Evaluating the Geo-Environmental Conditions within a Working Face Using a Hybrid Intelligent Optimization Model
Abstract
:1. Introduction
2. Geo-Environmental Condition Evaluation Methods
3. Theoretical Analysis and Model Construction
3.1. Mathematical Model of Electromagnetic Wave CT Reconstruction
3.2. Reconstruction Model of Hybrid Intelligent Optimization Algorithm
3.2.1. Reconstruction Objectives of Geo-Environmental Conditions
3.2.2. Options of the Hybrid Intelligent Algorithms
3.2.3. The Program of MPGA-SIRT Hybrid Intelligent Algorithm
- (1)
- Initialize populations
- (2)
- Immigration operation
- (3)
- Manual selection operation
- (4)
- SIRT algorithm
4. Numerical Experiment and Analysis
5. Experimental Section
5.1. Survey Area
5.2. Evolution Curve Feature Results Based on Different Algorithms
5.3. Tomography Results Corresponding to Different Algorithms
5.4. Stability Analysis of Different Reconstruction Models
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al Mubarak, F.; Rezaee, R.; Wood, D.A. Economic, Societal, and Environmental Impacts of Available Energy Sources: A Review. Eng 2024, 5, 1232–1265. [Google Scholar] [CrossRef]
- Wenli, Y.; Sharifzadeh, M.; Yang, Z.; Xu, G.; Fang, Z. Assessment of fracture characteristics controlling fluid flow in discrete fracture networks (DFN). J. Pet. Sci. Eng. 2019, 178, 1104–1111. [Google Scholar] [CrossRef]
- Yuan, L. Geological anomaly, including fractures, pores, folds, and faults within the working face, significantly impact underground mining. J. China Coal Soc. 2021, 46, 716–725. [Google Scholar]
- Wang, G.; Wu, M.M.; Wang, R.; Xu, H.; Song, X. Height of the mining-induced fractured zone above a coal face. Eng. Geol. 2017, 216, 140–152. [Google Scholar] [CrossRef]
- He, H.; Tian, C.; Jin, G.; Han, K. Principal component analysis and Fisher discriminant analysis of environmental and ecological quality, and the impacts of coal mining in an environmentally sensitive area. Environ. Monit. Assess. 2020, 192, 207. [Google Scholar] [CrossRef]
- Olena, H.; Grygorii, G. Coal mining and water resources: Impacts, challenges, and strategies for sustainable environmental management. IOP Conf. Ser. Earth Environ. Sci. 2024, 1348, 012017. [Google Scholar]
- Zhou, H.W.; Rong, T.L.; Wang, L.J.; Mou, R.Y.; Ren, W.G. A new anisotropic coal permeability model under the influence of stress, gas sorption and temperature: Development and verification. Int. J. Rock Mech. Min. Sci. 2020, 132, 104407. [Google Scholar] [CrossRef]
- Li, A.; Zhang, J.; Zhou, N.; Li, M.; Zhang, W. A model for evaluating the production system of an intelligent mine based on unascertained measurement theory. J. Intell. Fuzzy Syst. 2020, 38, 1865–1875. [Google Scholar] [CrossRef]
- Zhang, K.; Kang, L.; Chen, X.; He, M.; Zhu, C.; Li, D. A Review of Intelligent Unmanned Mining Current Situation and Development Trend. Energies 2022, 15, 513. [Google Scholar] [CrossRef]
- Mackin, J. Rational and Empirical Methods of Investigation in Geology. In Fluvial Geomorphology—Geomorphology: Critical Concepts in Geography; Routledge: London, UK, 2013; Volume 1. [Google Scholar]
- Tao, S.; Pan, Z.; Tang, S.; Chen, S. Current status and geological conditions for the applicability of CBM drilling technologies in China: A review. Int. J. Coal Geol. 2019, 202, 95–108. [Google Scholar] [CrossRef]
- Zhdanov, M.S. Geophysical Electromagnetic Theory and Methods; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Wei, K.; Qiu, C.-H.; Primrose, K. Super-sensing technology: Industrial applications and future challenges of electrical tomography. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150328. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhu, M.; Wang, Y.; Yue, H.; Cui, W. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology. J. China Coal Soc. 2019, 44, 2285–2295. [Google Scholar]
- Radon, J. Berichte über die Verhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Math.-Phys. Kl. 1917, 69, 262–277. [Google Scholar]
- Guo, C.; Yang, Z.; Wu, X.; Tan, T.; Zhao, K. Application of an adaptive multi-population parallel genetic algorithm with constraints in electromagnetic tomography with incomplete projections. Appl. Sci. 2019, 9, 2611. [Google Scholar] [CrossRef]
- Gordon, R.; Bender, R.; Herman, G.T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 1970, 29, 471–481. [Google Scholar] [CrossRef]
- Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 1972, 36, 105–117. [Google Scholar] [CrossRef]
- Chen, T.; Lin, Z.; Liu, Z.; Mukerji, T. A Comparative Experiment on Heterogeneous Distributions of Stress Field for Underground Panels With Different Geological Setting in North China. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5900318. [Google Scholar] [CrossRef]
- An, L.; Li, B.; Ming, D.; Wang, W. Multislice spiral CT image analysis and meta-analysis of inspiratory muscle training on respiratory muscle function. J. Healthc. Eng. 2021, 2021, 1738205. [Google Scholar] [CrossRef]
- Jackson, M.J.; Tweeton, D.R. MIGRATOM: Geophysical Tomography Using Wavefront Migration and Fuzzy Constraints; United States Bureau of Mines: Washington, DC, USA, 1994.
- MacLennan, K.; Karaoulis, M.; Revil, A. Complex conductivity tomography using low-frequency crosswell electromagnetic data. Geophysics 2014, 79, E23–E38. [Google Scholar] [CrossRef]
- Metropolis, N.; Ulam, S. The monte carlo method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef]
- Buscema, M. Back propagation neural networks. Subst. Use Misuse 1998, 33, 233–270. [Google Scholar] [CrossRef] [PubMed]
- Whitley, D.; Starkweather, T. Genitor II: A distributed genetic algorithm. J. Exp. Theor. Artif. Intell. 1990, 2, 189–214. [Google Scholar] [CrossRef]
- Venter, G.; Sobieszczanski-Sobieski, J. Particle swarm optimization. AIAA J. 2003, 41, 1583–1589. [Google Scholar] [CrossRef]
- Lian, J.; Hui, G. Human Evolutionary Optimization Algorithm. Expert Syst. Appl. 2024, 241, 122638. [Google Scholar] [CrossRef]
- Cancilla, J.C.; Pradana-Lopez, S.; Perez-Calabuig, A.M.; Lopez-Ortega, S.; Rodrigo, C.; Torrecilla, J.S. Distinct thermal patterns to detect and quantify trace levels of wheat flour mixed into ground chickpeas. Food Chem. 2022, 384, 132468. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, H.; Wang, W. A hybrid ant colony optimization with fireworks algorithm to solve capacitated vehicle routing problem. Appl. Intell. 2022, 53, 7326–7342. [Google Scholar] [CrossRef]
- Sun, X.; Yao, C.; Song, E.; Yang, Q.; Yang, X. Optimal control of transient processes in marine hybrid propulsion systems: Modeling, optimization and performance enhancement. Appl. Energy 2022, 321, 119404. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, H.; Mao, J.; Chen, Y.; Zhong, H.; Wang, Y. Review on the COVID-19 pandemic prevention and control system based on AI. Eng. Appl. Artif. Intell. 2022, 114, 105184. [Google Scholar] [CrossRef]
- Zhang, T.; Fu, Q.; Li, C.; Liu, F.; Wang, H.; Han, L.; Quevedo, R.P.; Chen, T.; Lei, N. Modeling landslide susceptibility using data mining techniques of kernel logistic regression, fuzzy unordered rule induction algorithm, SysFor and random forest. Nat. Hazards 2022, 114, 3327–3358. [Google Scholar] [CrossRef]
- Yan, X.; Zhu, Z.; Wu, Q. Intelligent inversion method for pre-stack seismic big data based on MapReduce. Comput. Geosci. 2018, 110, 81–89. [Google Scholar] [CrossRef]
- Brezočnik, L.; Fister, I.; Podgorelec, V. Swarm intelligence algorithms for feature selection: A review. Appl. Sci. 2018, 8, 1521. [Google Scholar] [CrossRef]
- Cheung, S.H.; Beck, J.L. Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters. J. Eng. Mech. 2009, 135, 243–255. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, C.X.; Meng, F.; Zhang, H.N.; Xia, K.Z.; Chen, X.B. Assessing the Stability of Rock Slopes with Respect to Block-Flexure Toppling Failure Using a Force-Transfer Model and Genetic Algorithm. Rock Mech. Rock Eng. 2020, 53, 3433–3445. [Google Scholar] [CrossRef]
- Wei, Z.-L.; Lü, Q.; Sun, H.-Y.; Shang, Y.-Q. Estimating the rainfall threshold of a deep-seated landslide by integrating models for predicting the groundwater level and stability analysis of the slope. Eng. Geol. 2019, 253, 14–26. [Google Scholar] [CrossRef]
- Nabaei, A.; Hamian, M.; Parsaei, M.R.; Safdari, R.; Samad-Soltani, T.; Zarrabi, H.; Ghassemi, A. Topologies and performance of intelligent algorithms: A comprehensive review. Artif. Intell. Rev. 2018, 49, 79–103. [Google Scholar] [CrossRef]
- Hong, W.-C.; Dong, Y.; Zhang, W.Y.; Chen, L.-Y.; Panigrahi, B. Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm. Int. J. Electr. Power Energy Syst. 2013, 44, 604–614. [Google Scholar] [CrossRef]
- Papas, C.H. Theory of Electromagnetic Wave Propagation; Courier Corporation: Chelmsford, MA, USA, 2014. [Google Scholar]
- Teixeira, F.L.; Chew, W.C. Finite-difference computation of transient electromagnetic waves for cylindrical geometries in complex media. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1530–1543. [Google Scholar] [CrossRef]
- Wang, J.; Quan, Y.; Gu, M. Estimation of directional design wind speeds via multiple population genetic algorithm. J. Wind. Eng. Ind. Aerodyn. 2021, 210, 104534. [Google Scholar] [CrossRef]
- Gao, X.; Yang, H.; Lin, L.; Koo, P. Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore. J. Wind Eng. Ind. Aerodyn. 2015, 139, 89–99. [Google Scholar] [CrossRef]
Optimization Models | Repetitive Sequence | Average Value | Standard Deviation | ||||
---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | |||
SGA | 15.451 | 15.801 | 16.011 | 16.144 | 16.018 | 15.885 | 0.272 |
MPGA | 5.882 | 6.038 | 6.046 | 6.015 | 6.205 | 6.037 | 0.114 |
Inversion Models | Repetitive Sequence | Average Value | Standard Deviation | ||||
---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | |||
SIRT | 7.129 | 8.059 | 7.667 | 8.263 | 8.624 | 7.948 | 0.574 |
SGA-SIRT | 3.448 | 3.811 | 3.411 | 3.353 | 3.438 | 3.492 | 0.182 |
MPGA-SIRT | 3.072 | 3.066 | 2.961 | 3.156 | 3.119 | 3.075 | 0.071 |
Inversion Models (The Size of the Exploration Area for the 8208 Working Face Is 1000 m in Length and 150 m in Width) | Repetitive Sequence | Average Value | Standard Deviation | ||||
---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | |||
SIRT | 7.951 | 8.665 | 8.141 | 8.929 | 9.342 | 8.606 | 0.569 |
SGA-SIRT | 6.852 | 7.613 | 6.939 | 7.051 | 7.155 | 7.122 | 0.297 |
MPGA-SIRT | 6.542 | 6.667 | 6.495 | 6.549 | 6.389 | 6.528 | 0.099 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Tan, T.; Ma, L.; Zhang, Z.; Ma, X.; Zhao, D.; Jiao, W. Evaluating the Geo-Environmental Conditions within a Working Face Using a Hybrid Intelligent Optimization Model. Appl. Sci. 2024, 14, 8284. https://doi.org/10.3390/app14188284
Guo C, Tan T, Ma L, Zhang Z, Ma X, Zhao D, Jiao W. Evaluating the Geo-Environmental Conditions within a Working Face Using a Hybrid Intelligent Optimization Model. Applied Sciences. 2024; 14(18):8284. https://doi.org/10.3390/app14188284
Chicago/Turabian StyleGuo, Changfang, Tingjiang Tan, Liuzhu Ma, Zhicong Zhang, Xiaoping Ma, Difei Zhao, and Wenhua Jiao. 2024. "Evaluating the Geo-Environmental Conditions within a Working Face Using a Hybrid Intelligent Optimization Model" Applied Sciences 14, no. 18: 8284. https://doi.org/10.3390/app14188284
APA StyleGuo, C., Tan, T., Ma, L., Zhang, Z., Ma, X., Zhao, D., & Jiao, W. (2024). Evaluating the Geo-Environmental Conditions within a Working Face Using a Hybrid Intelligent Optimization Model. Applied Sciences, 14(18), 8284. https://doi.org/10.3390/app14188284