Maintenance 4.0 Technologies for Sustainable Manufacturing
1. Introduction
2. Overview of Published Articles
3. Conclusions
Acknowledgments
Conflicts of Interest
List of Contributions
- Nordal, H.; El-Thalji, I. Lifetime Benefit Analysis of Intelligent Maintenance: Simulation Modeling Approach and Industrial Case Study. Appl. Sci. 2021, 11, 3487.
- Giacotto, A.; Costa Marques, H.; Pereira Barreto, E.A.; Martinetti, A. The Need for Ecosystem 4.0 to Support Maintenance 4.0: An Aviation Assembly Line Case. Appl. Sci. 2021, 11, 3333.
- Scheffer, S.; Martinetti, A.; Damgrave, R.; Thiede, S.; van Dongen, L. How to Make Augmented Reality a Tool for Railway Maintenance Operations: Operator 4.0 Perspective. Appl. Sci. 2021, 11, 2656
- Borro, D.; Suescun, Á.; Brazález, A.; González, J.M.; Ortega, E.; González, E. WARM: Wearable AR and Tablet-Based Assistant Systems for Bus Maintenance. Appl. Sci. 2021, 11, 1443
- Nentwich, C.; Reinhart, G. A Combined Anomaly and Trend Detection System for Industrial Robot Gear Condition Monitoring. Appl. Sci. 2021, 11, 10403
- Xie, X.;Wu, X.; Hu, Q. Bi-Objective Optimization for Industrial Robotics Workflow Resource Allocation in an Edge–Cloud Environment. Appl. Sci. 2021, 11, 10066.
- Yin, J.; Li, Y.; Wang, R.; Xu, M. An Improved Similarity Trajectory Method Based on Monitoring Data under Multiple Operating Conditions. Appl. Sci. 2021, 11, 10968.
- Kowalski, A.; Waszkowski, R. Method of Selecting the Means of Transport of the Winning, Taking into Account Environmental Aspects. Appl. Sci. 2021, 11, 5512. 7.
- Cárcel-Carrasco, J.; Pascual-Guillamón, M.; Salas-Vicente, F. Improve the Energy Efficiency of the Cooling System by Slide Regulating the Capacity of Refrigerator Compressors. Appl. Sci. 2021, 11, 2019.
- Cárcel-Carrasco, J.; Cárcel-Carrasco, J.-A. Analysis for the Knowledge Management Application in Maintenance Engineering: Perception from Maintenance Technicians. Appl. Sci. 2021, 11, 703.
- Rojek, I.; Mikołajewski, D.; Dostatni, E. Digital Twins in Product Lifecycle for Sustainability in Manufacturing and Maintenance. Appl. Sci. 2021, 11, 31.
- Pawlewski, P.; Kosacka-Olejnik, M.; Werner-Lewandowska, K. Digital Twin Lean Intralogistics: Research Implications. Appl. Sci. 2021, 11, 1495.13.
- Bocewicz, G.; Nielsen, P.; Jasiulewicz-Kaczmarek, M.; Banaszak, Z. Dynamic planning of mobile service teams’ mission subject to order uncertainty constraints. Appl. Sci. 2020, 10, 8872.
References
- Jasiulewicz-Kaczmarek, M.; Legutko, S.; Kluk, P. Maintenance 4.0 technologies–new opportunities for sustainability driven maintenance. Manag. Prod. Eng. Rev. 2020, 11, 74–87. [Google Scholar]
- Malek, J.; Desai, T.N. A systematic literature review to map literature focus of sustainable manufacturing. J. Clean. Prod. 2020, 256, 120345. [Google Scholar]
- Bastas, A. Sustainable manufacturing technologies: A systematic review of latest trends and themes. Sustainability 2021, 13, 4271. [Google Scholar] [CrossRef]
- Felsberger, A.; Reiner, G. Sustainable industry 4.0 in production and operations management: A systematic literature review. Sustainability 2020, 12, 7982. [Google Scholar] [CrossRef]
- Ahmed, U.; Carpitella, S.; Certa, A.; Izquierdo, J. A feasible framework for maintenance digitalization. Processes 2023, 11, 558. [Google Scholar] [CrossRef]
- Werbińska-Wojciechowska, S.; Winiarska, K. Maintenance performance in the age of Industry 4.0: A bibliometric performance analysis and a systematic literature review. Sensors 2023, 23, 1409. [Google Scholar] [CrossRef]
- Shao, Z.; Kumral, M. Logical analysis of data in predictive failure detection and diagnosis. Int. J. Qual. Reliab. Manag, 2024; ahead of printing. [Google Scholar]
- Antosz, K.; Jasiulewicz-Kaczmarek, M.; Machado, J.; Relich, M. Application of Principle Component Analysis and logistic regression to support Six Sigma implementation in maintenance. Maint. Reliab. Eksploat. I Niezawodn. 2023, 25, 174603. [Google Scholar]
- Shaheen, B.W.; Németh, I. Integration of Maintenance Management System Functions with Industry 4.0 Technologies and Features—A Review. Processes 2022, 10, 2173. [Google Scholar] [CrossRef]
- Jasiulewicz-Kaczmarek, M.; Antosz, K.; Waszkowski, R.; Nielsen, I.; Čep, R. “Technology” as the fourth dimension of sustainable maintenance management. IFAC-PapersOnLine 2023, 56, 162–167. [Google Scholar]
- Mosyurchak, A.; Veselkov, V.; Turygin, A.; Hammer, M. Prognosis of behaviour of machine tool spindles their diagnostics and maintenance. MM Sci. J. 2017, 2017, 2100–2104. [Google Scholar]
- Forcina, A.; Introna, V.; Silvestri, A. Enabling technology for maintenance in a smart factory: A literature review. Procedia Comput. Sci. 2021, 180, 430–435. [Google Scholar]
- Fasuludeen Kunju, F.K.; Naveed, N.; Anwar, M.N.; Ul Haq, M.I. Production and maintenance in industries: Impact of industry 4.0. Ind.Robot. Int. J. Robot. Res. Appl. 2022, 49, 461–475. [Google Scholar]
- Mendes, D.; Gaspar, P.D.; Charrua-Santos, F.; Navas, H. Integrating TPM and Industry 4.0 to Increase the Availability of Industrial Assets: A Case Study on a Conveyor Belt. Processes 2023, 11, 1956. [Google Scholar]
- Franciosi, C.; Voisin, A.; Miranda, S.; Iung, B. Integration of I4. 0 technologies with maintenance processes: What are the effects on sustainable manufacturing? IFAC-PapersOnLine 2020, 53, 1–6. [Google Scholar]
- Dui, H.; Wu, X.; Wu, S.; Xie, M. Importance measure-based maintenance strategy optimization: Fundamentals, applications and future directions in AI and IoT. Front. Eng. Manag. 2024. [Google Scholar] [CrossRef]
- Keleko, A.T.; Kamsu-Foguem, B.; Ngouna, R.H.; Tongne, A. Artificial intelligence and real-time predictive maintenance in industry 4.0: A bibliometric analysis. AI Ethics 2022, 2, 553–577. [Google Scholar]
- Patange, A.; Soman, R.; Pardeshi, S.; Kuntoglu, M.; Ostachowicz, W. Milling cutter fault diagnosis using unsupervised learning on small data: A robust and autonomous framework. Maint. Reliab. Eksploat. I Niezawodn. 2024, 26, 178274. [Google Scholar] [CrossRef]
- Molęda, M.; Małysiak-Mrozek, B.; Ding, W.; Sunderam, V.; Mrozek, D. From corrective to predictive maintenance—A review of maintenance approaches for the power industry. Sensors 2023, 23, 5970. [Google Scholar] [CrossRef]
- Mallioris, P.; Aivazidou, E.; Bechtsis, D. Predictive maintenance in Industry 4.0: A systematic multi-sector mapping. CIRP J. Manuf. Sci. Technol. 2024, 50, 80–103. [Google Scholar]
- Siraskar, R.; Kumar, S.; Patil, S.; Bongale, A.; Kotecha, K. Reinforcement learning for predictive maintenance: A systematic technical review. Artif. Intell. Rev. 2023, 56, 12885–12947. [Google Scholar]
- Gbadamosi, A.Q.; Oyedele, L.O.; Delgado, J.M.D.; Kusimo, H.; Akanbi, L.; Olawale, O.; Muhammedyakubu, N. IoT for predictive assets monitoring and maintenance: An implementation strategy for the UK rail industry. Autom. Constr. 2021, 122, 103486. [Google Scholar]
- Zonta, T.; Da Costa, C.A.; da Rosa Righi, R.; de Lima, M.J.; da Trindade, E.S.; Li, G.P. Predictive maintenance in the Industry 4.0: A systematic literature review. Comput. Ind. Eng. 2020, 150, 106889. [Google Scholar]
- Carvalho, T.P.; Soares, F.A.A.M.N.; Vita, R.; Francisco, R.D.P.; Basto, J.P.; Alcalá, S.G.S. A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 137, 106024. [Google Scholar]
- Welte, R.; Estler, M.; Lucke, D. A Method for Implementation of Machine Learning Solutions for Predictive Maintenance in Small and Medium Sized Enterprises. Procedia CIRP 2020, 93, 909–914. [Google Scholar]
- Nunes, P.; Santos, J.; Rocha, E. Challenges in predictive maintenance–A review. CIRP J. Manuf. Sci. Technol. 2023, 40, 53–67. [Google Scholar]
- Çınar, Z.M.; Abdussalam Nuhu, A.; Zeeshan, Q.; Korhan, O.; Asmael, M.; Safaei, B. Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability 2020, 12, 8211. [Google Scholar] [CrossRef]
- Liu, Z.; Meyendorf, N.; Mrad, N. The role of data fusion in predictive maintenance using digital twin. AIP Conf. Proc. 2018, 1949, 020023. [Google Scholar]
- Aivaliotis, P.; Georgoulias, K.; Chryssolouris, G. The use of Digital Twin for predictive maintenance in manufacturing. Int. J. Comput. Integr. Manuf. 2019, 32, 1067–1080. [Google Scholar]
- Chen, C.; Fu, H.; Zheng, Y.; Tao, F.; Liu, Y. The advance of digital twin for predictive maintenance: The role and function of machine learning. J. Manuf. Syst. 2023, 71, 581–594. [Google Scholar]
- Jiao, Z.; Du, X.; Liu, Z.; Liu, L.; Sun, Z.; Shi, G. Sustainable Operation and Maintenance Modeling and Application of Building Infrastructures Combined with Digital Twin Framework. Sensors 2023, 23, 4182. [Google Scholar] [CrossRef]
- Singh, R.R.; Bhatti, G.; Kalel, D.; Vairavasundaram, I.; Alsaif, F. Building a digital twin powered intelligent predictive maintenance system for industrial AC machines. Machines 2023, 11, 796. [Google Scholar] [CrossRef]
- Errandonea, I.; Beltrán, S.; Arrizabalaga, S. Digital Twin for maintenance: A literature review. Comput. Ind. 2020, 123, 103316. [Google Scholar]
- Feng, Q.; Zhang, Y.; Sun, B.; Guo, X.; Fan, D.; Ren, Y.; Wang, Z. Multi-level predictive maintenance of smart manufacturing systems driven by digital twin: A matheuristics approach. J. Manuf. Syst. 2023, 68, 443–454. [Google Scholar]
- Malta, A.; Farinha, T.; Mendes, M. Augmented reality in maintenance—History and perspectives. J. Imaging 2023, 9, 142. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Khan, S. Management 4.0: Concept, applications and advancements. Sustain. Oper. Comput. 2023, 4, 10–21. [Google Scholar]
- Scurati, G.W.; Gattullo, M.; Fiorentino, M.; Ferrise, F.; Bordegoni, M.; Uva, A.E. Converting maintenance actions into standard symbols for Augmented Reality applications in Industry 4.0. Comput. Ind. 2018, 98, 68–79. [Google Scholar]
- Simon, J.; Gogolák, L.; Sárosi, J.; Fürstner, I. Augmented Reality Based Distant Maintenance Approach. Actuators 2023, 12, 302. [Google Scholar] [CrossRef]
- del Amo, I.F.; Erkoyuncu, J.A.; Roy, R.; Wilding, S. Augmented Reality in Maintenance: An information-centred design framework. Procedia Manuf. 2018, 19, 148–155. [Google Scholar]
- Ceruti, A.; Marzocca, P.; Liverani, A.; Bil, C. Maintenance in aeronautics in an Industry 4.0 context: The role of Augmented Reality and Additive Manufacturing. J. Comput. Des. Eng. 2019, 6, 516–526. [Google Scholar]
- Runji, J.M.; Lee, Y.J.; Chu, C.H. Systematic literature review on augmented reality-based maintenance applications in manufacturing centered on operator needs. Int. J. Precis. Eng. Manuf. -Green Technol. 2023, 10, 567–585. [Google Scholar]
- Bousdekis, A.; Lepenioti, K.; Apostolou, D.; Mentzas, G. A review of data-driven decision-making methods for industry 4.0 maintenance applications. Electronics 2021, 10, 828. [Google Scholar]
- Tortorella, G.L.; Saurin, T.A.; Fogliatto, F.S.; Tlapa Mendoza, D.; Moyano-Fuentes, J.; Gaiardelli, P.; Seyedghorban, Z.; Vassolo, R.; Cawley Vergara, A.F.M.; Sunder, M.V.; et al. Digitalization of maintenance: Exploratory study on the adoption of Industry 4.0 technologies and total productive maintenance practices. Prod. Plan. Control 2024, 35, 352–372. [Google Scholar]
- Kulshrestha, N.; Agrawal, S.; Shree, D. Spare parts management in industry 4.0 era: A literature review. J. Qual. Maint. Eng. 2024, 30, 248–283. [Google Scholar]
- Samadhiya, A.; Agrawal, R.; Luthra, S.; Kumar, A.; Garza-Reyes, J.A.; Srivastava, D.K. Total productive maintenance and Industry 4.0 in a sustainability context: Exploring the mediating effect of circular economy. Int. J. Logist. Manag. 2023, 34, 818–846. [Google Scholar]
- Suresh, M.; Dharunanand, R. Factors influencing sustainable maintenance in manufacturing industries. J. Qual. Maint. Eng. 2023, 29, 94–113. [Google Scholar]
- El Kihel, Y.; El Kihel, A.; Bouyahrouzi, E.M. Contribution of Maintenance 4.0 in Sustainable Development with an Industrial Case Study. Sustainability 2022, 14, 11090. [Google Scholar] [CrossRef]
- Mendes, D.; Gaspar, P.D.; Charrua-Santos, F.; Navas, H. Synergies between lean and Industry 4.0 for enhanced maintenance management in sustainable operations: A model proposal. Processes 2023, 11, 2691. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasiulewicz-Kaczmarek, M. Maintenance 4.0 Technologies for Sustainable Manufacturing. Appl. Sci. 2024, 14, 7360. https://doi.org/10.3390/app14167360
Jasiulewicz-Kaczmarek M. Maintenance 4.0 Technologies for Sustainable Manufacturing. Applied Sciences. 2024; 14(16):7360. https://doi.org/10.3390/app14167360
Chicago/Turabian StyleJasiulewicz-Kaczmarek, Małgorzata. 2024. "Maintenance 4.0 Technologies for Sustainable Manufacturing" Applied Sciences 14, no. 16: 7360. https://doi.org/10.3390/app14167360
APA StyleJasiulewicz-Kaczmarek, M. (2024). Maintenance 4.0 Technologies for Sustainable Manufacturing. Applied Sciences, 14(16), 7360. https://doi.org/10.3390/app14167360