Proposal of Innovative Methods for Computer Vision Techniques in Maritime Sector
Abstract
1. Introduction
2. Innovative Methods to Further Improve the Recognition Accuracy of CV Models
2.1. Enhancing Recognition Accuracy through Ensemble Learning
2.2. Integrating Shipping Domain Knowledge: A Tugboat Example
3. A Novel Application of CV in the Maritime Domain
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prayudi, A.; Sulistijono, I.A.; Risnumawan, A.; Darojah, Z. Surveillance system for illegal fishing prevention on uav imagery using computer vision. In Proceedings of the 2020 IEEE International Electronics Symposium (IES), Surabaya, Indonesia, 29–30 September 2020; pp. 385–391. [Google Scholar]
- Ergasheva, A.; Akhmedov, F.; Abdusalomov, A.; Kim, W. Advancing maritime safety: Early detection of ship fires through computer vision, deep learning approaches, and histogram equalization techniques. Fire 2024, 7, 84. [Google Scholar] [CrossRef]
- Yu, M.; Han, S.; Wang, T.; Wang, H. An approach to accurate ship image recognition in a complex maritime transportation environment. J. Mar. Sci. Eng. 2022, 10, 1903. [Google Scholar] [CrossRef]
- Goudemant, T.; Francesconi, B.; Aubrun, M.; Kervennic, E.; Grenet, I.; Bobichon, Y.; Bellizzi, M. Onboard anomaly detection for marine environmental protection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7918–7931. [Google Scholar] [CrossRef]
- Emerick De Magalhães, M.; Barbosa, C.E.; Cordeiro, K.D.F.; Isidorio, D.K.M.; Souza, J.M.D. Improving maritime domain awareness in Brazil through computer vision technology. J. Mar. Sci. Eng. 2023, 11, 1272. [Google Scholar] [CrossRef]
- Zhou, H.; Yuan, Y.; Shi, C. Object tracking using sift features and mean shift. Comput. Vis. Image Underst. 2009, 113, 345–352. [Google Scholar] [CrossRef]
- Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1627–1645. [Google Scholar] [CrossRef] [PubMed]
- Juang, C.F.; Chen, G.C. A TS fuzzy system learned through a support vector machine in principal component space for real-time object detection. IEEE Trans. Ind. Electron. 2012, 59, 3309–3320. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Shi, C.; Wu, H.; Zhao, J.; Fu, J. Robust ship tracking via multi-view learning and sparse representation. J. Navig. 2019, 72, 176–192. [Google Scholar] [CrossRef]
- Prasad, D.K.; Rajan, D.; Rachmawati, L.; Rajabally, E.; Quek, C. Video processing from electro-optical sensors for object detection and tracking in a maritime environment: A survey. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1993–2016. [Google Scholar] [CrossRef]
- Kontopoulos, I.; Makris, A.; Zissis, D.; Tserpes, K. A computer vision approach for trajectory classification. In Proceedings of the 2021 22nd IEEE International Conference on Mobile Data Management (MDM), Toronto, ON, Canada, 15–18 June 2021; pp. 163–168. [Google Scholar]
- Varga, L.A.; Kiefer, B.; Messmer, M.; Zell, A. Seadronessee: A maritime benchmark for detecting humans in open water. In Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2022; pp. 3686–3696. [Google Scholar]
- Prasad, D.K.; Dong, H.; Rajan, D.; Quek, C. Are object detection assessment criteria ready for maritime computer vision? IEEE Trans. Intell. Transp. Syst. 2019, 21, 5295–5304. [Google Scholar] [CrossRef]
- Qiao, D.; Liu, G.; Lv, T.; Li, W.; Zhang, J. Marine vision-based situational awareness using discriminative deep learning: A survey. J. Mar. Sci. Eng. 2021, 9, 397. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Guo, Y.; Lu, Y.; Liu, R.W. Lightweight deep network-enabled real-time low-visibility enhancement for promoting vessel detection in maritime video surveillance. J. Navig. 2022, 75, 230–250. [Google Scholar] [CrossRef]
- Qu, J.; Gao, Y.; Lu, Y.; Xu, W.; Liu, R.W. Deep learning-driven surveillance quality enhancement for maritime management promotion under low-visibility weathers. Ocean Coast. Manag. 2023, 235, 106478. [Google Scholar] [CrossRef]
- Lu, Y.; Guo, Y.; Zhu, F.; Liu, R.W. Towards low-visibility enhancement in maritime video surveillance: An efficient and effective multi-deep neural network. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 2869–2874. [Google Scholar]
- Zhou, W.; Li, B.; Luo, G. Multi-feature fusion-guided low-visibility image enhancement for maritime surveillance. J. Mar. Sci. Eng. 2023, 11, 1625. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, Y.; Guo, Y.; Liu, R.W.; Chui, K.T. Intelligent vision-enabled detection of water-surface targets for video surveillance in maritime transportation. J. Adv. Transp. 2021, 2021, 9470895. [Google Scholar] [CrossRef]
- Lu, W.; Duan, J.; Qiu, Z.; Pan, Z.; Liu, R.W.; Bai, L. Implementation of high-order variational models made easy for image processing. Math. Methods Appl. Sci. 2016, 39, 4208–4233. [Google Scholar] [CrossRef]
- Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A survey on ensemble learning. Front. Comput. Sci. 2020, 14, 241–258. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, R.; Wang, S. Integrating shipping domain knowledge into computer vision models for maritime transportation. J. Mar. Sci. Eng. 2022, 10, 1885. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE 2020, 109, 43–76. [Google Scholar] [CrossRef]
Strengths | Weaknesses |
|
|
Opportunities | Threats |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Wu, X.; Tian, X.; Jin, Y.; Wang, S. Proposal of Innovative Methods for Computer Vision Techniques in Maritime Sector. Appl. Sci. 2024, 14, 7126. https://doi.org/10.3390/app14167126
Jiang B, Wu X, Tian X, Jin Y, Wang S. Proposal of Innovative Methods for Computer Vision Techniques in Maritime Sector. Applied Sciences. 2024; 14(16):7126. https://doi.org/10.3390/app14167126
Chicago/Turabian StyleJiang, Bo, Xuan Wu, Xuecheng Tian, Yong Jin, and Shuaian Wang. 2024. "Proposal of Innovative Methods for Computer Vision Techniques in Maritime Sector" Applied Sciences 14, no. 16: 7126. https://doi.org/10.3390/app14167126
APA StyleJiang, B., Wu, X., Tian, X., Jin, Y., & Wang, S. (2024). Proposal of Innovative Methods for Computer Vision Techniques in Maritime Sector. Applied Sciences, 14(16), 7126. https://doi.org/10.3390/app14167126