Advancements in Analytical Strategies for Authentication and Quality Control of Grappa and Wine Brandy with Geographical Indications
Abstract
:1. Introduction
2. Analytical Strategies for Authentication and Quality Control
2.1. Spectroscopic Methods
2.1.1. Infrared Spectroscopy
2.1.2. Raman Spectroscopy
2.1.3. Fluorescence Spectroscopy
2.2. Chromatographic and Hyphenated Techniques
2.3. Sensor Arrays
2.4. Multi-Platform Techniques
2.5. Other Techniques
2.5.1. Elemental Analysis
2.5.2. Isotopic Analysis
3. Overview of Chemometric Tools Applied in the Authentication of Gr and WB GIs
4. Technical Challenges and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- International Trade Centre Trade Statistics. Available online: https://www.trademap.org (accessed on 2 June 2024).
- European Commission Directorate-General for Agriculture and Rural Development Spirit Drinks: Detailed Information Related to Spirit Drinks Trade, Geographical Indications, Legal Bases and Committees. Available online: https://agriculture.ec.europa.eu/farming/crop-productions-and-plant-based-products/spirit-drinks_en (accessed on 28 May 2024).
- World Intellectual Property Organization Geographical Indications. Available online: https://www.wipo.int/geo_indications (accessed on 2 June 2024).
- European Commission-Directorate-General for Communication Geographical Indications—A European Treasure Worth €75 Billion. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_20_683 (accessed on 15 June 2024).
- The European Parliament and the Council of the European Union Regulation (EU) 2019/787 of the European Parliament and of the Council of 17 April 2019 on the Definition, Description, Presentation and Labelling of Spirit Drinks, the Use of the Names of Spirit Drinks in the Presentation and Labelling of Other Foodstuffs, the Protection of Geographical Indications for Spirit Drinks, the Use of Ethyl Alcohol and Distillates of Agricultural Origin in Alcoholic Beverages, and Repealing Regulation (EC) No 110/2008. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R0787&qid=1725863286732 (accessed on 15 June 2024).
- Ministero Delle Politiche Agricole, Alimentari E Forestali Modifica Del Decreto 1° Agosto 2011, n. 5389, Recante Disposizioni in Materia Di «Attuazione Dell’articolo 17 Del Regolamento (CE) n. 110/2008 Del Parlamento Europeo e Del Consiglio, Del 15 Gennaio 2008, Concernente La Definizione, La Designazione, La Presentazione, L’etichettatura e La Protezione Delle Indicazioni Geografiche Delle Bevande Spiritose-Scheda Tecnica Della “Grappa”». Available online: https://www.gazzettaufficiale.it/ (accessed on 24 June 2024).
- Consejería de Agricultura, Pesca y Desarrollo Rural. Expediente Técnico de La Indicación Geográfica «Brandy de Jerez». Available online: https://www.juntadeandalucia.es/boja/2015/34/4 (accessed on 26 June 2024).
- Basalekou, M.; Kyraleou, M.; Kallithraka, S. Authentication of Wine and Other Alcohol-Based Beverages-Future Global Scenario. In Future Foods: Global Trends, Opportunities, and Sustainability Challenges; Elsevier: Amsterdam, The Netherlands, 2021; pp. 669–695. ISBN 9780323910019. [Google Scholar]
- Belmonte-Sánchez, J.R.; Romero-González, R.; Martínez Vidal, J.L.; Arrebola, F.J.; Garrido Frenich, A. 1H NMR and Multi-Technique Data Fusion as Metabolomic Tool for the Classification of Golden Rums by Multivariate Statistical Analysis. Food Chem. 2020, 317, 126363. [Google Scholar] [CrossRef] [PubMed]
- Fotakis, C.; Zervou, M. NMR Metabolic Fingerprinting and Chemometrics Driven Authentication of Greek Grape Marc Spirits. Food Chem. 2016, 196, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa-Nogueira, D.; Pérez-Burillo, S.; Ángel Rufián-Henares, J.; Pastoriza de la Cueva, S. Characterization of Rums Sold in Spain through Their Absorption Spectra, Furans, Phenolic Compounds and Total Antioxidant Capacity. Food Chem. 2020, 323, 126829. [Google Scholar] [CrossRef]
- Lohumi, S.; Lee, S.; Lee, H.; Cho, B.K. A Review of Vibrational Spectroscopic Techniques for the Detection of Food Authenticity and Adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. [Google Scholar] [CrossRef]
- da Paixao Teixeira, J.L.; dos Santos Carames, E.T.; Baptista, D.P.; Gigante, M.L.; Pallone, J.A.L. Vibrational Spectroscopy and Chemometrics Tools for Authenticity and Improvement the Safety Control in Goat Milk. Food Control 2020, 112, 107105. [Google Scholar] [CrossRef]
- Mendes, E.; Duarte, N. Mid-Infrared Spectroscopy as a Valuable Tool to Tackle Food Analysis: A Literature Review on Coffee, Dairies, Honey, Olive Oil and Wine. Foods 2021, 10, 477. [Google Scholar] [CrossRef]
- Rodriguez-Saona, L.E.; Allendorf, M.E. Use of FTIR for Rapid Authentication and Detection of Adulteration of Food. Annu. Rev. Food Sci. Technol. 2011, 2, 467–483. [Google Scholar] [CrossRef] [PubMed]
- Anjos, O.; Santos, A.J.A.; Estevinho, L.M.; Caldeira, I. FTIR-ATR Spectroscopy Applied to Quality Control of Grape-Derived Spirits. Food Chem. 2016, 205, 28–35. [Google Scholar] [CrossRef]
- Luís, A.C.P.M.N.; Mota, D.; Anjos, O.; Caldeira, I. Single-Laboratory Validation of Determination of Acetaldehyde, Ethyl Acetate, Methanol and Fusel Alcohols in Wine Spirits, Brandies and Grape Marc Spirits Using Gc-Fid. Ciência E Técnica Vitivinícola 2011, 26, 69–76. [Google Scholar]
- The Commission of the European Communities Commission Regulation (EC) No 2870/2000 of 19 December 2000 down Community Reference Methods for the Analysis of Spirits Drinks. Available online: https://eur-lex.europa.eu/eli/reg/2000/2870/oj (accessed on 15 June 2024).
- Workman, J.; Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Čiča, K.H.; Pezer, M.; Mrvčić, J.; Stanzer, D.; Čačić, J.; Jurak, V.; Krajnović, M.; Kljusurić, J.G. Identification of Phenolic and Alcoholic Compounds in Wine Spirits and Their Classification by Use of Multivariate Analysis. J. Serbian Chem. Soc. 2019, 84, 663–677. [Google Scholar] [CrossRef]
- Anjos, O.; Caldeira, I.; Roque, R.; Pedro, S.I.; Lourenço, S.; Canas, S. Screening of Different Ageing Technologies of Wine Spirit by Application of Near-Infrared (NIR) Spectroscopy and Volatile Quantification. Processes 2020, 8, 736. [Google Scholar] [CrossRef]
- Schiavone, S.; Marchionni, B.; Bucci, R.; Marini, F.; Biancolillo, A. Authentication of Grappa (Italian Grape Marc Spirit) by Mid and Near Infrared Spectroscopies Coupled with Chemometrics. Vib. Spectrosc. 2020, 107, 103040. [Google Scholar] [CrossRef]
- Sjöström, M.; Wold, S.; Söderström, B. PLS Discriminant Plots. In Pattern Recognition in Practice; Gelsema, E.S., Kanal, L.N., Eds.; Elsevier: Amsterdam, The Netherlands, 1986; pp. 461–470. ISBN 978-0-444-87877-9. [Google Scholar]
- Ståhle, L.; Wold, S. Partial Least Squares Analysis with Cross-Validation for the Two-Class Problem: A Monte Carlo Study. J. Chemom. 1987, 1, 185–196. [Google Scholar] [CrossRef]
- Frank, I.E.; Kowalski, B.R. Prediction of Wine Quality and Geographic Origin from Chemical Measurements by Parital Least-Squares Regression Modeling. Anal. Chim. Acta 1984, 162, 241–251. [Google Scholar] [CrossRef]
- Frank, I.E.; Kowalski, B.R.; Feikema, J.; Constantine, N. Prediction of Product Quality from Spectral Data Using the Partial Least-Squares Method. J. Chem. Inf. Comput. Sci. 1984, 24, 20–24. [Google Scholar] [CrossRef]
- Biancolillo, A.; Marini, F.; Roger, J.M. SO-CovSel: A Novel Method for Variable Selection in a Multiblock Framework. J. Chemom. 2020, 34, e3120. [Google Scholar] [CrossRef]
- Næs, T.; Tomic, O.; Mevik, B.H.; Martens, H. Path Modelling by Sequential PLS Regression. J. Chemom. 2011, 25, 28–40. [Google Scholar] [CrossRef]
- Xu, Y.; Zhong, P.; Jiang, A.; Shen, X.; Li, X.; Xu, Z.; Shen, Y.; Sun, Y.; Lei, H. Raman Spectroscopy Coupled with Chemometrics for Food Authentication: A Review. TrAC Trends Anal. Chem. 2020, 131, 116017. [Google Scholar] [CrossRef]
- Sahakyan, A.V.; Yushina, A.A.; Levin, A.D. Classification of Brandy and Cognac Production by Geographical Origin and Aging Using Raman Scattering and Machine Learning. Meas. Tech. 2023, 66, 173–178. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient Boosting Machines, a Tutorial. Front. Neurorobotics 2013, 7, 21. [Google Scholar] [CrossRef]
- Anjos, O.; Caldeira, I.; Pedro, S.I.; Canas, S. FT-Raman Methodology Applied to Identify Different Ageing Stages of Wine Spirits. LWT 2020, 134, 110179. [Google Scholar] [CrossRef]
- Sádecká, J.; Tóthová, J.; Májek, P. Classification of Brandies and Wine Distillates Using Front Face Fluorescence Spectroscopy. Food Chem. 2009, 117, 491–498. [Google Scholar] [CrossRef]
- Uríďková, V.; Sádecká, J.; Májek, P. Right-Angle Fluorescence Spectroscopy for Differentiation of Distilled Alcoholic Beverages. Nova Biotechnol. Chim. 2013, 12, 83–92. [Google Scholar] [CrossRef]
- Markechová, D.; Májek, P.; Sádecká, J. Fluorescence Spectroscopy and Multivariate Methods for the Determination of Brandy Adulteration with Mixed Wine Spirit. Food Chem. 2014, 159, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Markechová, D.; Májek, P.; Kleinová, A.; Sádecká, J. Determination of the Adulterants in Adulterant-Brandy Blends Using Fluorescence Spectroscopy and Multivariate Methods. Anal. Methods 2014, 6, 379–386. [Google Scholar] [CrossRef]
- Andrade-Eiroa, Á.; de-Armas, G.; Estela, J.M.; Cerdà, V. Critical Approach to Synchronous Spectrofluorimetry. I. TrAC Trends Anal. Chem. 2010, 29, 885–901. [Google Scholar] [CrossRef]
- Sádecká, J.; Uríčková, V.; Májek, P.; Jakubíková, M. Comparison of Different Fluorescence Techniques in Brandy Classification by Region of Production. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 216, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Paolini, M.; Tonidandel, L.; Larcher, R. Development, Validation and Application of a Fast GC-FID Method for the Analysis of Volatile Compounds in Spirit Drinks and Wine. Food Control 2022, 136, 108873. [Google Scholar] [CrossRef]
- Sabalenka, L.; Charapitsa, S.; Sytova, S.; Kavalenka, A.; Yushkevitch, D.; Zayats, M.; Leschev, S. Proposals for the Improving of the Existing GC-FID Methods for Determination of Methanol and Volatile Compounds in Alcoholic Beverages. J. Food Meas. Charact. 2023, 17, 3207–3217. [Google Scholar] [CrossRef]
- Giannetti, V.; Mariani, M.B.; Marini, F.; Torrelli, P.; Biancolillo, A. Flavour Fingerprint for the Differentiation of Grappa from Other Italian Distillates by GC-MS and Chemometrics. Food Control 2019, 105, 123–130. [Google Scholar] [CrossRef]
- Cocchi, M.; Biancolillo, A.; Marini, F. Chemometric Methods for Classification and Feature Selection. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; Volume 82, pp. 265–299. ISBN 9780444640444. [Google Scholar]
- Mahieu, B.; Qannari, E.M.; Jaillais, B. Extension and Significance Testing of Variable Importance in Projection (VIP) Indices in Partial Least Squares Regression and Principal Components Analysis. Chemom. Intell. Lab. Syst. 2023, 242, 104986. [Google Scholar] [CrossRef]
- Galano, E.; Imbelloni, M.; Chambery, A.; Malorni, A.; Amoresano, A. Molecular Fingerprint of the Alcoholic Grappa Beverage by Mass Spectrometry Techniques. Food Res. Int. 2015, 72, 106–114. [Google Scholar] [CrossRef]
- Tchouakeu Betnga, P.F.; Dupas De Matos, A.; Longo, E.; Merkyte, V.; Pantò, S.; Boselli, E. Comprehensive Bidimensional Gas Chromatography (GCxGC-ToF-MS) and Sensory Analysis to Investigate the Aroma Profile of a Commercial Grappa. Infowine 2019, 11, 8. [Google Scholar]
- European Commission EAmbrosia-the EU Geographical Indications Register. Available online: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register (accessed on 25 June 2024).
- Cortés, S.; Rodríguez, R.; Salgado, J.M.; Domínguez, J.M. Comparative Study between Italian and Spanish Grape Marc Spirits in Terms of Major Volatile Compounds. Food Control 2011, 22, 673–680. [Google Scholar] [CrossRef]
- Serafim, F.A.; Ohe, T.; Agostinacchio, L.; Buchviser, S.F.; Vittori, S. Chemical Profile Differentiation of Brazilian and Italian Grape Marc Spirits Using Chemometric Tools. Ann. Food Process. Preserv. 2018, 3, 1021. [Google Scholar]
- Mayr Marangon, C.; De Rosso, M.; Carraro, R.; Flamini, R. Changes in Volatile Compounds of Grape Pomace Distillate (Italian Grappa) during One-Year Ageing in Oak and Cherry Barrels. Food Chem. 2021, 344, 128658. [Google Scholar] [CrossRef]
- Guerrero-Chanivet, M.; Valcárcel-Muñoz, M.J.; García-Moreno, M.V.; Rodríguez-Dodero, M.C.; Guillén-Sánchez, D.A. Influence of the Type of Sherry Wine and the Seasoning Length of Time on the Organic Acids, Volatile Compounds, and Sensory Profile of Brandy de Jerez. J. Food Compos. Anal. 2024, 125, 105780. [Google Scholar] [CrossRef]
- Guillén, D.A.; Barroso, C.G.; Zorro, L.; Carrascal, V.; Pérez-Bustamante, J.A. Organic Acids Analysis in “Brandy de Jerez” by Ion-Exclusion Chromatography, “Post-Column” Buffering and Conductimetric Detection. Analusis 1998, 26, 186–189. [Google Scholar] [CrossRef]
- Schwarz, M.; Rodríguez, M.C.; Guillén, D.A.; Barroso, C.G. Development and Validation of UPLC for the Determination of Phenolic Compounds and Furanic Derivatives in Brandy de Jerez. J. Sep. Sci. 2009, 32, 1782–1790. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Guillén, M.M.; Schwarz-Rodríguez, M.; Rodríguez-Dodero, M.C.; García-Moreno, M.V.; Guillén-Sánchez, D.A.; García-Barroso, C. Discriminant Ability of Phenolic Compounds and Short Chain Organic Acids Profiles in the Determination of Quality Parameters of Brandy de Jerez. Food Chem. 2019, 286, 275–281. [Google Scholar] [CrossRef]
- Esteki, M.; Shahsavari, Z.; Simal-Gandara, J. Gas Chromatographic Fingerprinting Coupled to Chemometrics for Food Authentication. Food Rev. Int. 2020, 36, 384–427. [Google Scholar] [CrossRef]
- Guerrero-Chanivet, M.; Ortega-Gavilán, F.; Bagur-González, M.G.; Valcárcel-Muñoz, M.J.; García-Moreno, M.V.; Guillén-Sánchez, D.A. Influence of Oak Species, Toasting Degree, and Aging Time on the Differentiation of Brandies Using a Chemometrics Approach Based on Phenolic Compound UHPLC Fingerprints. J. Agric. Food Chem. 2024, 72, 1959–1968. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Chanivet, M.; Ortega-Gavilán, F.; Bagur-González, M.G.; Valcárcel-Muñoz, M.J.; de Valme García-Moreno, M.; Guillén-Sánchez, D.A. Pattern Recognition of GC-FID Profiles of Volatile Compounds in Brandy de Jerez Using a Chemometric Approach Based on Their Instrumental Fingerprints. Food Bioprocess Technol. 2023, 16, 1963–1975. [Google Scholar] [CrossRef]
- Fontana, A.; Rodríguez, I.; Cela, R. Dispersive Liquid–Liquid Microextraction and Gas Chromatography Accurate Mass Spectrometry for Extraction and Non-Targeted Profiling of Volatile and Semi-Volatile Compounds in Grape Marc Distillates. J. Chromatogr. A 2018, 1546, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Schaller, E.; Bosset, J.O.; Escher, F. “Electronic Noses” and Their Application to Food. Lebensm. Wiss. Und Technol. 1998, 31, 305–317. [Google Scholar] [CrossRef]
- Li, Z.; Askim, J.R.; Suslick, K.S. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem. Rev. 2019, 119, 231–292. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mendez, M.L.; Apetrei, C.; Gay, M.; Medina-Plaza, C.; de Saja, J.A.; Vidal, S.; Aagaard, O.; Ugliano, M.; Wirth, J.; Cheynier, V. Evaluation of Oxygen Exposure Levels and Polyphenolic Content of Red Wines Using an Electronic Panel Formed by an Electronic Nose and an Electronic Tongue. Food Chem. 2014, 155, 91–97. [Google Scholar] [CrossRef]
- Li, Q.; Gu, Y.; Jia, J. Classification of Multiple Chinese Liquors by Means of a QCM-Based E-Nose and MDS-SVM Classifier. Sensors 2017, 17, 272. [Google Scholar] [CrossRef]
- Kuo, W.-K.; Weng, H.-P.; Hsu, J.-J.; Yu, H.H. Photonic Crystal-Based Sensors for Detecting Alcohol Concentration. Appl. Sci. 2016, 6, 67. [Google Scholar] [CrossRef]
- Zhang, L.; Qi, H.; Wang, Y.; Yang, L.; Yu, P.; Mao, L. Effective Visualization Assay for Alcohol Content Sensing and Methanol Differentiation with Solvent Stimuli-Responsive Supramolecular Ionic Materials. Anal. Chem. 2014, 86, 7280–7285. [Google Scholar] [CrossRef]
- Han, J.; Ma, C.; Wang, B.; Bender, M.; Bojanowski, M.; Hergert, M.; Seehafer, K.; Herrmann, A.; Bunz, U.H.F. A Hypothesis-Free Sensor Array Discriminates Whiskies for Brand, Age, and Taste. Chem 2017, 2, 817–824. [Google Scholar] [CrossRef]
- Zeng, J.; Cao, X.; Liu, Y.; Chen, J.; Ren, K. A Single Cataluminescence Sensor for Wine Identification by Luminescent Response Profiles. Anal. Methods 2014, 6, 2633–2641. [Google Scholar] [CrossRef]
- Li, Z.; Suslick, K.S. A Hand-Held Optoelectronic Nose for the Identification of Liquors. ACS Sens. 2018, 3, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Han, J.; Zhang, H.; Bender, M.; Biella, A.; Seehafer, K.; Bunz, U.H.F. Detecting Counterfeit Brandies. Chem. A Eur. J. 2018, 24, 17361–17366. [Google Scholar] [CrossRef]
- Biancolillo, A.; Boqué, R.; Cocchi, M.; Marini, F. Chapter 10—Data Fusion Strategies in Food Analysis. In Data Fusion Methodology and Applications; Cocchi, M., Ed.; Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 31, pp. 271–310. [Google Scholar]
- Giannetti, V.; Mariani, M.B.; Marini, F.; Torrelli, P.; Biancolillo, A. Grappa and Italian Spirits: Multi-Platform Investigation Based on GC–MS, MIR and NIR Spectroscopies for the Authentication of the Geographical Indication. Microchem. J. 2020, 157, 104896. [Google Scholar] [CrossRef]
- Biancolillo, A.; Måge, I.; Næs, T. Combining SO-PLS and Linear Discriminant Analysis for Multi-Block Classification. Chemom. Intell. Lab. Syst. 2015, 141, 58–67. [Google Scholar] [CrossRef]
- Biancolillo, A.; Næs, T. Chapter 6—The Sequential and Orthogonalized PLS Regression for Multiblock Regression: Theory, Examples, and Extensions. In Data Fusion Methodology and Applications; Cocchi, M., Ed.; Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 31, pp. 157–177. [Google Scholar]
- Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Busto, O. Data Fusion Methodologies for Food and Beverage Authentication and Quality Assessment—A Review. Anal. Chim. Acta 2015, 891, 1–14. [Google Scholar] [CrossRef]
- Callao, M.P.; Ruisánchez, I. An Overview of Multivariate Qualitative Methods for Food Fraud Detection. Food Control 2018, 86, 283–293. [Google Scholar] [CrossRef]
- Petrozziello, M.; Rosso, L.; Portesi, C.; Asproudi, A.; Bonello, F.; Nardi, T.; Rossi, A.M.; Schiavone, C.; Scuppa, S.; Cantamessa, S.; et al. Characterisation of Refined Marc Distillates with Alternative Oak Products Using Different Analytical Approaches. Appl. Sci. 2022, 12, 8444. [Google Scholar] [CrossRef]
- Tabago, M.K.A.G.; Calingacion, M.N.; Garcia, J. Recent Advances in NMR-Based Metabolomics of Alcoholic Beverages. Food Chem. Mol. Sci. 2021, 2, 100009. [Google Scholar] [CrossRef]
- Gajek, M.; Pawlaczyk, A.; Jóźwik, K.; Szynkowska-Jóźwik, M.I. The Elemental Fingerprints of Different Types of Whisky as Determined by ICP-OES and ICP-MS Techniques in Relation to Their Type, Age, and Origin. Foods 2022, 11, 1616. [Google Scholar] [CrossRef]
- Pawlaczyk, A.; Gajek, M.; Jozwik, K.; Szynkowska, M.I. Multielemental Analysis of Various Kinds of Whisky. Molecules 2019, 24, 1193. [Google Scholar] [CrossRef] [PubMed]
- Ivanova-Petropulos, V.; Balabanova, B.; Bogeva, E.; Frentiu, T.; Ponta, M.; Senila, M.; Gulaboski, R.; Irimie, F.D. Rapid Determination of Trace Elements in Macedonian Grape Brandies for Their Characterization and Safety Evaluation. Food Anal. Methods 2017, 10, 459–468. [Google Scholar] [CrossRef]
- Dehelean, A.; Cristea, G.; Feher, I.; Hategan, A.R.; Magdas, D.A. Differentiation of Transylvanian Fruit Distillates Using Supervised Statistical Tools Based on Isotopic and Elemental Fingerprint. J. Sci. Food Agric. 2023, 103, 1454–1463. [Google Scholar] [CrossRef]
- Hopfer, H.; Gilleland, G.; Ebeler, S.E.; Nelson, J. Elemental Profiles of Whisk(e)y Allow Differentiation by Type and Region. Beverages 2017, 3, 8. [Google Scholar] [CrossRef]
- Szymczycha-Madeja, A.; Welna, M.; Jamroz, P.; Lesniewicz, A.; Pohl, P. Advances in Assessing the Elemental Composition of Distilled Spirits Using Atomic Spectrometry. TrAC Trends Anal. Chem. 2015, 64, 127–135. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Salgado, J.M.; Domínguez, J.M.; Cortés, S. Assessment of Minerals in Aged Grape Marc Distillates by FAAS/FAES and ICP-MS. Characterization and Safety Evaluation. Food Control 2014, 35, 49–55. [Google Scholar] [CrossRef]
- Graven, H.D. Impact of Fossil Fuel Emissions on Atmospheric Radiocarbon and Various Applications of Radiocarbon over This Century. Proc. Natl. Acad. Sci. USA 2015, 112, 9542–9545. [Google Scholar] [CrossRef]
- Huang, H.W.; Chang, W.T. Δ13C-Ethanol as a Potential Exclusionary Criterium for the Authentication of Scotch Whiskies in Taiwan: Normal vs. 3-Parameter Lognormal Distributions of Δ13C-Ethanol Found in Single Malt and Blended Scotch Whiskies. Beverages 2023, 9, 13. [Google Scholar] [CrossRef]
- Cook, G.T.; Dunbar, E.; Tripney, B.G.; Fabel, D. Using Carbon Isotopes to Fight the Rise in Fraudulent Whisky. Radiocarbon 2020, 62, 51–62. [Google Scholar] [CrossRef]
- van Leeuwen, K.A.; Prenzler, P.D.; Ryan, D.; Paolini, M.; Camin, F. Differentiation of Wood-Derived Vanillin from Synthetic Vanillin in Distillates Using Gas Chromatography/Combustion/Isotope Ratio Mass Spectrometry for Δ13C Analysis. Rapid Commun. Mass Spectrom. 2018, 32, 311–318. [Google Scholar] [CrossRef]
- Spillman, P.J.; Sefton, M.A.; Gawel, R. The Effect of Oak Wood Source, Location of Seasoning and Coopering on the Composition of Volatile Compounds in Oak-Matured Wines. Aust. J. Grape Wine Res. 2004, 10, 216–226. [Google Scholar] [CrossRef]
- de Araújo Gomes, A.; Azcarate, S.M.; Špánik, I.; Khvalbota, L.; Goicoechea, H.C. Pattern Recognition Techniques in Food Quality and Authenticity: A Guide on How to Process Multivariate Data in Food Analysis. TrAC Trends Anal. Chem. 2023, 164, 117105. [Google Scholar] [CrossRef]
- Ranaweera, R.K.R.; Capone, D.L.; Bastian, S.E.P.; Cozzolino, D.; Jeffery, D.W. A Review of Wine Authentication Using Spectroscopic Approaches in Combination with Chemometrics. Molecules 2021, 26, 4334. [Google Scholar] [CrossRef] [PubMed]
- González-Domínguez, R.; Sayago, A.; Fernández-Recamales, Á. An Overview on the Application of Chemometrics Tools in Food Authenticity and Traceability. Foods 2022, 11, 3940. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Benedetti, L.P.; dos Santos, V.B.; Silva, T.A.; Benedetti Filho, E.; Martins, V.L.; Fatibello-Filho, O. A Digital Image-Based Method Employing a Spot-Test for Quantification of Ethanol in Drinks. Anal. Methods 2015, 7, 4138–4144. [Google Scholar] [CrossRef]
- Williams, S.J.; Brown, M.J.; Carrithers, A.D. Whiskey Webs: Microscale “fingerprints” of Bourbon Whiskey. Phys. Rev. Fluids 2019, 4, 100511. [Google Scholar] [CrossRef]
- Carrithers, A.D.; Brown, M.J.V.I.; Rashed, M.Z.; Islam, S.; Velev, O.D.; Williams, S.J. Multiscale Self-Assembly of Distinctive Weblike Structures from Evaporated Drops of Dilute American Whiskeys. ACS Nano 2020, 14, 5417–5425. [Google Scholar] [CrossRef]
- Okolo, C.A.; Kilcawley, K.N.; O’Connor, C. Recent Advances in Whiskey Analysis for Authentication, Discrimination, and Quality Control. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4957–4992. [Google Scholar] [CrossRef]
- Tsakiris, A.; Kallithraka, S.; Kourkoutas, Y. Grape Brandy Production, Composition and Sensory Evaluation. J. Sci. Food Agric. 2014, 94, 404–414. [Google Scholar] [CrossRef]
Samples | Discriminating Parameters | Method of Analysis | Data Analysis | Results | References |
---|---|---|---|---|---|
Grape marc spirits, wine spirits and brandies (166 samples in total) | Screening analysis for alcoholic strength and content of methanol, acetaldehyde and fusel alcohols | FTIR–ATR spectroscopy in the MIR region (4000–400 cm−1) | PLS | Accuracy values: methanol (r2 = 99.4%; RPD = 12.8); alcoholic strength (r2 = 97.2%; RPD = 6.0); acetaldehyde (r2 = 98.2%; RPD = 7.5); and fusel alcohols (r2 from 97.4 to 94.1%; RPD from 6.2 to 4.1). | [16] |
Wine spirits (5 not aged, 2 aged briefly and 6 aged for a long time) + 3 commercial brandies | Aging duration | NIR spectroscopy (904–935 nm and 1400–1699 nm). | PCA, PLS, LDA | Accuracy values: total phenolic content (R2 > 0.95; RPD > 4.0); total fusel alcohol content (R2 > 0.90; RPD > 3.0). | [20] |
40 wine spirits aged for 8, 180, 365 and 540 days with different aging technologies (wooden barrels and micro-oxygenation and staves) and wood species (Chestnut and Limousin oak) | Aging technology and duration | NIR spectroscopy (12,500–4000 cm−1) and GC-FID for major volatile compounds | PCA | Discrimination between wine spirits based on the wood species used, as well as the aging technologies, with an accuracy of up to 90% (for a specific aging time). | [21] |
59 pure Grappa samples + 8 pear distillates + 4 cereal distillates + 3 apple distillates + 2 distillates of berries and 36 mixtures Grappa–Vodka | Spirit drink categories | MIR (400–4000 cm−1) and NIR (10,000–4000 cm−1) spectroscopies | PLS-DA (on NIR and MIR spectra separately), MB-PLS, SO-PLS, SO-CovSel PLS-DA (on NIR and MIR spectra simultaneously) | Best classification rate for discrimination between Grappa and other distillates (% on test set): 79.6 with SO-PLS-LDA and SO-CovSel-LDA (data fusion). Best classification rate for discrimination between pure and adulterated Grappa (% on test set): 100 with PLS-DA on MIR, and 100 with SO-PLS-LDA and SO-CovSel-LDA (data fusion). | [22] |
60 wine spirits aged with Limousin oak, Portuguese chestnut and Limousin oak + Portuguese chestnut for 8, 30, 180 and 360 days in barrels and stainless-steel tanks with staves of the same types of wood | Aging period, type of wood and aging technology. | Raman spectroscopy (excitation wavelength: 1064 nm; range of Raman shifts: from 70 to 3500 cm−1) | ANOVA, PCA | Ratio of calibrated to validated residual variance of 0.5; ratio of validated to calibrated residual variance of 0.75; and residual variance increase limit of 6%. Most relevant spectral regions: from 3000 to 2600 cm−1 and from 1570 to 790 cm−1. | [32] |
16 brandies (4 brands × 4 batches from each brand) from 3 different producers + 60 mixed wine spirits (15 brands × 4 batch from each brand) from 5 different producers + 62 brandies adulterated with mixed wine spirits | Pure brandies from adulterated brandies with mixed wine spirit | EEM fluorescence spectroscopy (emission wavelength range 485 ÷ 580 nm. Excitation wavelength range 363 ÷ 475 nm) | PARAFAC–PLS, PARAFAC–MLR | Determination of mixed wine spirit in adulterated brandy at levels down to 1.9% (v/v). Coefficient of determination (R2) between the reference content and the predicted values of 0.995. | [35] |
44 brandies produced in different countries | Geographical origin | SFS (Δλ = λemission − λexcitation). and EEM fluorescence spectroscopies | PCA-LDA, UPCA-LDA, PARAFAC-LDA | Highest total correct classification: 95.5% (SFS recorded at Δλ =20 and Δλ =60 nm on diluted samples). | [38] |
Samples | Discriminating Parameters | Method of Analysis | Data Analysis | Results | References |
---|---|---|---|---|---|
8 spirit drinks (eau-de-vie de marc, armagnac, rhum, calvados, grape marc distillate, brandy, whisky and cognac) + 4 wines (fortified red wine, sparkling red wine, dry white wine and sweet Champagne) + 20 different grape marc spirits and 20 different red wines | Determination of 16 volatile congeners (acetaldehyde, ethyl formate, ethyl acetate, acetal, methanol, butan-2-ol, propan-1-ol, 2-methylpropan-1-ol, butan-1-ol, 2-methylbutan-1-ol, 3-methylbutan-1-ol, ethyl lactate, 1-hexanol, furfuraldehyde, benzyl alcohol and 2-phenylethanol) for quality control | Fast GC-FID: high-speed injection system, CP-Wax 57 CB column (25 m × 0.25 mm × 0.2 μm), rapid oven heating/cooling | Determination of calibration curves, LOD, LOQ, recovery, repeatability and reproducibility for each congener. | For all analytes: Correlation coefficient ≥ 0.95; LOQ (1.0 ÷ 1.5 µg/g); LOD (0.3 ÷ 0.5 µg/g); Recovery values ≥ 93%; Repeatability ≤ 10%; Reproducibility: 1.6 ÷ 13%. | [39] |
25 spirit drinks (rum, whiskey, bourbon, brandy, calvados, Grappa, slivovice, tsikoudia, vodka, gin, grain spirit, liqueurs, vermouth, sake, nalewka, cocktail, glühwein and rectified spirit) purchased from local markets | Determination of 10 volatile congeners (acetaldehyde, acetal, ethyl acetate, methanol, propan-1-ol, 2 methylpropan-1-ol, butan-1-ol, butan-2-ol, 2-methylbutan-1-ol and 3-methylbutan-1-ol) for quality control | GC-FID with pre-existing ethanol as internal standard | Student’s test, ANOVA | For all analytes, the relative differences between the results obtained with the proposed method and the official method are in the range of −1.3 ÷ 0.9% and statistically insignificant at the 0.05 significance level. | [40] |
123 spirit drinks (43 Grappa samples, 35 wine spirits, 15 grain spirits, 15 apple spirits, 15 pear spirits) + 2 non-compliant samples | Spirit drink category | GC-FID (for the determination of volatiles) and distillation and electronic densimetry (for the determination of the actual alcoholic strength by volume) | LDA, one-class modeling PCA | LDA model: % of correct classifications > 97 both in cross-validation and external validation. Non-compliant samples classified as “wine spirit”. One-class modeling PCA: non-compliant samples classified neither as “wine spirit” nor “Grappa”. | [41] |
82 spirit drinks (60 Grappa samples, 4 grain spirits and 18 fruit marc spirits) | Spirit drink category | HS-SPME/GC-MS SPME:50/30 μm DVB/CAR/PDMS | PLS-DA, VIP scores of PLS-DA, SIMCA | PLS-DA average correct classification rate: 94.3% (cross-validation) and 100% (external validation). SIMCA analysis: specificity and sensitivity of 92.9% and 87.5%, respectively, in cross-validation and 100% and 33.33%, respectively, in external validation. | [42] |
34 spirit drinks (32 Grappa spirits and 2 Grappa-based liquors) | Characterization of the profile of volatile and non-volatile compounds in Grappa spirits for quality control | SPME-GC/MS (for the determination of the volatile fraction), MALDI-TOF/MS (for the fingerprint determination of the non-volatile fraction), MALDI-TOFMS/MS (for the identification of molecules of the non-volatile fraction) | PCA | PCA analysis: Grappa samples are grouped according to producer. | [45] |
1 Grappa | Characterization of volatile profile for quality control | HS-SPME/GC-MS, HS-SPME-GCxGC-ToF-MS. SPME fiber: DVB/CAR/PDMS, 50/30 µm | HS-SPME-GCxGC-ToF-MS provides more and better resolved peaksthan HS-SPME/GC-MS. | [46] | |
21 grape mark spirits (15 Italian Grappa and 6 Brazilian Graspa) | Geographical origin | GC-FID (for the determination of higher alcohols and acetic acid). GC-MS (for the determination of esters, terpenes, lactones and ionones) | ANOVA, PCA, HCA | PCA, HCA analysis: discrimination of the two groups of grape marc spirits on the basis of chemical differences between their distillates. | [49] |
32 Grappa spirits: 2 pomace varieties (Cabernet Sauvignon/Merlot blend and Prosecco) × 2 barrique types (oak wood and cherry wood) × 2 ethanol contents (55% and 68% v/v) × 4 aging times (1, 3, 6 and 12 months) | Aging conditions | SPE-GC/MS and sensory analysis SPE cartridge: C18 | PCA, PLS-DA, VIP scores of PLS-DA | No significant changes in fruity ethyl esters and floral terpenols during aging in oak and cherry barrels. Significative changes in the volatile profiles of the final products depending on the type of barrel, ethanol content and variety of Grappa. | [50] |
24 Brandies de Jerez aged in different types of casks (seasoned for 3, 6, 12, 18 and 60 months with Fino, Oloroso and Pedro Ximénez Sherry wines) | Aging technology | Ionic chromatography (for the determination of organic acids), GC-FID (for the determination of volatile compounds) and sensory analysis | ANOVA, Fisher’s least significant difference test, HCA, factorial analysis | HCA and factorial analysis: grouping of brandies based on the duration and type of cask seasoning. | [51] |
148 Brandies de Jerez aged for different times in casks seasoned with 3 types of wine (30 with Fino wine, 64 with Oloroso wine and 54 with Pedro Ximénez wine) | Aging technology | HPLC-conductivity detector (for the determination of short chain organic acids) and UHPLC-PDA (for the determination of phenolic and furfural compounds) | ANOVA, Fisher’s least significant difference test, cluster analysis, PCA, MLR | ANOVA and Fisher’s least significant difference test: significant differences in most variables depending on the type of casks seasoning. Cluster and PCA analysis: grouping of brandies depending on the type of cask seasoning. MLR: correlation coefficient = 0.909115. | [54] |
72 brandies aged for 12 and 24 months in casks of 3 oak species (Quercus Alba, Quercus Robur and Quercus Petraea) and 2 levels of wood toasting (medium and light). | Oak species, levels of wood toasting and aging time | UHPLC-PDA (for the determination of phenolic fingerprint) | PCA, PLS-DA | PCA analysis: groupings based on toasting level, oak species and aging time. PLS-DA analysis: % of correct classifications ≥ 0.86 (cross-validation and external validation). | [56] |
7 Brandies de Jerez made from wines with different total sulfur dioxide content (in the range 10 ÷ 73 mg/l), distilled using 4 different distillation methods and aged for 14 and 28 months in light and medium toasted oak casks (Quercus alba, Quercus robur and Quercus petraea). | Production and distillation conditions of base wines and aging time of wine spirits | GC-FID (for determination of the major volatile fraction) | PCA, HCA, PLS-DA, support vector machine | HCA and PCA analysis: clustering of the samples based on the fermentation and distillation conditions applied to the base wines and the aging time of the wine spirit. Support vector machine models are more reliable than PLS-DA models for classification based on the above-mentioned variables. | [57] |
11 grape mark spirits with different ethanol content (40 ÷ 62 vol%) obtained by direct and steam distillation from 4 grape varieties (Mencía, Torrontés, Treixadura and Albariño) of 2 geographical origins (Galicia and Cantabria). | Characterization of the profile of volatile and semi-volatile compounds of grape mark distillates | GC-TOF-MS with DLLME | PCA | PCA analysis: clear separation between the four different Galician grape varieties and between the Cantabrian and Galician samples. | [58] |
Samples | Discriminating Parameters | Method of Analysis | Data Analysis | Results | References |
---|---|---|---|---|---|
14 spirit drinks (5 whiskeys, 7 whiskies, 1 brandy, 1 vodka) | Spirit drink category and adulteration for quality control | Colorimetric sensor array | HCA, PCA, support vector machine | Correct categorization with accuracy rate > 99%. | [67] |
37 spirit drinks (2 Armagnacs, 9 brandies, 4 German Branntwein, 3 cognacs, 5 Spirituose, 5 German Weinbrände, 8“fake” brandies, 1 aged Grappa). | Spirit type, brand, batch, aging time and adulteration for quality control | Hypothesis-free sensor array (optoelectronic tongue) | PCA, LDA | Classification accuracy: 99% (cross-validation). | [68] |
75 Italian distillates (58 Grappa, 17 spirits from fruits or cereals) | Grappa from other spirits | GC–MS, MIR and NIR spectroscopies | SO-PLS-LDA, SO-CovSel-LDA | SO-PLS-LDA: 100% correct classifications for the category “Grappa” (external validation). SO-CovSel-LDA: 75% correct classifications for the category “Grappa” (external validation). | [70] |
15 Grappa (12 samples aged with oak and 2 with poplar wood chips of different sizes and toasting levels) | Aging technologies | SPE-GC-MS, NIR (11,500–4000 cm−1), 1D 1H-NMR, E-nose | ANOVA and PCA (for GC-MS data), PCA (for NIR, NMR and E-nose data) | PCA (NIR and E-nose): grouping based mainly on wood assortment. PCA (NMR): clustering based mainly on wood toasting level. | [75] |
32 distillates (20 Scotch malt whiskies, 4 bourbons, 3 cognacs, 3 rums, 1 Grappa, 1 brandy) | Wood-derived vanillin from added vanillin | GC/C/IRMS | ANOVA | ANOVA analysis: the δ13C values for synthetic vanillin, tannin-extracted vanillin and natural vanillin are significantly different (p < 0.05). | [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arduini, S.; Chinnici, F. Advancements in Analytical Strategies for Authentication and Quality Control of Grappa and Wine Brandy with Geographical Indications. Appl. Sci. 2024, 14, 8092. https://doi.org/10.3390/app14178092
Arduini S, Chinnici F. Advancements in Analytical Strategies for Authentication and Quality Control of Grappa and Wine Brandy with Geographical Indications. Applied Sciences. 2024; 14(17):8092. https://doi.org/10.3390/app14178092
Chicago/Turabian StyleArduini, Silvia, and Fabio Chinnici. 2024. "Advancements in Analytical Strategies for Authentication and Quality Control of Grappa and Wine Brandy with Geographical Indications" Applied Sciences 14, no. 17: 8092. https://doi.org/10.3390/app14178092
APA StyleArduini, S., & Chinnici, F. (2024). Advancements in Analytical Strategies for Authentication and Quality Control of Grappa and Wine Brandy with Geographical Indications. Applied Sciences, 14(17), 8092. https://doi.org/10.3390/app14178092