Proposal of Innovative Methods for Computer Vision Techniques in Maritime Sector
Abstract
:1. Introduction
2. Innovative Methods to Further Improve the Recognition Accuracy of CV Models
2.1. Enhancing Recognition Accuracy through Ensemble Learning
2.2. Integrating Shipping Domain Knowledge: A Tugboat Example
3. A Novel Application of CV in the Maritime Domain
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prayudi, A.; Sulistijono, I.A.; Risnumawan, A.; Darojah, Z. Surveillance system for illegal fishing prevention on uav imagery using computer vision. In Proceedings of the 2020 IEEE International Electronics Symposium (IES), Surabaya, Indonesia, 29–30 September 2020; pp. 385–391. [Google Scholar]
- Ergasheva, A.; Akhmedov, F.; Abdusalomov, A.; Kim, W. Advancing maritime safety: Early detection of ship fires through computer vision, deep learning approaches, and histogram equalization techniques. Fire 2024, 7, 84. [Google Scholar] [CrossRef]
- Yu, M.; Han, S.; Wang, T.; Wang, H. An approach to accurate ship image recognition in a complex maritime transportation environment. J. Mar. Sci. Eng. 2022, 10, 1903. [Google Scholar] [CrossRef]
- Goudemant, T.; Francesconi, B.; Aubrun, M.; Kervennic, E.; Grenet, I.; Bobichon, Y.; Bellizzi, M. Onboard anomaly detection for marine environmental protection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7918–7931. [Google Scholar] [CrossRef]
- Emerick De Magalhães, M.; Barbosa, C.E.; Cordeiro, K.D.F.; Isidorio, D.K.M.; Souza, J.M.D. Improving maritime domain awareness in Brazil through computer vision technology. J. Mar. Sci. Eng. 2023, 11, 1272. [Google Scholar] [CrossRef]
- Zhou, H.; Yuan, Y.; Shi, C. Object tracking using sift features and mean shift. Comput. Vis. Image Underst. 2009, 113, 345–352. [Google Scholar] [CrossRef]
- Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1627–1645. [Google Scholar] [CrossRef] [PubMed]
- Juang, C.F.; Chen, G.C. A TS fuzzy system learned through a support vector machine in principal component space for real-time object detection. IEEE Trans. Ind. Electron. 2012, 59, 3309–3320. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Shi, C.; Wu, H.; Zhao, J.; Fu, J. Robust ship tracking via multi-view learning and sparse representation. J. Navig. 2019, 72, 176–192. [Google Scholar] [CrossRef]
- Prasad, D.K.; Rajan, D.; Rachmawati, L.; Rajabally, E.; Quek, C. Video processing from electro-optical sensors for object detection and tracking in a maritime environment: A survey. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1993–2016. [Google Scholar] [CrossRef]
- Kontopoulos, I.; Makris, A.; Zissis, D.; Tserpes, K. A computer vision approach for trajectory classification. In Proceedings of the 2021 22nd IEEE International Conference on Mobile Data Management (MDM), Toronto, ON, Canada, 15–18 June 2021; pp. 163–168. [Google Scholar]
- Varga, L.A.; Kiefer, B.; Messmer, M.; Zell, A. Seadronessee: A maritime benchmark for detecting humans in open water. In Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2022; pp. 3686–3696. [Google Scholar]
- Prasad, D.K.; Dong, H.; Rajan, D.; Quek, C. Are object detection assessment criteria ready for maritime computer vision? IEEE Trans. Intell. Transp. Syst. 2019, 21, 5295–5304. [Google Scholar] [CrossRef]
- Qiao, D.; Liu, G.; Lv, T.; Li, W.; Zhang, J. Marine vision-based situational awareness using discriminative deep learning: A survey. J. Mar. Sci. Eng. 2021, 9, 397. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Guo, Y.; Lu, Y.; Liu, R.W. Lightweight deep network-enabled real-time low-visibility enhancement for promoting vessel detection in maritime video surveillance. J. Navig. 2022, 75, 230–250. [Google Scholar] [CrossRef]
- Qu, J.; Gao, Y.; Lu, Y.; Xu, W.; Liu, R.W. Deep learning-driven surveillance quality enhancement for maritime management promotion under low-visibility weathers. Ocean Coast. Manag. 2023, 235, 106478. [Google Scholar] [CrossRef]
- Lu, Y.; Guo, Y.; Zhu, F.; Liu, R.W. Towards low-visibility enhancement in maritime video surveillance: An efficient and effective multi-deep neural network. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 2869–2874. [Google Scholar]
- Zhou, W.; Li, B.; Luo, G. Multi-feature fusion-guided low-visibility image enhancement for maritime surveillance. J. Mar. Sci. Eng. 2023, 11, 1625. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, Y.; Guo, Y.; Liu, R.W.; Chui, K.T. Intelligent vision-enabled detection of water-surface targets for video surveillance in maritime transportation. J. Adv. Transp. 2021, 2021, 9470895. [Google Scholar] [CrossRef]
- Lu, W.; Duan, J.; Qiu, Z.; Pan, Z.; Liu, R.W.; Bai, L. Implementation of high-order variational models made easy for image processing. Math. Methods Appl. Sci. 2016, 39, 4208–4233. [Google Scholar] [CrossRef]
- Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A survey on ensemble learning. Front. Comput. Sci. 2020, 14, 241–258. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, R.; Wang, S. Integrating shipping domain knowledge into computer vision models for maritime transportation. J. Mar. Sci. Eng. 2022, 10, 1885. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE 2020, 109, 43–76. [Google Scholar] [CrossRef]
Strengths | Weaknesses |
|
|
Opportunities | Threats |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Wu, X.; Tian, X.; Jin, Y.; Wang, S. Proposal of Innovative Methods for Computer Vision Techniques in Maritime Sector. Appl. Sci. 2024, 14, 7126. https://doi.org/10.3390/app14167126
Jiang B, Wu X, Tian X, Jin Y, Wang S. Proposal of Innovative Methods for Computer Vision Techniques in Maritime Sector. Applied Sciences. 2024; 14(16):7126. https://doi.org/10.3390/app14167126
Chicago/Turabian StyleJiang, Bo, Xuan Wu, Xuecheng Tian, Yong Jin, and Shuaian Wang. 2024. "Proposal of Innovative Methods for Computer Vision Techniques in Maritime Sector" Applied Sciences 14, no. 16: 7126. https://doi.org/10.3390/app14167126
APA StyleJiang, B., Wu, X., Tian, X., Jin, Y., & Wang, S. (2024). Proposal of Innovative Methods for Computer Vision Techniques in Maritime Sector. Applied Sciences, 14(16), 7126. https://doi.org/10.3390/app14167126