Effects of Five Different Toothpastes on Remineralization and Surface Roughness of Primary Tooth Enamel with Artificial Initial Caries
Abstract
:1. Introduction
2. Material and Methods
2.1. Tooth Collection and Selection
2.2. Formation of the Groups
2.3. Preparation of Enamel Samples
2.4. Formation of Artificial Initial Caries in Enamel Samples
2.5. pH Cycle
2.6. Microhardness Analysis
2.7. AFM Analysis
2.8. Examination of Surface Changes with SEM
2.9. Statistical Analysis
3. Results
3.1. Microhardness Analysis Findings
3.2. AFM Analysis Findings
3.3. SEM Analysis Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kagihara, L.E.; Niederhauser, V.P.; Stark, M. Assessment, management, and prevention of early childhood caries. J. Am. Acad. Nurse Pract. 2009, 21, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, W. Predicting caries in permanent teeth from caries in primary teeth: An eight-year cohort study. J. Dent. Res. 2002, 81, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Cate, J.M.; Arends, J. Remineralization of artificial enamel lesions in vitro. Caries Res. 1977, 11, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Featherstone, J.D. Dental caries: A dynamic disease process. Aust. Dent. J. 2008, 53, 286–291. [Google Scholar] [CrossRef]
- Cury, J.A.; Tenuta, L.M. Enamel remineralization: Controlling the caries disease or treating early caries lesions? Braz. Oral Res. 2009, 23, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Featherstone, J.D. The science and practice of caries prevention. J. Am. Dent. Assoc. 2000, 131, 887–899. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, M.M.; Featherstone, J.D. Demineralization and remineralization around orthodontic appliances: An in vivo study. Am. J. Orthod. Dentofac. Orthop. 1987, 92, 33–40. [Google Scholar] [CrossRef]
- Amaechi, B.T. Remineralization therapies for initial caries lesions. Curr. Oral Health Rep. 2015, 2, 95–101. [Google Scholar] [CrossRef]
- Torres, C.R.G. Modern Operative Dentistry, 1st ed.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- American Academy of Pediatric Dentistry. Fluoride therapy. In The Reference Manual of Pediatric Dentistry; American Academy of Pediatric Dentistry: Chicago, IL, USA, 2021; pp. 302–305. [Google Scholar]
- Featherstone, J.D. Prevention and reversal of dental caries: Role of low level fluoride. Community Dent. Oral Epidemiol. 1999, 27, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Marinho, V.C.; Higgins, J.P.; Sheiham, A.; Logan, S. Fluoride toothpastes for preventing dental caries in children and adolescents. Cochrane Database Syst. Rev. 2003, 2003, 002278. [Google Scholar] [CrossRef]
- Santos, A.P.P.; Nadanovsky, P.; Oliveira, B.H. A systematic review and meta-analysis of the effects of fluoride toothpaste on the prevention of dental caries in the primary dentition of preschool children. Community Dent. Oral Epidemiol. 2013, 41, 112. [Google Scholar] [CrossRef] [PubMed]
- Lynch, R.J.M.; Navada, R.; Walia, R. Low-levels of fluoride in plaque and saliva and their effects on the demineralisation and remineralisation of enamel; role of fluoride toothpastes. Int. Dent. J. 2004, 54, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Kidd, E. The implications of the new paradigm of dental caries. J. Dent. 2011, 39, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Bentley, E.M.; Ellwood, R.P.; Davies, R.M. Fluoride ingestion from toothpaste by young children. Br. Dent. J. 1999, 186, 460–462. [Google Scholar] [CrossRef] [PubMed]
- Guth, S.; Hüser, S.; Roth, A.; Degen, G.; Diel, P.; Edlund, K.; Eisenbrand, G.; Engel, K.H.; Epe, B.; Grune, T.; et al. Toxicity of fluoride: Critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses. Arch. Toxicol. 2020, 94, 1375–1415. [Google Scholar] [CrossRef] [PubMed]
- Cury, J.A.; Ricomini-Filho, A.P.; Berti, F.L.P.; Tabchoury, C.P. Systemic effects (risks) of water fluoridation. Braz. Dent. J. 2019, 30, 421–428. [Google Scholar] [CrossRef]
- Zuo, H.; Chen, L.; Kong, M.; Qiu, L.; Lü, P.; Wu, P.; Yang, Y.; Chen, K. Toxic effects of fluoride on organisms. Life Sci. 2018, 198, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Niu, R.; Chen, H.; Manthari, R.K.; Sun, Z.; Wang, J.; Zhang, J.; Wang, J. Effects of fluoride on synapse morphology and myelin damage in mouse hippocampus. Chemosphere 2018, 194, 628–633. [Google Scholar] [CrossRef]
- Skórka-Majewicz, M.; Goschorska, M.; Żwierełło, W.; Baranowska-Bosiacka, I.; Styburski, D.; Kapczuk, P.; Gutowska, I. Effect of fluoride on endocrine tissues and their secretory functions—Review. Chemosphere 2020, 260, 127565. [Google Scholar] [CrossRef]
- Kargul, B.; Özcan, M.; Peker, S.; Nakamoto, T.; Simmons, W.B.; Falster, A.U. Evaluation of human enamel surfaces treated with theobromine: A pilot study. Oral Health Prev. Dent. 2012, 10, 275–282. [Google Scholar]
- Najibfard, K.; Ramalingam, K.; Chedjieu, I.; Amaechi, B.T. Remineralization of early caries by a nano-hydroxyapatite dentifrice. J. Clin. Dent. 2011, 22, 139. [Google Scholar]
- Lynch, R.J.; ten Cate, J.M. The anti-caries efficacy of calcium carbonate-based fluoride toothpastes. Int. Dent. J. 2005, 55, 175–178. [Google Scholar] [CrossRef]
- Haghgoo, R.; Ahmadvand, M.; Moshaverinia, S. Remineralizing effect of topical NovaMin and nano-hydroxyapatite on caries-like lesions in primary teeth. J. Contemp. Dent. Pract. 2016, 17, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Stovell, A.G.; Newton, B.M.; Lynch, R.J. Important considerations in the development of toothpaste formulations for children. Int. Dent. J. 2013, 63, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Ekambaram, M.; Itthagarun, A.; King, N.M. Comparison of the remineralizing potential of child formula dentifrices. Int. J. Paediatr. Dent. 2011, 21, 132–140. [Google Scholar] [CrossRef]
- Thaveesangpanich, P.; Itthagarun, A.; King, N.M.; Wefel, J.S. The effects of child formula toothpastes on enamel caries using two in vitro pH-cycling models. Int. Dent. J. 2005, 55, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Shabanian, M.; Jabarifar, S.E.; Salavati, S.; Khosravi, K.; Tavakoli, N.; Akhavan, A. Effect of fluoride dentifrices on the microhardness of deciduous enamel surfaces. Oral Health Prev. Dent. 2012, 10, 59–64. [Google Scholar] [PubMed]
- Gümüs, H.; Aydınbelge, M.; Sönmez, H. Evaluation of the efficacy of different remineralizing agents on artificial early enamel lesions of primary teeth: An in vitro study. J. Adv. Oral Res. 2020, 11, 180–188. [Google Scholar] [CrossRef]
- Fanning, E.A. A longitudinal study of tooth formation and root resorption. N. Z. Dent. J. 1961, 57, 202–217. [Google Scholar]
- el Habashy, L.M.; Heikal, M. Effectiveness of casein phospopeptide amorphous calcium phosphate with or without fluoride on remineralization of enamel caries-like lesions in primary teeth. Egypt. Dent. J. 2020, 66, 799–808. [Google Scholar] [CrossRef]
- Kapoor, A.; Saraf, B.G.; Sheoran, N.; Sardana, D. Comparative evaluation of remineralizing potential of three pediatric dentifrices. Int. J. Clin. Pediatr. Dent. 2016, 9, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Kiranmayi, M.; Nirmala, S.V.; Nuvvula, S. Appraisal of the remineralizing potential of child formula dentifrices on primary teeth: An in vitro pH cycling model. Contemp. Clin. Dent. 2015, 6, 81–85. [Google Scholar]
- Itthagarun, A.; Wei, S.H.Y.; Wefel, J.S. The effect of different commercial dentifrices on enamel lesion progression: An in vitro pH-cycling study. Int. Dent. J. 2000, 50, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.; Dwyer-Joyce, R.S.; Pickles, M.J. Interaction between toothbrushes and toothpaste abrasive particles in simulated tooth cleaning. Wear 2004, 257, 368–376. [Google Scholar] [CrossRef]
- Rath, S.; Sharma, V.; Pratap, C.; Chaturvedi, T. Abrasivity of dentrifices: An update. S.R.M. J. Res. Dent. Sci. 2016, 7, 96–100. [Google Scholar]
- Cury, J.A.; Francisco, S.B.; Simões, G.S.; Del Bel Cury, A.A.; Tabchoury, C.P. Effect of a calcium carbonate-based dentifrice on enamel demineralization in situ. Caries Res. 2003, 37, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.A. Effect induced by a chalk-based toothpaste on the pH changes of plaque challenged by a high sugar diet over an 8-hour period. Caries Res. 1986, 20, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, E.; Altenburger, M.; Attin, T.; Lussi, A.; Buchalla, W. Remineralization of initial carious lesions in deciduous enamel after application of dentifrices of different fluoride concentrations. Clin. Oral Investig. 2010, 14, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Damato, F.; Strang, R.; Stephen, K. Effect of fluoride concentration on remineralization of carious enamel: An in vitro ph-cycling study. Caries Res. 1990, 24, 174–180. [Google Scholar] [CrossRef]
- Rirattanapong, P.; Smutkeeree, A.; Surarit, R.; Saendsirinavin, C.; Kunanantsak, V. Effects of fluoride dentifrice on remineralization of demineralized primary enamel. Southeast Asıan J. Trop. Med. Public Health 2010, 41, 243–249. [Google Scholar]
- Walsh, T.; Worthington, H.V.; Glenny, A.M.; Marinho, V.C.; Jeroncic, A. Fluoride toothpastes of different concentrations for preventing dental caries. Cochrane Database Syst. Rev. 2019, 3, 007868. [Google Scholar] [CrossRef] [PubMed]
- Buzalaf, M.A.R.; Pessan, J.P.; Honório, H.M.; Ten Cate, J.M. Mechanisms of action of fluoride for caries control. Monogr. Oral Sci. 2011, 22, 97–114. [Google Scholar]
- Koçyigit, C.; Yüksel, B.N.; Özalp, N. Effects of nano-hydroxyapatite dentifrices with and without fluoride on primary teeth enamel: A micro-CT and a SEM study. Cumhur. Dent. J. 2020, 23, 191–199. [Google Scholar] [CrossRef]
- Vyavhare, S.; Sharma, D.; Kulkarni, V. Effect of three different pastes on remineralization of initial enamel lesion: An in vitro study. J. Clin. Pediatr. Dent. 2015, 39, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Qamar, Z.; Haji Abdul Rahim, Z.B.; Chew, H.P.; Fatima, T. Influence of trace elements on dental enamel properties: A review. J. Pak. Med. Assoc. 2017, 67, 116–120. [Google Scholar]
- Condò, S.G.; DeVizio, W.; Volpe, A.R. Gingiva, teeth and sea salt. Am. J. Dent. 1999, 12, 5–8. [Google Scholar]
- Hadjimarkos, D. Sea salt and dental caries. Nature 1962, 195, 392. [Google Scholar] [CrossRef] [PubMed]
- Premnath, P.; John, J.; Manchery, N.; Subbiah, G.K.; Nagappan, N.; Subramani, P. Effectiveness of theobromine on enamel remineralization: A comparative in-vitro study. Cureus 2019, 11, 5686. [Google Scholar] [CrossRef] [PubMed]
- Durhan, M.A.; Ozsalih, S.; Gokkaya, B.; Kulan, P.Y.; Kargul, B. Caries preventive effects of theobromine containing toothpaste on early childhood caries: Preliminary results. Acta Stomatol. Croat. 2021, 55, 18–27. [Google Scholar] [CrossRef]
- Amaechi, B.T.; Porteous, N.; Ramalingam, K.; Mensinkai, P.K.; Ccahuana Vasquez, R.A.; Sadeghpour, A.; Nakamoto, T. Remineralization of artificial enamel lesions by theobromine. Caries Res. 2013, 47, 399–405. [Google Scholar] [CrossRef]
- Lippert, F. The effects of fluoride, strontium, theobromine and their combinations on caries lesion rehardening and fluoridation. Arch. Oral Biol. 2017, 80, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Sahin, F.; Oznurhan, F. Antibacterial efficacy and remineralization capacity of glycyrrhizic acid added casein phosphopeptide-amorphous calcium phosphate. Microsc. Res. Tech. 2020, 83, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Dagli, N.; Dagli, R.; Mahmoud, R.S.; Baroudi, K. Essential oils, their therapeutic properties, and implication in dentistry: A review. J. Int. Soc. Prev. Community Dent. 2015, 5, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Al Haddad, T.; Khoury, E.; Farhat Mchayleh, N. Comparison of the remineralizing effect of brushing with aloe vera versus fluoride toothpaste. Eur. J. Dent. 2021, 15, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Móricz, A.M.; Szarka, S.; Ott, P.G.; Héthelyi, E.B.; Szoke, E.; Tyihák, E. Separation and identification of antibacterial chamomile components using OPLC, bioautography and GC-MS. Med. Chem. 2012, 8, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Rubel, M.; Prashhant, G.; Naveen, K. Effect of grape seed extract on remineralization of artificial caries: An in-vitro study. Asian J. Pharm. Clin. Res. 2016, 9, 174–176. [Google Scholar]
- Nordin, A.; Bin Saim, A.; Ramli, R.; Abdul Hamid, A.; Mohd Nasri, N.W.; Bt Hj Idrus, R. Miswak and oral health: An evidence-based review. Saudi J. Biol. Sci. 2020, 27, 1801–1810. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Pediatric Dentistry. Policy on use of xylitol in pediatric dentistry. In The Reference Manual of Pediatric Dentistry; American Academy of Pediatric Dentistry: Chicago, IL, USA, 2021; pp. 72–73. [Google Scholar]
- Chakraborty, B.; Burne, R.A. Effects of arginine on streptococcus mutans growth, virulence gene expression, and stress tolerance. Appl. Environ. Microbiol. 2017, 83, e00496–17. [Google Scholar] [CrossRef] [PubMed]
- Alpöz, E.; Çankaya, H.; Güneri, P.; Epstein, J.B.; Boyacioglu, H.; Kabasakal, Y.; Ocakci, P.T. Impact of Buccotherm® on xerostomia: A single blind study. Spec. Care Dent. 2015, 35, 1–7. [Google Scholar] [CrossRef]
- Çakır, B.; Eden, E.; Turan, E. Evaluation of antibacterial effect of toothpastes with different contents: An in vitro study. Aydın Dent. J. 2017, 3, 13–22. [Google Scholar]
- Mutlu, E.; Ozdemir, M.; Gencay, K. Evaluation of remineralizing potential of hydroxyapatite, phosphopeptide-amorphous calcium phospahate and fluoride dentifrices using SEM/EDX analysis: A randomized controlled in-vitro study. Pediatr. Dent. J. 2022, 32, 176–185. [Google Scholar] [CrossRef]
- Taneja, V.; Nekkanti, S.; Gupta, K.; Hassija, J. Remineralization potential of theobromine on artificial carious lesions. J. Int. Soc. Prev. Community Dent. 2019, 9, 576–583. [Google Scholar] [PubMed]
- Detara, M.; Triaminingsih, S.; Irawan, B. Effects of nano calcium carbonate and siwak toothpaste on demineralized enamel surface roughness. J. Phys. Conf. Ser. 2018, 3, 1073. [Google Scholar] [CrossRef]
- Abdslam, A.; Farag, M.; Omer, S. Evaluation of the effect of two different concentration of arginine on fluoride uptake by demineralized enamel surfaces, in vitro study. Dent. Sci. Update 2022, 3, 199–208. [Google Scholar] [CrossRef]
- Ali, S.; Farooq, I.; Shahid, F.; Hassan, U.; Zafar, M.S. Common toothpastes abrasives and methods of evaluating their abrasivity. J. Oral Res. 2020, 3, 9–15. [Google Scholar] [CrossRef]
- Camargo, I.M.; Saiki, M.; Vasconcellos, M.B.; Avila, D.M. Abrasiveness evaluation of silica and calcium carbonate used in the production of dentifrices. J. Cosmet. Sci. 2001, 52, 163–167. [Google Scholar] [PubMed]
Toothpaste | Manufacturer | Active Chemical Content | Agents Specifically Declared Not to Be in Toothpastes by Manufacturers |
---|---|---|---|
Splat® Kids Wild Strawberry-Cherry (Group 1) | Splat, Novgorod, Russia | Hydrated silica 1, calcium hydroxyapatite 2, barbadensis (aloe vera) leaf extract, glycyrrhiza glabra root extract, vitis vinifera seed extract, arginine. |
|
Logodent® Happy Kids-Strawberry (Group 2) | Logona Naturkosmetik, Germany | Hydrated silica 1, xylitol, chamomilla recutita (matricaria) flower extract, camellia sinensis leaf extract, maris sal (sea salt) 2. |
|
Eyup Sabri Tuncer® Kids’ Toothpaste with Natural Chocolate and Mint Extract (Group 3) | Eyup Sabri Tuncer, Turkey | Hydrated silica 1, xylitol, theobroma cacao (cocoa) extract 2, mentha piperita (mint) oil, eucalyptus globulus oil. |
|
Naturalive® Natural Kids’ Toothpaste (Group 4) | Naturalive Beauty, Turkey | Calcium carbonate (calcium mineral) 1,2, xylitol, melaleuca alternifolia leaf oil, salvadora persica stem extract, propolis wax. |
|
Buccotherm® My First Toothpaste (Group 5) | Buccotherm, France | Hydrated silica 1, Castéra-Verduzan thermal aqua (pH = 8), sodium fluoride (500 ppm) 2. |
|
Toothpastes | Measurement Stages | Microhardness Values | ||||||
---|---|---|---|---|---|---|---|---|
N | Median | Mean | Sd | X2 | p | Bonferroni | ||
Splat® | B | 12 | 276.48 | 275.88 | 32.39 | 22.167 | 0.000 * | R < B |
D | 12 | 9.85 | 22.19 | 28.84 | D < B | |||
R | 12 | 15.45 | 36.84 | 47.13 | ||||
Logodent® | B | 12 | 303.60 | 280.49 | 61.09 | 22.167 | 0.000 * | R < B |
D | 12 | 9.05 | 20.71 | 25.50 | D < B | |||
R | 12 | 16.75 | 29.90 | 27.75 | ||||
EST® | B | 12 | 284.60 | 274.58 | 35.81 | 20.468 | 0.000 * | R < B |
D | 12 | 9.50 | 21.89 | 43.71 | D < B | |||
R | 12 | 21.35 | 37.35 | 35.16 | ||||
Naturalive® | B | 12 | 326.25 | 279.82 | 90.14 | 24.000 | 0.000 * | R < B |
D | 12 | 16.20 | 22.74 | 20.78 | D < B | |||
R | 12 | 23.83 | 33.85 | 31.14 | D < R | |||
Buccotherm® | B | 12 | 299.45 | 277.33 | 89.15 | 24.000 | 0.000 * | R < B |
D | 12 | 10.85 | 23.10 | 39.99 | D < B | |||
R | 12 | 29.65 | 45.15 | 46.88 | D < R |
Toothpastes | Surface Microhardness Recovery | |||||
---|---|---|---|---|---|---|
N | Median | Mean | Sd | Test Statistic | p | |
Splat® | 12 | 2.00 | 7.01 | 11.41 | X2 = 6.677 | 0.154 |
Logodent® | 12 | 2.62 | 4.01 | 4.48 | ||
EST® | 12 | 2.99 | 5.44 | 16.28 | ||
Naturalive® | 12 | 3.16 | 4.18 | 4.81 | ||
Buccotherm® | 12 | 9.27 | 16.20 | 22.91 |
Measurement Stages | Toothpastes | Surface Roughness | |||||
---|---|---|---|---|---|---|---|
N | Median | Mean | Sd | F | p | ||
B | Splat® | 12 | 32.05 | 29.04 | 12.03 | 12.991 | 0.000 * |
Logodent® | 12 | 29.32 | 29.20 | 13.46 | |||
EST® | 12 | 28.69 | 30.23 | 13.68 | |||
Naturalive® | 12 | 26.42 | 28.72 | 13.87 | |||
Buccotherm® | 12 | 25.16 | 29.62 | 17.47 | |||
Total | 60 | 28.24 | 29.36 | 13.74 | |||
D | Splat® | 12 | 30.97 | 41.54 | 24.71 | ||
Logodent® | 12 | 40.93 | 41.76 | 18.99 | |||
EST® | 12 | 40.47 | 42.76 | 21.95 | |||
Naturalive® | 12 | 44.72 | 40.08 | 21.27 | |||
Buccotherm® | 12 | 39.67 | 42.90 | 18.17 | |||
Total | 60 | 39.23 | 41.81 | 20.44 | |||
R | Splat® | 12 | 23.93 | 29.47 | 17.84 | ||
Logodent® | 12 | 30.59 | 31.30 | 8.91 | |||
EST® | 12 | 27.26 | 30.24 | 16.26 | |||
Naturalive® | 12 | 22.49 | 28.68 | 13.96 | |||
Buccotherm® | 12 | 31.23 | 29.56 | 15.09 | |||
Total | 60 | 29.10 | 29.85 | 14.25 |
Toothpastes | Microhardness | |||||
---|---|---|---|---|---|---|
N | Median | Mean | Sd | Test Statistic | p | |
Splat® | 12 | 5.55 | 14.65 | 21.59 | X2 = 6.548 | 0.164 |
Logodent® | 12 | 6.05 | 9.18 | 8.55 | ||
EST® | 12 | 8.80 | 15.46 | 31.83 | ||
Naturalive® | 12 | 5.55 | 11.11 | 14.15 | ||
Buccotherm® | 12 | 17.97 | 22.05 | 14.08 | ||
Toothpastes | Surface roughness | |||||
N | Median | Mean | Sd | Test Statistic | p | |
Splat® | 12 | 16.70 | 12.06 | 22.26 | F = 0.031 | 0.998 |
Logodent® | 12 | 11.29 | 10.46 | 20.96 | ||
EST® | 12 | 9.46 | 12.51 | 24.18 | ||
Naturalive® | 12 | 9.85 | 11.41 | 12.86 | ||
Buccotherm® | 12 | 9.22 | 13.34 | 25.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altinsoy, G.O.; Ceyhan, D. Effects of Five Different Toothpastes on Remineralization and Surface Roughness of Primary Tooth Enamel with Artificial Initial Caries. Appl. Sci. 2024, 14, 7232. https://doi.org/10.3390/app14167232
Altinsoy GO, Ceyhan D. Effects of Five Different Toothpastes on Remineralization and Surface Roughness of Primary Tooth Enamel with Artificial Initial Caries. Applied Sciences. 2024; 14(16):7232. https://doi.org/10.3390/app14167232
Chicago/Turabian StyleAltinsoy, Gokce Ozcan, and Derya Ceyhan. 2024. "Effects of Five Different Toothpastes on Remineralization and Surface Roughness of Primary Tooth Enamel with Artificial Initial Caries" Applied Sciences 14, no. 16: 7232. https://doi.org/10.3390/app14167232
APA StyleAltinsoy, G. O., & Ceyhan, D. (2024). Effects of Five Different Toothpastes on Remineralization and Surface Roughness of Primary Tooth Enamel with Artificial Initial Caries. Applied Sciences, 14(16), 7232. https://doi.org/10.3390/app14167232