A Study of Model Iterations of Fitts’ Law and Its Application to Human–Computer Interactions
Abstract
:1. Introduction
2. Physiological Basis of Fitts’ Law
2.1. Various Formulations and Studies on Fitts’ Law as It Relates to Human Motor Behavior
2.2. Connection between Fitts’ Law and Nerves
2.3. Connection between Fitts’ Law and Muscle
3. The Origin of the Fitts’ Law Formula and How It Was Developed
3.1. Original Formula
3.2. Further Studies in the 2D Plane
3.3. Research in 3D Space and VR
3.3.1. Research in Three-Dimensional Fields of Varying Forms
3.3.2. Multifactorial Influences in Three-Dimensional Studies
3.4. Impact of Uncontrollable Factors on Forecasting Time
4. Some Studies of Fitts’ Law in HCI Scenes
4.1. Touchscreen Scenes
4.1.1. Small Touchscreen
4.1.2. Large Touchscreen
4.1.3. Screens in Vehicles
4.2. VR Scenes
4.3. Handheld Devices
4.4. Foot Pedals
4.5. Groups with Poor Interaction
4.5.1. Children
4.5.2. Seniors
4.5.3. Visually Impaired Groups
5. Conclusions
5.1. Summary
5.2. Future Research Direction
5.3. Discuss
5.4. Remark
6. Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhai, S. Characterizing computer input with Fitts’ law parameters—The information and non-information aspects of pointing. Int. J. Hum. Comput. Stud. 2004, 61, 791–809. [Google Scholar] [CrossRef]
- Soukoreff, R.W.; MacKenzie, I.S. Towards a standard for pointing device evaluation, perspectives on 27 years of Fitts’ law research in HCI. Int. J. Hum. Comput. Stud. 2004, 61, 751–789. [Google Scholar] [CrossRef]
- Fitts, P.M. The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 1954, 47, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Fitts, P.M.; Peterson, J.R. Information capacity of discrete motor responses. J. Exp. Psychol. 1964, 67, 103–112. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, I.S. Fitts’ law as a research and design tool in human-computer interaction. Hum. Comput. Interact. 1992, 7, 91–139. [Google Scholar] [CrossRef]
- Hoffmann, E.R. Effective target tolerance in an inverted Fitts task. Ergonomics 1995, 38, 828–836. [Google Scholar] [CrossRef]
- Cha, Y.; Myung, R. Extended Fitts’ law for 3D pointing tasks using 3D target arrangements. Int. J. Ind. Ergon. 2013, 43, 350–355. [Google Scholar] [CrossRef]
- Annett, J.; Golby, C.W.; Kay, H. The Measurement of Elements in an Assembly Task—The Information Output of the Human Motor System. Q. J. Exp. Psychol. 1958, 10, 1–11. [Google Scholar] [CrossRef]
- Woodworth, R.S. The accuracy of voluntary movement. J. Nerv. Ment. Dis. 1899, 26, 743–752. [Google Scholar] [CrossRef]
- Gandevia, S.; Macefield, G. Projection of low-threshold afferents from human intercostal muscles to the cerebral cortex. Respir. Physiol. 1989, 77, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Macefield, G.; Gandevia, S.C.; Burke, D. Conduction velocities of muscle and cutaneous afferents in the upper and lower limbs of human subjects. Brain 1989, 112, 1519–1532. [Google Scholar] [CrossRef]
- Beamish, D.; Bhatti, S.; Wu, J.; Jing, Z. Performance limitations from delay in human and mechanical motor control. Biol. Cybern. 2008, 99, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Bullock, D.; Grossberg, S. Neural dynamics of planned arm movements: Emergent invariants and speed-accuracy properties during trajectory formation. Psychol. Rev. 1988, 95, 49–90. [Google Scholar] [CrossRef]
- Cram, J.R.; Kasman, G.S.; Holtz, J. Introduction to Surface Electromyography; Aspen Publishing: Burlington, MA, USA, 1998. [Google Scholar]
- McDonald, A.C.; Picco, B.R.; Belbeck, A.L.; Chow, A.; Dickerson, C.R. Spatial dependency of shoulder muscle demands in horizontal pushing and pulling. Appl. Ergon. 2012, 43, 971–978. [Google Scholar] [CrossRef]
- Strasser, H.; Müller, K.W. Favorable movements of the hand-arm system in the horizontal plane assessed by electromyographic investigations and subjective rating. Int. J. Ind. Ergon. 1999, 23, 339–347. [Google Scholar] [CrossRef]
- Welford, A.T. The measurement of sensory-motor performance: survey and reappraisal of twelve years’ progress. Ergonomics 1960, 3, 189–230. [Google Scholar] [CrossRef]
- MacKenzie, I.S. A note on the information-theoretic basis for Fitts’ law. J. Motor. Behav. 1989, 21, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.E.; Charles, D.K.; Morrow, P.J.; McClean, S.; McDonough, S. Using fitt’s law to model arm motion tracked in 3D by a leap motion controller for virtual reality upper arm stroke rehabilitation. In Proceedings of the 2016 IEEE 29th International Symposium On Computer-Based Medical Systems (CBMS), Belfast and Dublin, Ireland, 20–23 June 2016; pp. 335–336. [Google Scholar]
- Hayes, S.T.; Steiger, J.H.; Adams, J.A. Modelling touch-interaction time on smartphones. Behav. Inf. Technol. 2016, 35, 1022–1043. [Google Scholar] [CrossRef]
- Okuuchi, S.; Tani, K.; Kushiro, K. Temporal properties of the speed-accuracy trade-off for arm-pointing movements in various directions around the body. PLoS ONE 2023, 18, e0291715. [Google Scholar] [CrossRef] [PubMed]
- Pino, A.; Tzemis, E.; Ioannou, N.; Kouroupetroglou, G. Using kinect for 2D and 3D pointing tasks: Performance evaluation. In Proceedings of the Human-Computer Interaction. Interaction Modalities and Techniques: 15th International Conference, HCI International 2013, Las Vegas, NV, USA, 21–26 July 2013; Proceedings, Part IV 15. pp. 358–367. [Google Scholar]
- Murata, A.; Iwase, H. Extending Fitts’ law to a three-dimensional pointing task. Hum. Mov. Sci. 2001, 20, 791–805. [Google Scholar] [CrossRef]
- Machuca, M.D.B.; Stuerzlinger, W. The Effect of Stereo Display Deficiencies on Virtual Hand Pointing. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019. [Google Scholar]
- Janzen, I.; Rajendran, V.K.; Booth, K.S. Modeling the impact of depth on pointing performance. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 188–199. [Google Scholar]
- Shoemaker, G.B.D.; Tsukitani, T.; Kitamura, Y.; Booth, K.S. Two-Part Models Capture the Impact of Gain on Pointing Performance. ACM Trans. Comput. Hum. Interact. 2012, 19, 1–34. [Google Scholar] [CrossRef]
- Stoelen, M.F.; Akin, D.L. Assessment of Fitts’ Law for Quantifying Combined Rotational and Translational Movements. Hum. Factors 2010, 52, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Todorov, E. MuJoCo HAPTIX: A virtual reality system for hand manipulation. In Proceedings of the 2015 IEEE-RAS, 15th International Conference on Humanoid Robots (Humanoids), Seoul, Republic of Korea, 3–5 November 2015; pp. 657–663. [Google Scholar]
- Batmaz, A.U.; Stuerzlinger, W. Effective throughput analysis of different task execution strategies for mid-air fitts’ tasks in virtual reality. IEEE Trans. Vis. Comput. Graph. 2022, 28, 3939–3947. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Xiong, S. ViewfinderVR: Configurable viewfinder for selection of distant objects in VR. Virtual Real-Lond. 2022, 26, 1573–1592. [Google Scholar] [CrossRef]
- Ha, T.; Woo, W. An empirical evaluation of virtual hand techniques for 3D object manipulation in a tangible augmented reality environment. In Proceedings of the 2010 IEEE Symposium on 3D User Interfaces (3DUI), Waltham, MA, USA, 20–21 March 2010; pp. 91–98. [Google Scholar]
- Hoffmann, E.R.; Drury, C.G.; Romanowski, C.J. Performance in one-, two- and three-dimensional terminal aiming tasks. Ergonomics 2011, 54, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Kouroupetroglou, G.T.; Pino, A.; Balmpakakis, A.; Chalastanis, D.; Golematis, V.; Ioannou, N.; Koutsoumpas, I. Using Wiimote for 2D and 3D Pointing Tasks: Gesture Performance Evaluation. In Proceedings of the Gesture Workshop, Athens, Greece, 25–27 May 2011. [Google Scholar]
- Batmaz, A.U.; Machuca, M.D.B.; Pham, D.M.; Stuerzlinger, W. Do head-mounted display stereo deficiencies affect 3D pointing tasks in AR and VR? In Proceedings of the 2019 IEEE Conference On Virtual Reality And 3d User Interfaces (VR), Osaka, Japan, 23–27 March 2019; pp. 585–592. [Google Scholar]
- Shen, W.; Zhou, X. Research on the human-computer interaction mode designed for elderly users. In Proceedings of the 2015 4th International Conference on Computer Science and Network Technology (ICCSNT), Harbin, China, 19–20 December 2015; Volume 1, pp. 374–377. [Google Scholar]
- Lampton, D.R.; McDonald, D.P.; Singer, M.; Bliss, J.P. Distance estimation in virtual environments. In Proceedings of the Human Factors And Ergonomics Society Annual Meeting, San Diego, CA, USA, 9–13 October 1995; pp. 1268–1272. [Google Scholar]
- Hong, H.; Kang, S.H. Measurement of the lens accommodation in viewing stereoscopic displays. J. Soc. Inf. Disp. 2015, 23, 19–26. [Google Scholar] [CrossRef]
- Godse, A.; Khadka, R.; Banic, A. Evaluation of Visual Perception Manipulation in Virtual Reality Training Environments to Improve Golf Performance. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; pp. 1807–1812. [Google Scholar]
- Keulen, R.F.; Adam, J.J.; Fischer, M.H.; Kuipers, H.; Jolles, J. Selective reaching: Evidence for multiple frames of reference. J. Exp. Psychol. Hum. Percept. Perform. 2002, 28, 515. [Google Scholar] [CrossRef] [PubMed]
- Pratt, J.; Adam, J.J.; Fischer, M.H. Visual layout modulates Fitts’s law: The importance of first and last positions. Psychon. B Rev. 2007, 14, 350–355. [Google Scholar] [CrossRef]
- Kim, H.; Kwon, S.; Heo, J.; Lee, H.; Chung, M.K. The effect of touch-key size on the usability of In-Vehicle Information Systems and driving safety during simulated driving. Appl. Ergon. 2014, 45, 379–388. [Google Scholar] [CrossRef]
- Ge, X.; Xu, J.; Zheng, W.; Ni, H.; Ge, L.; Wan, H. The effects of initial-terminal position on pointing task for touch-screen tablet. Int. J. Hum. Comput. Int. 2021, 37, 1291–1299. [Google Scholar] [CrossRef]
- Kim, H.G.; Lim, H.-T.; Lee, S.; Ro, Y.M. Vrsa net: Vr sickness assessment considering exceptional motion for 360 vr video. IEEE Trans. Image Process. 2018, 28, 1646–1660. [Google Scholar] [CrossRef] [PubMed]
- Lovato, S.B.; Waxman, S.R. Young children learning from touch screens: Taking a wider view. Front. Psychol. 2016, 7, 1078. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Shang, Z.; Yan, S.; Wang, Y.; Chen, L. Roscript: A visual script driven truly non-intrusive robotic testing system for touch screen applications. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, Seoul, Republic of Korea, 27 June–19 July 2020; pp. 297–308. [Google Scholar]
- Olson, J.A.; Sandra, D.A.; Colucci, É.S.; Al Bikaii, A.; Chmoulevitch, D.; Nahas, J.; Raz, A.; Veissière, S.P. Smartphone addiction is increasing across the world: A meta-analysis of 24 countries. Comput. Hum. Behav. 2022, 129, 107138. [Google Scholar] [CrossRef]
- Song, H.; Clawson, J.; Radu, I. Updating Fitts’ law to account for small targets. Int. J. Hum. Comput. Interact. 2012, 28, 433–444. [Google Scholar] [CrossRef]
- Bi, X.; Li, Y.; Zhai, S. FFitts law: Modeling finger touch with fitts’ law. In Proceedings of the SIGCHI Conference On Human Factors In Computing Systems, Paris France, 27 April–2 May 2013; pp. 1363–1372. [Google Scholar]
- Trudeau, M.B.; Udtamadilok, T.; Karlson, A.K.; Dennerlein, J.T. Thumb motor performance varies by movement orientation, direction, and device size during single-handed mobile phone use. Hum. Factors 2012, 54, 52–59. [Google Scholar] [CrossRef]
- Lee, S.C.; Cha, M.C.; Ji, Y.G. Investigating smartphone touch area with one-handed interaction: Effects of target distance and direction on touch behaviors. Int. J. Hum. Comput. Int. 2019, 35, 1532–1543. [Google Scholar] [CrossRef]
- Chourasia, A.O.; Wiegmann, D.A.; Chen, K.B.; Irwin, C.B.; Sesto, M.E. Effect of sitting or standing on touch screen performance and touch characteristics. Hum. Factors 2013, 55, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Sun, Q. Examining the usability of touch screen gestures for older and younger adults. Hum. Factors 2015, 57, 835–863. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, X.; Li, J.; Tang, R. Effect of icon size, icon position and sex on clicking motion when operating smartphones with single hand. Ergonomics 2023, 66, 1031–1041. [Google Scholar] [CrossRef]
- Park, J.; Jung, E.S.; Park, S. Input behavior when using two fingers on a multi-touch device. Int. J. Hum. Comput. Int. 2017, 33, 911–926. [Google Scholar] [CrossRef]
- Licence, S.; Smith, R.; McGuigan, M.P.; Earnest, C.P. Gait pattern alterations during walking, texting and walking and texting during cognitively distractive tasks while negotiating common pedestrian obstacles. PLoS ONE 2015, 10, e0133281. [Google Scholar] [CrossRef] [PubMed]
- Conradi, J.; Busch, O.; Alexander, T. Optimal touch button size for the use of mobile devices while walking. Procedia Manuf. 2015, 3, 387–394. [Google Scholar] [CrossRef]
- Musić, J.; Murray-Smith, R. Nomadic input on mobile devices: The influence of touch input technique and walking speed on performance and offset modeling. Hum. Comput. Interact. 2016, 31, 420–471. [Google Scholar] [CrossRef]
- Vetter, S.; Bützler, J.; Jochems, N.; Schlick, C.M. Fitts’ law in bivariate pointing on large touch screens: Age-differentiated analysis of motion angle effects on movement times and error rates. In Proceedings of the Universal Access in Human-Computer Interaction. Users Diversity: 6th International Conference, UAHCI 2011, Held as Part of HCI International 2011, Orlando, FL, USA, 9–14 July 2011; Proceedings, Part II 6. pp. 620–628. [Google Scholar]
- Bützler, J.; Vetter, S.; Jochems, N.; Schlick, C.M. Bivariate pointing movements on large touch screens: Investigating the validity of a refined Fitts’ Law. Work 2012, 41, 3526–3532. [Google Scholar] [CrossRef]
- Tu, H.; Yang, Q.; Liu, X.; Yuan, J.; Ren, X.; Tian, F. Differences and similarities between dominant and non-dominant thumbs for pointing and gesturing tasks with bimanual tablet gripping interaction. Interact. Comput. 2018, 30, 243–257. [Google Scholar] [CrossRef]
- Holzinger, A. Finger instead of mouse: Touch screens as a means of enhancing universal access. In Proceedings of the ERCIM Workshop on User Interfaces for All, Paris, France, 24–25 October 2002; pp. 387–397. [Google Scholar]
- Vollrath, M.; Totzke, I. In-vehicle communication and driving: An attempt to overcome their interference. In Proceedings of the Driver Distraction Internet Forum Sponsored by the United States Department of Transportation, Online, 5 July–11 August 2000. [Google Scholar]
- Sodnik, J.; Dicke, C.; Tomažič, S.; Billinghurst, M. A user study of auditory versus visual interfaces for use while driving. Int. J. Hum. Comput. Stud. 2008, 66, 318–332. [Google Scholar] [CrossRef]
- Dodd, S.R.; Lancaster, J.; Grothe, S.; DeMers, B.; Rogers, B.; Miranda, A. Touch on the flight deck: The impact of display location, size, touch technology & turbulence on pilot performance. In Proceedings of the 2014 IEEE/AIAA 33rd Digital Avionics Systems Conference (DASC), Colorado Springs, CO, USA, 5–9 October 2014; pp. 2C3-1–2C3-13. [Google Scholar]
- Large, D.R.; Burnett, G.; Crundall, E.; van Loon, E.; Eren, A.L.; Skrypchuk, L. Developing predictive equations to model the visual demand of in-vehicle touchscreen HMIs. Int. J. Hum. Comput. Int. 2018, 34, 1–14. [Google Scholar] [CrossRef]
- Deng, C.-L.; Geng, P.; Hu, Y.-F.; Kuai, S.-G. Beyond Fitts’s law: A three-phase model predicts movement time to position an object in an immersive 3D virtual environment. Hum. Factors 2019, 61, 879–894. [Google Scholar] [CrossRef]
- Ware, C.; Balakrishnan, R. Reaching for objects in VR displays: Lag and frame rate. ACM Trans. Comput. Hum. Int. 1994, 1, 331–356. [Google Scholar] [CrossRef]
- Liu, Z.; Lyu, J.; Zhao, H.; Liu, J. Prediction of Graphic Interaction Time of Virtual Reality System Based on Improved Fitts’ Law. Trait. Signal. 2020, 37, 227–234. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Y.; Hu, T. On a Moving Target Selection Model in Virtual Reality Based on Decision Trees. Trait. Signal. 2023, 40, 367. [Google Scholar] [CrossRef]
- Batmaz, A.U.; Stuerzlinger, W. The Effect of Pitch in Auditory Error Feedback for Fitts’ Tasks in Virtual Reality Training Systems. 2021 IEEE Virtual Reality and 3D User Interfaces (VR), Lisboa, Portugal, 27 March–; pp. 85–94. 1 April.
- Gibbs, C.B. Controller design Interactions of controlling limbs, time-lags and gains in positional and velocity systems. Ergonomics 1962, 5, 385–402. [Google Scholar] [CrossRef]
- Pang, Y.H.; Hoffmann, E.R.; Goonetilleke, R.S. Effects of Gain and Index of Difficulty on Mouse Movement Time and Fitts’ Law. IEEE Trans. Hum. Mach. Syst. 2019, 49, 684–691. [Google Scholar] [CrossRef]
- Whisenand, T.G.; Emurian, H.H. Effects of angle of approach on cursor movement with a mouse: Consideration of Fitt’s law. Comput. Hum. Behav. 1996, 12, 481–495. [Google Scholar] [CrossRef]
- Gan, K.-C.; Hoffmann, E.R. Geometrical conditions for ballistic and visually controlled movements. Ergonomics 1988, 31, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Drury, C.G. Application of Fitts’ Law to Foot-Pedal Design. Hum. Factors 1975, 17, 368–373. [Google Scholar] [CrossRef]
- Hoffmann, E.R. A comparison of hand and foot movement times. Ergonomics 1991, 34, 397–406. [Google Scholar] [CrossRef]
- Hoffmann, E.R.; Gan, K.C. Directional ballistic movement with transported mass. Ergonomics 1988, 31, 841–856. [Google Scholar] [CrossRef]
- Welford, A.T.; Norris, A.H.; Shock, N.W. Speed and accuracy of movement and their changes with age. Acta Psychol. 1969, 30, 3–15. [Google Scholar] [CrossRef]
- Chan, A.H.S.; Hoffmann, E.R. Effect of movement direction and sitting/standing on leg movement time. Int. J. Ind. Ergon. 2015, 47, 30–36. [Google Scholar] [CrossRef]
- Decety, J.; Jeannerod, M. Mentally simulated movements in virtual reality: Does Fitt’s law hold in motor imagery? Behav. Brain Res. 1995, 72, 127–134. [Google Scholar] [CrossRef]
- Leversen, J.S.R.; Haga, M.; Sigmundsson, H. From Children to Adults: Motor Performance across the Life-Span. PLoS ONE 2012, 7, e38830. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Chakraborty, P.; Meena, L.; Yadav, D.; Mittal, P. Children’s interaction with touchscreen devices: Performance and validity of Fitts’ law. Hum. Behav. Emerg. Technol. 2021, 3, 1132–1140. [Google Scholar] [CrossRef]
- Li, K.Z.H.; Lindenberger, U. Relations between aging sensory/sensorimotor and cognitive functions. Neurosci. Biobehav. Rev. 2002, 26, 777–783. [Google Scholar] [CrossRef]
- Kurniawan, S.H.; Sutcliffe, A.G.; Blenkhorn, P.; Shin, J.-E. Investigating the usability of a screen reader and mental models of blind users in the Windows environment. Int. J. Rehabil. Res. 2003, 26, 145–147. [Google Scholar] [PubMed]
- Hourcade, J.P.; Bederson, B.B.; Druin, A.; Guimbretière, F. Differences in pointing task performance between preschool children and adults using mice. ACM Trans. Comput. Hum. Interact. 2004, 11, 357–386. [Google Scholar] [CrossRef]
- Vatavu, R.-D.; Cramariuc, G.; Schipor, M.d. Touch interaction for children aged 3 to 6 years: Experimental findings and relationship to motor skills. Int. J. Hum. Comput. Stud. 2015, 74, 54–76. [Google Scholar] [CrossRef]
- Chang, H.-T.; Tsai, T.-H.; Chang, Y.-C.; Chang, Y.-M. Touch panel usability of elderly and children. Comput. Hum. Behav. 2014, 37, 258–269. [Google Scholar] [CrossRef]
- Jones, T.D. An Empirical Study of Children’s Use of Computer Pointing Devices. J. Educ. Comput. Res. 1991, 7, 61–76. [Google Scholar] [CrossRef]
- Woodward, J.; Cato, J.; Smith, J.; Wang, I.; Benda, B.; Anthony, L.; Ruiz, J. Examining Fitts’ and FFitts’ Law Models for Children’s Pointing Tasks on Touchscreens. In Proceedings of the International Conference on Advanced Visual Interfaces, Salerno, Italy, 28 September–2 October 2020. [Google Scholar]
- Lou, X.; Chen, Z.; Hansen, P.; Peng, R. Asymmetric Free-Hand Interaction on a Large Display and Inspirations for Designing Natural User Interfaces. Symmetry 2022, 14, 928. [Google Scholar] [CrossRef]
- Lyu, F.; Li, H.; Fu, Q.; Liu, Y.; Huang, J.; Deng, Z. Effects of spatial constraints and ages on children’s upper limb performance in mid-air gesture interaction. Int. J. Hum. Comput. Stud. 2022, 170, 102952. [Google Scholar] [CrossRef]
- Yadav, S.; Chakraborty, P. Child–smartphone interaction: Relevance and positive and negative implications. Univers. Access. Inf. 2021, 21, 573–586. [Google Scholar] [CrossRef]
- Hwangbo, H.; Yoon, S.H.; Jin, B.S.; Han, Y.S.; Ji, Y.G. A Study of Pointing Performance of Elderly Users on Smartphones. Int. J. Hum. Comput. Int. 2013, 29, 604–618. [Google Scholar] [CrossRef]
- Hoggan, E.E.; Brewster, S.A.; Johnston, J. Investigating the effectiveness of tactile feedback for mobile touchscreens. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008. [Google Scholar]
- Murciego, L.P.; Komolafe, A.O.; Peřinka, N.; Nunes-Matos, H.; Junker, K.; Díez, A.G.; Lanceros-Méndez, S.; Torah, R.N.; Spaich, E.G.; Došen, S. A Novel Screen-Printed Textile Interface for High-Density Electromyography Recording. Sensors 2023, 23, 1113. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H.; Wininger, M.; Craelius, W. Training grip control with a Fitts’ paradigm: A pilot study in chronic stroke. J. Hand. Ther. 2010, 23, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Charoenchaimonkon, E.; Janecek, P. Characterizing non-visual target acquisition tasks with the aid of a tactile display: Investigating factors beyond the classical Fitts’ theorem. Univers. Access. Inf. 2015, 14, 459–475. [Google Scholar] [CrossRef]
- Akamatsu, M.; MacKenzie, I.S. Movement characteristics using a mouse with tactile and force feedback. Int. J. Hum. Comput. Stud. 1996, 45, 483–493. [Google Scholar] [CrossRef]
- Casiez, G.; Vogel, D.; Balakrishnan, R.; Cockburn, A. The Impact of Control-Display Gain on User Performance in Pointing Tasks. Hum. Comput. Interact. 2008, 23, 215–250. [Google Scholar] [CrossRef]
- Lahib, M.E.; Tekli, J.; Issa, Y.B. Evaluating Fitts’ law on vibrating touch-screen to improve visual data accessibility for blind users. Int. J. Hum. Comput. Stud. 2018, 112, 16–27. [Google Scholar] [CrossRef]
- Awada, A.; Issa, Y.B.; Ghannam, C.; Tekli, J.; Chbeir, R. Towards Digital Image Accessibility for Blind Users Via Vibrating Touch Screen: A Feasibility Test Protocol. In Proceedings of the 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems, Naples Italy, 25–29 November 2012; pp. 547–554. [Google Scholar]
- Awada, A.; Issa, Y.B.; Tekli, J.; Chbeir, R. Evaluation of touch screen vibration accessibility for blind users. In Proceedings of the 15th International ACM SIGACCESS Conference on Computers and Accessibility, Bellevue, WA, USA, 21–23 October 2013. [Google Scholar]
- Chakraborty, P.; Yadav, S. Applicability of Fitts’ law to interaction with touchscreen: Review of experimental results. Theor. Issues Ergon. Sci. 2023, 24, 532–546. [Google Scholar] [CrossRef]
- Po, B.A.; Fisher, B.D.; Booth, K.S. Mouse and touchscreen selection in the upper and lower visual fields. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; ACM Press: New York, NY, USA, 2004; pp. 359–366. [Google Scholar]
- Ljubic, S.; Glavinic, V.; Kukec, M. Finger-based pointing performance on mobile touchscreen devices: Fitts’ law fits. In Proceedings of the Universal Access in Human-Computer Interaction. Access to Today’s Technologies: 9th International Conference, UAHCI 2015, Held as Part of HCI International 2015, Los Angeles, CA, USA, 2–7 August 2015; Volume 9175, pp. 318–329. [Google Scholar]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martínez-Martín, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society—Sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Wichmann, T.; Inan, O.T.; DeWeerth, S.P. Fitts’ law based performance metrics to quantify tremor in individuals with essential tremor. IEEE J. Biomed. Health 2021, 26, 2169–2179. [Google Scholar] [CrossRef] [PubMed]
- Akbaş, A.; Marszałek, W.; Brachman, A.; Juras, G. Influence of Target Width and Distance on Postural Adjustments in a Fencing Lunge. J. Hum. Kinet. 2023, 87, 35–45. [Google Scholar] [CrossRef] [PubMed]
- van den Tillaar, R. The Effects of Target Location Upon Throwing Velocity and Accuracy in Experienced Female Handball Players. Front. Psychol. 2020, 11, 2006. [Google Scholar] [CrossRef] [PubMed]
- van den Tillaar, R.; Ulvik, A. Influence of Instruction on Velocity and Accuracy in Soccer Kicking of Experienced Soccer Players. J. Motor. Behav. 2014, 46, 287–291. [Google Scholar] [CrossRef]
Name of Proposer | Time | ID Composition | Usage Scenario |
---|---|---|---|
Fitts | 1954 | 1/2D | |
Welford | 1960 | 2D | |
MacKenzie | 1989 | 2D | |
Hoffmann | 1995 | 2D |
Name of Proposer | Time | MT Composition | ID Composition | Usage Scenario |
---|---|---|---|---|
Fitts | 1954 | 1/2D | ||
Murata | 2001 | 3D | ||
Myung | 2013 | 3D | ||
Machuca | 2019 | 3D/VR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.; Sun, Y.; Duan, Z.; Huo, Y.; Liu, J.; Luo, M.; Li, Y.; Zhang, Y. A Study of Model Iterations of Fitts’ Law and Its Application to Human–Computer Interactions. Appl. Sci. 2024, 14, 7386. https://doi.org/10.3390/app14167386
Xiao H, Sun Y, Duan Z, Huo Y, Liu J, Luo M, Li Y, Zhang Y. A Study of Model Iterations of Fitts’ Law and Its Application to Human–Computer Interactions. Applied Sciences. 2024; 14(16):7386. https://doi.org/10.3390/app14167386
Chicago/Turabian StyleXiao, Hongwei, Yongqi Sun, Zhenghao Duan, Yunxiang Huo, Jingze Liu, Mingyu Luo, Yanhui Li, and Yingchao Zhang. 2024. "A Study of Model Iterations of Fitts’ Law and Its Application to Human–Computer Interactions" Applied Sciences 14, no. 16: 7386. https://doi.org/10.3390/app14167386
APA StyleXiao, H., Sun, Y., Duan, Z., Huo, Y., Liu, J., Luo, M., Li, Y., & Zhang, Y. (2024). A Study of Model Iterations of Fitts’ Law and Its Application to Human–Computer Interactions. Applied Sciences, 14(16), 7386. https://doi.org/10.3390/app14167386