Microbial Diversity of Biodeteriorated Limestone Cultural Heritage Assets Identified Using Molecular Approaches—A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Origin of Studies
3.2. Biodiveristy
3.2.1. Overall Biodiversity
3.2.2. Fungi
3.2.3. Bacteria
3.2.4. Cyanobacteria
3.2.5. Algae
3.2.6. Archaea
3.2.7. Lichens
3.3. Culture-Dependent Methods
3.3.1. Isolation of Microorganisms
3.3.2. Identification of Microorganisms
3.3.3. Biodeterioration Studies on Pure Cultures
3.4. Culture-Independent Methods
3.4.1. DNA Isolation
3.4.2. Assessing Abundance and Diversity of Taxa by DNA Sequencing
3.4.3. Following the Biodeterioration and Obtaining Insight into the Microbial Community Function
3.4.4. The Use of Methodology Studying Biodeteriorated CHL Microbiomes
4. Discussion
4.1. Microorganisms as the Agents of Biodeterioration
4.1.1. Biophysical and Biochemical Alterations
4.1.2. Aesthetic Changes Caused by Pigments
4.2. Microbial Diversity Uncovered by the Application of Molecular Approaches
4.2.1. Discovered Microbial Biodiversity on CHL
4.2.2. The Discovery of Novel Species on CHL
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, A.Z.; Macedo, M.F.; Dionísio, A.; Saiz-Jimenez, C. Primary Bioreceptivity of Limestones from the Mediterranean Basin to Phototrophic Microorganisms. Ph.D. Thesis, New University of Lisbon, Lisbon, Portugal, 2010. [Google Scholar]
- Oates, J.A.H. Lime and Limestone: Chemistry and Technology, Production and Uses, 2nd ed.; WILEY-VCH Verlag GmbH: Weinheim, Germany, 1998. [Google Scholar]
- ElBaghdady, K.Z.; Tolba, S.T.; Houssien, S.S. Biogenic Deterioration of Egyptian Limestone Monuments: Treatment and Conservation. J. Cult. Herit. 2019, 38, 118–125. [Google Scholar] [CrossRef]
- Tescari, M.; Visca, P.; Frangipani, E.; Bartoli, F.; Rainer, L.; Caneva, G. Celebrating Centuries: Pink-Pigmented Bacteria from Rosy Patinas in the House of Bicentenary (Herculaneum, Italy). J. Cult. Herit. 2018, 34, 43–52. [Google Scholar] [CrossRef]
- Elert, K.; Ruiz-Agudo, E.; Jroundi, F.; Gonzalez-Muñoz, M.T.; Fash, B.W.; Fash, W.L.; Valentin, N.; de Tagle, A.; Rodriguez-Navarro, C. Degradation of Ancient Maya Carved Tuff Stone at Copan and Its Bacterial Bioconservation. npj Mater. Degrad. 2021, 5, 44. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, B.; Tang, M.; Wang, X.; Li, Q.; Hu, Y.; Zhang, B. Analysis of the Microbiomes on Two Cultural Heritage Sites. Geomicrobiol. J. 2023, 40, 203–212. [Google Scholar] [CrossRef]
- Eyssautier-Chuine, S.; Vaillant-Gaveau, N.; Charpentier, E.; Reffuveille, F. Comparison of Biofilm Development on Three Building and Restoration Stones Used in French Monuments. Int. Biodeterior. Biodegrad. 2021, 165, 105322. [Google Scholar] [CrossRef]
- Martin-Sanchez, P.M.; Bastian, F.; Alabouvette, C.; Saiz-Jimenez, C. Real-Time PCR Detection of Ochroconis Lascauxensis Involved in the Formation of Black Stains in the Lascaux Cave, France. Sci. Total Environ. 2013, 443, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Bontemps, Z.; Prigent-Combaret, C.; Guillmot, A.; Hugoni, M.; Moënne-Loccoz, Y. Dark-Zone Alterations Expand throughout Paleolithic Lascaux Cave despite Spatial Heterogeneity of the Cave Microbiome. Environ. Microbiome 2023, 18, 31. [Google Scholar] [CrossRef]
- Alonso, L.; Creuzé-Des-Châtelliers, C.; Trabac, T.; Dubost, A.; Moënne-Loccoz, Y.; Pommier, T. Rock Substrate Rather than Black Stain Alterations Drives Microbial Community Structure in the Passage of Lascaux Cave 06 Biological Sciences 0605 Microbiology. Microbiome 2018, 6, 216. [Google Scholar] [CrossRef]
- Martin-Pozas, T.; Fernandez-Cortes, A.; Cuezva, S.; Cañaveras, J.C.; Benavente, D.; Duarte, E.; Saiz-Jimenez, C.; Sanchez-Moral, S. New Insights into the Structure, Microbial Diversity and Ecology of Yellow Biofilms in a Paleolithic Rock Art Cave (Pindal Cave, Asturias, Spain). Sci. Total Environ. 2023, 897, 165218. [Google Scholar] [CrossRef]
- Laiz, L.; Piñar, G.; Lubitz, W.; Saiz-Jimenez, C. Monitoring the Colonization of Monuments by Bacteria: Cultivation versus Molecular Methods. Environ. Microbiol. 2003, 5, 72–74. [Google Scholar] [CrossRef]
- Rappé, M.S.; Giovannoni, S.J. The Uncultured Microbial Majority. Annu. Rev. Microbiol. 2003, 57, 369–394. [Google Scholar] [CrossRef]
- Crispim, C.A.; Gaylarde, C.C. Cyanobacteria and Biodeterioration of Cultural Heritage: A Review. Microb. Ecol. 2005, 49, 1–9. [Google Scholar]
- Rabbachin, L.; Piñar, G.; Nir, I.; Kushmaro, A.; Eitenberger, E.; Waldherr, M.; Graf, A.; Sterflinger, K. Natural Biopatina on Historical Petroglyphs in the Austrian Alps: To Clean or Not to Clean? Int. Biodeterior. Biodegrad. 2023, 183, 105632. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Q.; Tong, H.; He, Z.; Qu, J.; Zhang, B. Monitoring the Deterioration of Masonry Relics at a UNESCO World Heritage Site. KSCE J. Civ. Eng. 2021, 25, 3097–3106. [Google Scholar] [CrossRef]
- Ortega-Morales, B.O.; Narváez-Zapata, J.A.; Schmalenberger, A.; Sosa-López, A.; Tebbe, C.C. Biofilms Fouling Ancient Limestone Mayan Monuments in Uxmal, Mexico: A Cultivation-Independent Analysis. Biofilms 2004, 1, 79–90. [Google Scholar] [CrossRef]
- Mihajlovski, A.; Gabarre, A.; Seyer, D.; Bousta, F.; Di Martino, P. Bacterial Diversity on Rock Surface of the Ruined Part of a French Historic Monument: The Chaalis Abbey. Int. Biodeterior. Biodegrad. 2017, 120, 161–169. [Google Scholar] [CrossRef]
- Savković, Ž.; Unković, N.; Stupar, M.; Franković, M.; Jovanović, M.; Erić, S.; Šarić, K.; Stanković, S.; Dimkić, I.; Vukojević, J.; et al. Diversity and Biodeteriorative Potential of Fungal Dwellers on Ancient Stone Stela. Int. Biodeterior. Biodegrad. 2016, 115, 212–223. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, B.; Wang, L.; Ge, Q. Distribution and Diversity of Bacteria and Fungi Colonizing Ancient Buddhist Statues Analyzed by High-Throughput Sequencing. Int. Biodeterior. Biodegrad. 2017, 117, 245–254. [Google Scholar] [CrossRef]
- Li, T.; Hu, Y.; Zhang, B.; Yang, X. Role of Fungi in the Formation of Patinas on Feilaifeng Limestone, China. Microb. Ecol. 2018, 76, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, N.; Hoppert, M.; Hallmann, C. Algal and Fungal Diversity on Various Dimension Stone Substrata in the Saale/Unstrut Region. Environ. Earth Sci. 2018, 77, 609. [Google Scholar] [CrossRef]
- Gholipour-Shahraki, M.; Mohammadi, P. The Study of Growth of Calogaya Sp. PLM8 on Cyrus the Great’s Tomb, UNESCO World Heritage Site in Iran. Int. J. Environ. Res. 2017, 11, 501–513. [Google Scholar] [CrossRef]
- Nir, I.; Barak, H.; Kramarsky-Winter, E.; Kushmaro, A.; de los Ríos, A. Microscopic and Biomolecular Complementary Approaches to Characterize Bioweathering Processes at Petroglyph Sites from the Negev Desert, Israel. Environ. Microbiol. 2022, 24, 967–980. [Google Scholar] [CrossRef]
- Pinheiro, A.C.; Mesquita, N.; Trovão, J.; Soares, F.; Tiago, I.; Coelho, C.; de Carvalho, H.P.; Gil, F.; Catarino, L.; Piñar, G.; et al. Limestone Biodeterioration: A Review on the Portuguese Cultural Heritage Scenario. J. Cult. Herit. 2019, 36, 275–285. [Google Scholar] [CrossRef]
- Ding, Y.; Salvador, C.S.C.; Caldeira, A.T.; Angelini, E.; Schiavon, N. Biodegradation and Microbial Contamination of Limestone Surfaces: An Experimental Study from Batalha Monastery, Portugal. Corros. Mater. Degrad. 2021, 2, 31–45. [Google Scholar] [CrossRef]
- Pangallo, D.; Chovanová, K.; Šimonovičová, A.; Ferianc, P. Investigation of Microbial Community Isolated from Indoor Artworks and Air Environment: Identification, Biodegradative Abilities, and DNA Typing. Can. J. Microbiol. 2009, 55, 277–287. [Google Scholar] [CrossRef]
- Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of Next-Generation Sequencing Technologies. Curr. Protoc. Mol. Biol. 2018, 122, e59. [Google Scholar] [CrossRef]
- McNamara, C.J.; Perry, T.D., IV; Bearce, K.A.; Hernandez-Duque, G.; Mitchell, R. Epilithic and Endolithic Bacterial Communities in Limestone from a Maya Archaeological Site. Microb. Ecol. 2006, 51, 51–64. [Google Scholar] [CrossRef]
- Chimienti, G.; Piredda, R.; Pepe, G.; van der Werf, I.D.; Sabbatini, L.; Crecchio, C.; Ricciuti, P.; D’Erchia, A.M.; Manzari, C.; Pesole, G. Profile of Microbial Communities on Carbonate Stones of the Medieval Church of San Leonardo Di Siponto (Italy) by Illumina-Based Deep Sequencing. Appl. Microbiol. Biotechnol. 2016, 100, 8537–8548. [Google Scholar] [CrossRef]
- Miller, A.Z.; Laiz, L.; Gonzalez, J.M.; Dionísio, A.; Macedo, M.F.; Saiz-Jimenez, C. Reproducing Stone Monument Photosynthetic-Based Colonization under Laboratory Conditions. Sci. Total Environ. 2008, 405, 278–285. [Google Scholar] [CrossRef]
- Miller, A.Z.; Laiz, L.; Dionísio, A.; Macedo, M.F.; Saiz-Jimenez, C. Growth of Phototrophic Biofilms from Limestone Monuments under Laboratory Conditions. Int. Biodeterior. Biodegrad. 2009, 63, 860–867. [Google Scholar] [CrossRef]
- Crispim, C.A.; Gaylarde, P.M.; Gaylarde, C.C.; Neilan, B.A. Deteriogenic Cyanobacteria on Historic Buildings in Brazil Detected by Culture and Molecular Techniques. Int. Biodeterior. Biodegrad. 2006, 57, 239–243. [Google Scholar] [CrossRef]
- Rizk, S.M.; Magdy, M.; De Leo, F.; Werner, O.; Rashed, M.A.-S.; Ros, R.M.; Urzì, C. Culturable and Unculturable Potential Heterotrophic Microbiological Threats to the Oldest Pyramids of the Memphis Necropolis, Egypt. Front. Microbiol. 2023, 14, 1167083. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ruff, S.E.; Oskolkov, N.; Tierney, B.T.; Ryon, K.; Danko, D.; Mason, C.E.; Elhaik, E. The Microbial Biodiversity at the Archeological Site of Tel Megiddo (Israel). Front. Microbiol. 2023, 14, 1253371. [Google Scholar] [CrossRef] [PubMed]
- Skipper, P.J.A.; Skipper, L.K.; Dixon, R.A. A Metagenomic Analysis of the Bacterial Microbiome of Limestone, and the Role of Associated Biofilms in the Biodeterioration of Heritage Stone Surfaces. Sci. Rep. 2022, 12, 4877. [Google Scholar] [CrossRef]
- Lepinay, C.; Mihajlovski, A.; Touron, S.; Seyer, D.; Bousta, F.; Di Martino, P. Bacterial Diversity Associated with Saline Efflorescences Damaging the Walls of a French Decorated Prehistoric Cave Registered as a World Cultural Heritage Site. Int. Biodeterior. Biodegrad. 2018, 130, 55–64. [Google Scholar] [CrossRef]
- Li, T.; Cai, Y.; Ma, Q. Microbial Diversity on the Surface of Historical Monuments in Lingyan Temple, Jinan, China. Microb. Ecol. 2023, 85, 76–86. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, B.; He, Z.; Yang, X. Distribution and Diversity of Bacteria and Fungi Colonization in Stone Monuments Analyzed by High-Throughput Sequencing. PLoS ONE 2016, 11, e0163287. [Google Scholar] [CrossRef] [PubMed]
- Gambino, M.; Lepri, G.; Štovícek, A.; Ghazayarn, L.; Villa, F.; Gillor, O.; Cappitelli, F. The Tombstones at the Monumental Cemetery of Milano Select for a Specialized Microbial Community. Int. Biodeterior. Biodegrad. 2021, 164, 105298. [Google Scholar] [CrossRef]
- Irit, N.; Hana, B.; Yifat, B.; Esti, K.-W.; Ariel, K. Insights into Bacterial Communities Associated with Petroglyph Sites from the Negev Desert, Israel. J. Arid. Environ. 2019, 166, 79–82. [Google Scholar] [CrossRef]
- Ponizovskaya, V.B.; Rebrikova, N.L.; Kachalkin, A.V.; Antropova, A.B.; Bilanenko, E.N.; Mokeeva, V.L. Micromycetes as Colonizers of Mineral Building Materials in Historic Monuments and Museums. Fungal Biol. 2019, 123, 290–306. [Google Scholar] [CrossRef]
- Trovão, J.; Gil, F.; Catarino, L.; Soares, F.; Tiago, I.; Portugal, A. Analysis of Fungal Deterioration Phenomena in the First Portuguese King Tomb Using a Multi-Analytical Approach. Int. Biodeterior. Biodegrad. 2020, 149, 104933. [Google Scholar] [CrossRef]
- Delegou, E.T.; Karapiperis, C.; Hilioti, Z.; Chasapi, A.; Valasiadis, D.; Alexandridou, A.; Rihani, V.; Kroustalaki, M.; Bris, T.; Ouzounis, C.A.; et al. Metagenomics of the Built Cultural Heritage: Microbiota Characterization of the Building Materials of the Holy Aedicule of the Holy Sepulchre in Jerusalem. Sci. Cult. 2022, 8, 59–83. [Google Scholar] [CrossRef]
- Mascaro, M.E.; Pellegrino, G.; Palermo, A.M. Analysis of Biodeteriogens on Architectural Heritage. An Approach of Applied Botany on a Gothic Building in Southern Italy. Sustainability 2022, 14, 34. [Google Scholar] [CrossRef]
- Paiva, D.S.; Fernandes, L.; Trovão, J.; Mesquita, N.; Tiago, I.; Portugal, A. Uncovering the Fungal Diversity Colonizing Limestone Walls of a Forgotten Monument in the Central Region of Portugal by High-Throughput Sequencing and Culture-Based Methods. Appl. Sci. 2022, 12, 10650. [Google Scholar] [CrossRef]
- Paiva, D.S.; Fernandes, L.; Pereira, E.; Trovão, J.; Mesquita, N.; Tiago, I.; Portugal, A. Exploring Differences in Culturable Fungal Diversity Using Standard Freezing Incubation—A Case Study in the Limestones of Lemos Pantheon (Portugal). J. Fungi 2023, 9, 501. [Google Scholar] [CrossRef] [PubMed]
- Paiva, D.S.; Trovão, J.; Fernandes, L.; Mesquita, N.; Tiago, I.; Portugal, A. Expanding the Microcolonial Black Fungi Aeminiaceae Family: Saxispiralis Lemnorum Gen. et Sp. Nov. (Mycosphaerellales), Isolated from Deteriorated Limestone in the Lemos Pantheon, Portugal. J. Fungi 2023, 9, 916. [Google Scholar] [CrossRef] [PubMed]
- Dias, L.; Rosado, T.; Candeias, A.; Mirão, J.; Caldeira, A.T. A Change in Composition, a Change in Colour: The Case of Limestone Sculptures from the Portuguese National Museum of Ancient Art. J. Cult. Herit. 2020, 42, 255–262. [Google Scholar] [CrossRef]
- Soares, F.; Portugal, A.; Trovão, J.; Coelho, C.; Mesquita, N.; Pinheiro, A.C.; Gil, F.; Catarino, L.; Cardoso, S.M.; Tiago, I. Structural Diversity of Photoautotrophic Populations within the UNESCO Site ‘Old Cathedral of Coimbra’ (Portugal), Using a Combined Approach. Int. Biodeterior. Biodegrad. 2019, 140, 9–20. [Google Scholar] [CrossRef]
- Trovão, J.; Portugal, A.; Soares, F.; Paiva, D.S.; Mesquita, N.; Coelho, C.; Pinheiro, A.C.; Catarino, L.; Gil, F.; Tiago, I. Fungal Diversity and Distribution across Distinct Biodeterioration Phenomena in Limestone Walls of the Old Cathedral of Coimbra, UNESCO World Heritage Site. Int. Biodeterior. Biodegrad. 2019, 142, 91–102. [Google Scholar] [CrossRef]
- Coelho, C.; Mesquita, N.; Costa, I.; Soares, F.; Trovão, J.; Freitas, H.; Portugal, A.; Tiago, I. Bacterial and Archaeal Structural Diversity in Several Biodeterioration Patterns on the Limestone Walls of the Old Cathedral of Coimbra. Microorganisms 2021, 9, 709. [Google Scholar] [CrossRef]
- Soares, F.; Ramos, V.; Trovão, J.; Cardoso, S.M.; Tiago, I.; Portugal, A. Parakomarekiella Sesnandensis Gen. et Sp. Nov. (Nostocales, Cyanobacteria) Isolated from the Old Cathedral of Coimbra, Portugal (UNESCO World Heritage Site). Eur. J. Phycol. 2021, 56, 301–315. [Google Scholar] [CrossRef]
- Ahmed, E.A.-E.; Mohamed, R.M. Bacterial Deterioration in the Limestone Minaret of Prince Muhammad and Suggested Treatment Methods, Akhmim, Egypt. Geomaterials 2022, 12, 37–58. [Google Scholar] [CrossRef]
- Soares, F.; Trovão, J.; Portugal, A. Phototrophic and Fungal Communities Inhabiting the Roman Cryptoporticus of the National Museum Machado de Castro (UNESCO Site, Coimbra, Portugal). World J. Microbiol. Biotechnol. 2022, 38, 157. [Google Scholar] [CrossRef]
- Trovão, J.; Soares, F.; Paiva, D.S.; Tiago, I.; Portugal, A. Circumfusicillium Cavernae Gen. et Sp. Nov. (Bionectriaceae, Hypocreales) Isolated from a Hypogean Roman Cryptoporticus. J. Fungi 2022, 8, 837. [Google Scholar] [CrossRef] [PubMed]
- Balland-Bolou-Bi, C.; Saheb, M.; Alphonse, V.; Livet, A.; Reboah, P.; Abbad-Andaloussi, S.; Verney-Carron, A. Effect of Cultivable Bacteria and Fungi on the Limestone Weathering Used in Historical Buildings. Diversity 2023, 15, 587. [Google Scholar] [CrossRef]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive Functional Profiling of Microbial Communities Using 16S RRNA Marker Gene Sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- Scheerer, S.; Ortega-Morales, O.; Gaylarde, C. Chapter 5 Microbial Deterioration of Stone Monuments—An Updated Overview. Adv. Appl. Microbiol. 2009, 66, 97–139. [Google Scholar]
- Warscheid, T.; Braams, J. Biodeterioration of Stone: A Review. Int. Biodeterior. Biodegrad. 2000, 46, 343–368. [Google Scholar] [CrossRef]
- Gadd, G.M.; Dyer, T.D. Bioprotection of the Built Environment and Cultural Heritage. Microb. Biotechnol. 2017, 10, 1152–1156. [Google Scholar] [CrossRef]
- Cozzolino, A.; Adamo, P.; Bonanomi, G.; Motti, R. The Role of Lichens, Mosses, and Vascular Plants in the Biodeterioration of Historic Buildings: A Review. Plants 2022, 11, 3429. [Google Scholar] [CrossRef]
- Salvadori, O.; Municchia, A.C. The Role of Fungi and Lichens in the Biodeterioration of Stone Monuments. Open Conf. Proc. J. 2016, 7, 39–54. [Google Scholar] [CrossRef]
- Liu, X.; Qian, Y.; Wu, F.; Wang, Y.; Wang, W.; Gu, J.D. Biofilms on Stone Monuments: Biodeterioration or Bioprotection? Trends Microbiol. 2022, 30, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Trovão, J.; Tiago, I.; Catarino, L.; Gil, F.; Portugal, A. In Vitro Analyses of Fungi and Dolomitic Limestone Interactions: Bioreceptivity and Biodeterioration Assessment. Int. Biodeterior. Biodegrad. 2020, 155, 105107. [Google Scholar] [CrossRef]
- Jin, C.; Yu, R.; Shui, Z. Fungi: A Neglected Candidate for the Application of Self-Healing Concrete. Front. Built Environ. 2018, 4, 62. [Google Scholar] [CrossRef]
- Tiano, P. Biodeterioration of Monumental Rocks: Decay Mechanisms and Control Methods. Sci. Technol. Cult. Herit. 1998, 7, 19–38. [Google Scholar]
- Monte, M.D.; Sabbioni, C. Chemical and Biological Weathering of an Historical Building: Reggio Emilia Cathedral; Elsevier: Amsterdam, The Netherlands, 1986; Volume 50. [Google Scholar]
- Gadd, G.M.; Bahri-Esfahani, J.; Li, Q.; Rhee, Y.J.; Wei, Z.; Fomina, M.; Liang, X. Oxalate Production by Fungi: Significance in Geomycology, Biodeterioration and Bioremediation. Fungal Biol. Rev. 2014, 28, 36–55. [Google Scholar] [CrossRef]
- Bindschedler, S.; Cailleau, G.; Verrecchia, E. Role of Fungi in the Biomineralization of Calcite. Minerals 2016, 6, 41. [Google Scholar] [CrossRef]
- Gorbushina, A.A.; Kotlova, E.R.; Sherstneva, O.A. Cellular Responses of Microcolonial Rock Fungi to Long-Term Desiccation and Subsequent Rehydration. Stud. Mycol. 2008, 61, 91–97. [Google Scholar] [CrossRef]
- Pyzik, A.; Ciuchcinski, K.; Dziurzynski, M.; Dziewit, L. The Bad and the Good—Microorganisms in Cultural Heritage Environments—An Update on Biodeterioration and Biotreatment Approaches. Materials 2021, 14, 177. [Google Scholar] [CrossRef]
- Trovão, J.; Portugal, A. Current Knowledge on the Fungal Degradation Abilities Profiled through Biodeteriorative Plate Essays. Appl. Sci. 2021, 11, 4196. [Google Scholar] [CrossRef]
Object of Study | Period | Region | Target Microorganisms /Communities (com) | Sequencing Method | CD/CI Approaches | Reference, First Author, Year |
---|---|---|---|---|---|---|
EXTERNAL SURFACES OF CHL BUILDINGS | ||||||
The Chaalis Abbey | ME (1136 AD) | France | B | Sanger | CD | [17] Mihajlovski et al., 2017 |
Acropolis at Ek’ Balam, Yucatan | 100 BCE | Mexico | B (com) | Sanger (PCR products transformation into E. coli) | CI | [29] McNamara et al., 2006 |
Saaleck Castle (with outcropping rock) | ND | Germany | Al, F | Sanger | CD | [22] Kirchhoff et al., 2018 |
San Leonardo di Siponto Church | ME | Italy | Al, Cy (com) | Illumina MiSeq | CI | [30] Chimienti et al., 2016 |
Sacral and public buildings | Various (ND) | Portugal | Al, B, Cy, F | Sanger | CD | [25] Pinheiro et al., 2019 (review) |
Santa Clara-a-Velha Monastery | 1283 AD | Portugal | Al, Cy | Sanger | CD | [31] Miller et al., 2008 |
Monastery, cathedral, palace | Various (ND) | Italy, Portugal, Spain | B, Cy (com) | Sanger | CD | [32] Miller et al., 2009 |
Batalha monastery | 1386 AD | Portugal | B, Cy (com) | Illumina MiSeq | CI | [1,26] Ding et al., 2021 |
Sacral and public buildings | Various (ND) | Worldwide (Brazil, Mexico) | Cy | Sanger | CD | [33] Crispim et al., 2006 (review) |
Djoser and Lahun pyramids | 2670–2650 BCE | Egypt | B, F (com) | Sanger Illumina MiSeq | CD CI | [34] Rizk et al., 2023 |
The West Lake stone cultural relics | ND | China | Al, Cy, B, F (com) | Illumina MiSeq | CI | [6] Zhu et al., 2023 |
Tel Megiddo | 5000 BCE | Israel | B, Cy (com) | Illumina NovaSeq 6000 | CI | [35] Zhang et al., 2023 |
Historic sacral buildings | ND | England | B, Cy B, Cy (com) | Sanger Illumina MiSeq | CD CI | [36] Skipper et al., 2022 |
CAVES | ||||||
Lascaux Cave wall | Paleolithic | France | F (quantitative analysis) | Real-time PCR | CI | [8] Martin-Sanchez et al., 2013 |
Lascaux Cave wall | Paleolithic | France | B, F (com) | Illumina MiSeq | CI | [10] Alonso et al., 2018 |
Lascaux Cave wall | Paleolithic | France | B, F (com) | Illumina MiSeq | CI | [9] Bontemps et al., 2023 |
Sorcerer’s Cave | 13,000 BCE | France | B B (com) | Sanger Pyrosequencing | CD CI | [37] Lepinay et al., 2018 |
Pindal Cave walls | Paleolithic | Spain | B (com) | Illumina MiSeq | CI | [11] Martin-Pozas et al., 2023 |
OUTDOOR MONUMENTS | ||||||
Outdoor monuments (Lingyan Temple) | Period from the Tang Dynasties (618–907 AD) to the Republic of China (1912–1949 AD) | China | Al, Cy, B, F (com) | Sanger Illumina MiSeq | CD CI | [38] T. Li et al., 2023 |
Outdoor monuments (Mayan monuments in Uxmal) | 700–1000 AD | Mexico | Cy, B (com) | Sanger (PCR products transformation into E. coli) | CI | [17] Ortega-Morales et al., 2004 |
Outdoor monuments (Qingxing Palace and Lingyin and Kaihua temples) | Northern Song (960–1219 AD) and Qing dynasties (1636–1912 AD) | China | Al, Cy, B, F (com) | Illumina MiSeq | CI | [39] Q. Li et al., 2016 |
Outdoor monuments (Ancient stone stela) | End of 3rd, beginning of 4th century AD | Serbia | F | Sanger | CD | [19] Savković et al., 2016 |
Outdoor monuments (Senusret I obelisk and Mosque of Elkadi Abd El Basset) | Ancient Egyptian era | Egypt | B | Sanger | CD | [3] ElBaghdady et al., 2019 |
Outdoor monuments (several) | 12th–20th century | France | B | Sanger | CD | [7] Eyssautier-Chuine et al., 2021 |
Outdoor monuments and external site of a Cyrus the Great Tomb | 558–529 BCE | Iran | F (com) | Sanger | CD | [23] Gholipour-Shahraki and Mohammadi 2017 |
Outdoor tombstones in Cemetery of Milano | 1885–1929 AD | Italy | Ar, B, Cy (com) | Sanger (PCR products transformation into E. coli) | CI | [40] Gambino et al., 2021 |
Outdoor statues (The Klippe statues in Hangzhou) | Yuan dynasty (1276–1368 AD) | China | Al, Cy, B, F (com) | Sanger Illumina MiSeq | CD CI | [20] Q. Li et al., 2017 |
Outdoor statues (Feilaifeng) | Five Dynasties period (907–960 AD) | China | F (com) | Sanger | CD | [21] T. Li et al., 2018 |
Outdoor statues and a cliffside inscription (West Lake Cultural Landscape of Hangzhou) | 1038 and 1292 AD | China | B, Cy, F (com) | NGS (no further info) | CI | [16] Wu et al., 2021 |
Petroglyph sites from the Negev Desert | ND | Israel | Ar, B, Cy, F (com) | Metagenomic shotgun sequencing (Illumina) NextSeq500 | CI | [24] Nir et al., 2022 |
Petroglyph sites from the Negev Desert | ND | Israel | B, Cy (com) | Illumina MiSeq Sanger | CI CD | [41] Nir et al., 2019 |
Austrian petroglyphs from Hallstatt-Dachstein/Salzkammergut | ND | Austria | Ar, Al, B, Cy, F (com) | Nanopore (MinIon Mk1C) | CI | [15] Rabbachin et al., 2023 |
INDOOR SURFACES | ||||||
Internal walls of a building, archaeological site The House of the Bicentenary (Herculaneum) | Somewhere between 3rd century BCE and 1st century AD | Italy | Ar, B, Cy (com) | Sanger | CD | [4] Tescari et al., 2018 |
Indoor walls and columns of churches, cathedrals, and museums | 12th–19th century AD | Russia | F (com) | Sanger | CD | [42] Ponizovskaya et al., 2019 |
Indoor statues | 1400 AD | Slovakia | B, F (com) | Sanger | CD | [27] Pangallo et al., 2009 |
An indoor sarcophagus of D. Afonso I | 16th century AD | Portugal | F (com) | Illumina MiSeq Sanger | CI CD | [43] Trovão et al., 2020 |
Indoor tomb chamber of the Holy Aedicule | 325/326 AD | Israel | Ar, B, Cy (com) | Nanopore (MinION Flow Cell R9.4.1 on a MinION Mk1C) | CI | [44] Delegou et al., 2022 |
Internal walls of a Santa Maria della Pietà church | 13th century AD | Italy | Cy, F (com) | Sanger | CD | [45] Mascaro 2022 |
Indoor pillars of a church in Lemos Pantheon | 16th century AD | Portugal | F (com) | Sanger Illumina MiSeq | CD CI | [46] Paiva et al., 2022 |
Internal walls of a church in Lemos Pantheon | 16th century AD | Portugal | F (com) | Sanger Illumina MiSeq | CD CI | [47] Paiva et al., 2023 |
Internal walls of a church in a Lemos Pantheon | 16th century AD | Portugal | F | Sanger | CD | [48] Paiva et al., 2023 |
Indoor statues | 15th and 16th century AD | Portugal | F, B, Cy | Sanger Illumina MiSeq | CD CI | [49] Dias et al., 2020 |
SEMI-OPEN SITES | ||||||
Walls of a semi-open spaced Coimbra cathedral | 12th–13th century AD | Portugal | Al, Cy (com) | Sanger Illumina MiSeq | CD CI | [50] Soares et al., 2019 |
Walls of a semi-open spaced Coimbra cathedral | 12th–13th century AD | Portugal | F (com) | Sanger Illumina MiSeq | CI CD | [51] Trovão et al., 2019 |
Walls of a semi-open spaced Coimbra cathedral | 12th–13th century AD | Portugal | Ar, B, Cy (com) | Sanger Illumina MiSeq | CD CI | [52] Coelho et al., 2021 |
Walls of a semi-open spaced Coimbra cathedral | 12th–13th century AD | Portugal | Cy | Sanger | CD | [53] Soares et al., 2021 |
Internal and external sites of a Minaret of Prince Muhammad | Ottoman period | Egypt | B (com) | Sanger | CD | [54] Ahmed and Mohamed 2022 |
Coimbra’s hypogean Roman cryptoporticus | Somewhere between 1st and 2nd century AD | Portugal | Al, Cy, F (com) | Sanger Illumina MiSeq | CD CI | [55] Soares et al., 2022 |
Coimbra’s hypogean Roman cryptoporticus | Somewhere between 1st and 2nd century AD | Portugal | F | Sanger | CD | [56] Trovão et al., 2022 |
Outdoor walls of several buildings | ND | France | B, F (com) | Sanger | CD | [57] Balland-Bolou-Bi et al., 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchy, H.; Zalar, P.; Macedo, M.F. Microbial Diversity of Biodeteriorated Limestone Cultural Heritage Assets Identified Using Molecular Approaches—A Literature Review. Appl. Sci. 2024, 14, 7429. https://doi.org/10.3390/app14167429
Suchy H, Zalar P, Macedo MF. Microbial Diversity of Biodeteriorated Limestone Cultural Heritage Assets Identified Using Molecular Approaches—A Literature Review. Applied Sciences. 2024; 14(16):7429. https://doi.org/10.3390/app14167429
Chicago/Turabian StyleSuchy, Hana, Polona Zalar, and Maria Filomena Macedo. 2024. "Microbial Diversity of Biodeteriorated Limestone Cultural Heritage Assets Identified Using Molecular Approaches—A Literature Review" Applied Sciences 14, no. 16: 7429. https://doi.org/10.3390/app14167429
APA StyleSuchy, H., Zalar, P., & Macedo, M. F. (2024). Microbial Diversity of Biodeteriorated Limestone Cultural Heritage Assets Identified Using Molecular Approaches—A Literature Review. Applied Sciences, 14(16), 7429. https://doi.org/10.3390/app14167429