossRef] [PubMed]
- Schaub, B.; Vouga, M.; Najioullah, F.; Gueneret, M.; Monthieux, A.; Harte, C.; Muller, F.; Jolivet, E.; Adenet, C.; Dreux, S.; et al. Analysis of blood from Zika virus-infected fetuses: A prospective case series. Lancet Infect. Dis. 2017, 17, 520–527. [Google Scholar] [CrossRef]
- Pereira, J.P.; Maykin, M.M.; Vasconcelos, Z.; Avvad-Portari, E.; Zin, A.A.; Tsui, I.; Brasil, P.; Nielsen-Saines, K.; Moreira, M.E.; Gaw, S.L. The Role of Amniocentesis in the Diagnosis of Congenital Zika Syndrome. Clin. Infect. Dis. 2019, 69, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Gluck, L.; Kulovich, M.V.; Borer, R.C.; Brenner, P.H.; Anderson, G.G.; Spellacy, W.N. Diagnosis of the respiratory distress syndrome by amniocentesis. Am. J. Obstet. Gynecol. 1971, 109, 440–445. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 97: Fetal lung maturity. Obstet. Gynecol. 2008, 112, 717–726. [Google Scholar] [CrossRef]
- Yarbrough, M.L.; Grenache, D.G.; Gronowski, A.M. Fetal Lung Maturity Testing: The End of an Era. Biomarkers Med. 2014, 8, 509–515. [Google Scholar] [CrossRef]
- ACOG Committee Opinion No. 764: Medically Indicated Late-Preterm and Early-Term Deliveries. Obstet. Gynecol. 2019, 133, e151–e155.
- Bevis, D.C. The antenatal prediction of haemolytic disease of the newborn. Lancet 1952, 1, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Freda, V.J. The Rh problem in obstetrics and a new concept of its management using amniocentesis and spectrophotometric scanning of amniotic fluid. Am. J. Obstet. Gynecol. 1965, 92, 341–374. [Google Scholar] [CrossRef] [PubMed]
- Liley, A.W. Intrauterine Transfusion of Foetus in Haemolytic Disease. Br. Med. J. 1963, 2, 1107–1109. [Google Scholar] [CrossRef] [PubMed]
- Queenan, J.T. Amniocentesis and transamniotic fetal transfusion for rh disease. Clin. Obstet. Gynecol. 1966, 9, 491–507. [Google Scholar] [CrossRef]
- Bergstrand, C.G.; Czar, B. Paper Electrophoretic Study of Human Fetal Serum Proteins with Demonstration of a New Protein Fraction. Scand. J. Clin. Lab. Investig. 1957, 9, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.-J.; Chen, C.-P.; Lin, C.-J.; Wu, F.-T.; Chen, S.-W.; Lai, S.-T.; Chen, Z.-J. The correlation with abnormal fetal outcome and a high level of amniotic fluid alpha-fetoprotein in mid-trimester. Taiwan. J. Obstet. Gynecol. 2023, 62, 863–868. [Google Scholar] [CrossRef] [PubMed]
- Mizejewski, G.J. Levels of Alpha-Fetoprotein During Pregnancy and Early Infancy in Normal and Disease States. Obstet. Gynecol. Surv. 2003, 58, 804–826. [Google Scholar] [CrossRef]
- Lorber, J.; Stewart, C.; Ward, A.M. Alpha-fetoprotein in antenatal diagnosis of anencephaly and spina bifida. Lancet 1973, 301, 1187. [Google Scholar] [CrossRef]
- Wald, N.J.; Cuckle, H.S.; Sneddon, J.; Haddow, J.E.; Palomaki, G.E. Screening for Down syndrome. Am. J. Hum. Genet. 1989, 44, 586–590. [Google Scholar]
- Wald, N.J.; Huttly, W.J.; Hackshaw, A.K. Antenatal screening for Down’s syndrome with the quadruple test. Lancet 2003, 361, 835–836. [Google Scholar] [CrossRef] [PubMed]
- Vrachnis, D.; Fotiou, A.; Mantzou, A.; Pergialiotis, V.; Antsaklis, P.; Valsamakis, G.; Stavros, S.; Machairiotis, N.; Iavazzo, C.; Kanaka-Gantenbein, C.; et al. Second Trimester Amniotic Fluid Angiotensinogen Levels Linked to Increased Fetal Birth Weight and Shorter Gestational Age in Term Pregnancies. Life 2024, 14, 206. [Google Scholar] [CrossRef] [PubMed]
- Maroudias, G.; Vrachnis, D.; Fotiou, A.; Loukas, N.; Mantzou, A.; Pergialiotis, V.; Valsamakis, G.; Machairiotis, N.; Stavros, S.; Panagopoulos, P.; et al. Measurement of Calprotectin and PTH in the Amniotic Fluid of Early Second Trimester Pregnancies and Their Impact on Fetuses with Growth Disorders: Are Their Levels Related to Oxidative Stress? J. Clin. Med. 2024, 13, 855. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.M.; Montero, F.J. Chorionic Villus Sampling; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Navaratnam, K.; Alfirevic, Z.; Royal College of Obstetricians and Gynaecologists. Amniocentesis and chorionic villus sampling:Green-top Guideline No. 8 July 2021: Green-top Guideline No. 8. BJOG 2022, 129, e1–e15. [Google Scholar] [PubMed]
- Sacher, R.A.; Falchuk, S.C. Percutaneous Umbilical Blood Sampling. Crit. Rev. Clin. Lab. Sci. 1990, 28, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Alfirevic, Z.; Navaratnam, K.; Mujezinovic, F. Amniocentesis and chorionic villus sampling for prenatal diagnosis. Cochrane Database Syst. Rev. 2017, 9, CD003252. [Google Scholar] [CrossRef] [PubMed]
- Bakker, M.; Birnie, E.; de Medina, P.R.; Sollie, K.M.; Pajkrt, E.; Bilardo, C.M. Total pregnancy loss after chorionic villus sampling and amniocentesis: A cohort study. Ultrasound Obstet. Gynecol. 2017, 49, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, G.G.; Jackson, L.G.; Schlesselman, S.E.; de la Cruz, F.F.; Desnick, R.J.; Golbus, M.S.; Ledbetter, D.H.; Lubs, H.A.; Mahoney, M.J.; Pergament, M.E.; et al. The safety and efficacy of chorionic villus sampling for early prenatal diagnosis of cytogenetic abnormalities. N. Engl. J. Med. 1989, 320, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Navaratnam, K.; Khairudin, D.; Chilton, R.; Sharp, A.; Attilakos, G.; Stott, D.; Relph, S.; Spencer, R.; Badr, D.A.; Carlin, A.; et al. Foetal loss after chorionic villus sampling and amniocentesis in twin pregnancies: A multicentre retrospective cohort study. Prenat Diagn. 2022, 42, 1554–1561. [Google Scholar] [CrossRef]
- Kelly, B.S.; Judge, C.; Bollard, S.M.; Clifford, S.M.; Healy, G.M.; Aziz, A.; Mathur, P.; Islam, S.; Yeom, K.W.; Lawlor, A.; et al. Radiology artificial intelligence: A systematic review and evaluation of methods (RAISE). Eur. Radiol. 2022, 32, 7998–8007. [Google Scholar] [CrossRef]
- Zoga, A.C.; Syed, A.B. Artificial Intelligence in Radiology: Current Technology and Future Directions. Semin. Musculoskelet. Radiol. 2018, 22, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dong, D.; Sun, Y.; Hu, C.; Sun, C.; Wu, Q.; Tian, J. Development and Validation of a Deep Learning Model to Screen for Trisomy 21 During the First Trimester From Nuchal Ultrasonographic Images. JAMA Netw. Open 2022, 5, e2217854. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Han, J.; Xue, J.; Zhen, L.; Yang, X.; Pan, M.; Hu, L.; Li, R.; Jiang, Y.; Zhang, Y.; et al. A Deep-Learning-Based Method Can Detect Both Common and Rare Genetic Disorders in Fetal Ultrasound. Biomedicines 2023, 11, 1756. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Liu, K.; Yang, X.; Cao, Y.; Cao, X.; Pan, Q.; Yang, Z.; Sun, L.; Yin, L.; Deng, X.; et al. A novel artificial intelligence model for fetal facial profile marker measurement during the first trimester. BMC Pregnancy Childbirth 2023, 23, 718. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świetlicki, A.; Gutaj, P.; Iciek, R.; Awdi, K.; Paluszkiewicz-Kwarcińska, A.; Wender-Ożegowska, E. Invasive Prenatal Diagnostics: A Cornerstone of Perinatal Management. Appl. Sci. 2024, 14, 6915. https://doi.org/10.3390/app14166915
Świetlicki A, Gutaj P, Iciek R, Awdi K, Paluszkiewicz-Kwarcińska A, Wender-Ożegowska E. Invasive Prenatal Diagnostics: A Cornerstone of Perinatal Management. Applied Sciences. 2024; 14(16):6915. https://doi.org/10.3390/app14166915
Chicago/Turabian StyleŚwietlicki, Aleksy, Paweł Gutaj, Rafał Iciek, Karina Awdi, Aleksandra Paluszkiewicz-Kwarcińska, and Ewa Wender-Ożegowska. 2024. "Invasive Prenatal Diagnostics: A Cornerstone of Perinatal Management" Applied Sciences 14, no. 16: 6915. https://doi.org/10.3390/app14166915
APA StyleŚwietlicki, A., Gutaj, P., Iciek, R., Awdi, K., Paluszkiewicz-Kwarcińska, A., & Wender-Ożegowska, E. (2024). Invasive Prenatal Diagnostics: A Cornerstone of Perinatal Management. Applied Sciences, 14(16), 6915. https://doi.org/10.3390/app14166915