Thermal Behavior and Infrared Absorbance Bands of Citric Acid
Abstract
:1. Introduction
2. Materials and Methods
3. Ab Initio DFT Calculations
4. Results and Discussion
4.1. Raw and Heated at 100 °C Citric Acid Monohydrate Samples
4.1.1. Thermal Behavior and IR Spectra
4.1.2. Antioxidant Activity
4.2. Recrystallized Sample from D2O Solution
4.3. Freeze-Dried Sample
4.4. DFT Calculations
5. Further Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsioptsias, C.; Nikolaidou, E.G.; Ntampou, X.; Tsivintzelis, I.; Panayiotou, C. Thermo-chemical transition in cellulose esters and other polymers. Thermochim. Acta 2022, 707, 179106. [Google Scholar] [CrossRef]
- Tsioptsias, C.; Spartali, C.; Marras, S.I.; Ntampou, X.; Tsivintzelis, I.; Panayiotou, C. Thermochemical Transition in Low Molecular Weight Substances: The Example of the Silybin Flavonoid. Molecules 2022, 27, 6345. [Google Scholar] [CrossRef]
- Tsioptsias, C.; Tsivintzelis, I. Insights on thermodynamic thermal properties and infrared spectroscopic band assignments of gallic acid. J. Pharm. Biomed. Anal. 2022, 221, 115065. [Google Scholar] [CrossRef]
- Tsioptsias, C. Thermodynamic explanation and criterion for the exhibition of melting inability in molecular species. AIMS Mater. Sci. 2023, 10, 618–636. [Google Scholar] [CrossRef]
- Tsioptsias, C. Desolvation Inability of Solid Hydrates, an Alternative Expression for the Gibbs Free Energy of Solvation, and the Myth of Freeze-Drying. Materials 2024, 17, 2508. [Google Scholar] [CrossRef]
- Rodríguez-Aguilar, F.; Ortega-Regules, A.E.; Ramírez-Rodrigues, M.M. Influence of time-temperature in the antioxidant activity, anthocyanin and polyphenols profile, and color of Ardisia compressa K. extracts, with the addition of sucrose or citric acid. Food Chem. 2024, 440, 138181. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Gao, L.; Liang, J.; Erihemu; Li, G.; Song, X.; Qi, W. Applications and characterization of anti-browning enzymatically modified potato starch (EPS) film associated with chitosan (CTS)/L-Cys/citric acid (CA) on fresh-cut potato slices. Food Chem. 2024, 452, 139424. [Google Scholar] [CrossRef]
- Lu, Q.; Dun, J.; Chen, J.-M.; Liu, S.; Sun, C.C. Improving solid-state properties of berberine chloride through forming a salt cocrystal with citric acid. Int. J. Pharm. 2019, 554, 14–20. [Google Scholar] [CrossRef]
- Onoue, S.; Yamamoto, K.; Kawabata, Y.; Hirose, M.; Mizumoto, T.; Yamada, S. Novel dry powder inhaler formulation of glucagon with addition of citric acid for enhanced pulmonary delivery. Int. J. Pharm. 2009, 382, 144–150. [Google Scholar] [CrossRef]
- Barbooti, M.M.; Al-Sammerrai, D.A. Thermal decomposition of citric acid. Thermochim. Acta 1986, 98, 119–126. [Google Scholar] [CrossRef]
- Haynes, W.M. (Ed.) Handbook of Chemistry and Physics, 97th ed.; CRC Press LLC: Boca Raton, FL, USA, 2016. [Google Scholar]
- NIST. Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=77-92-9 (accessed on 15 May 2024).
- Willfahrt, A.; Steiner, E.; Hötzel, J.; Crispin, X. Printable acid-modified corn starch as non-toxic, disposable hydrogel-polymer electrolyte in supercapacitors. Appl. Phys. A 2019, 125, 474. [Google Scholar] [CrossRef]
- Wyrzykowski, D.; Hebanowska, E.; Nowak-Wiczk, G.; Makowski, M.; Chmurzyński, L. Thermal behaviour of citric acid and isomeric aconitic acids. J. Therm. Anal. Calorim. 2011, 104, 731–735. [Google Scholar] [CrossRef]
- Zhao, S.; Feng, F.; Yu, F.; Shen, Q. Flower-to-petal structural conversion and enhanced interfacial storage capability of hydrothermally crystallized MnCO3via the in situ mixing of graphene oxide. J. Mater. Chem. A 2015, 3, 24095–24102. [Google Scholar] [CrossRef]
- Groen, H.; Roberts, K.J. Nucleation, Growth, and Pseudo-Polymorphic Behavior of Citric Acid As Monitored in Situ by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy. J. Phys. Chem. B 2001, 105, 10723–10730. [Google Scholar] [CrossRef]
- Li, S.; Cai, G.; Wu, S.; Raut, A.; Borges, W.; Sharma, P.R.; Sharma, S.K.; Hsiao, B.S.; Rafailovich, M. Sustainable Plant-Based Biopolymer Membranes for PEM Fuel Cells. Int. J. Mol. Sci. 2022, 23, 15245. [Google Scholar] [CrossRef]
- Stuart, B. Infrared Spectroscopy: Fundamentals and Applications; John Wiley and Sons Ltd.: West Sussex, UK, 2004. [Google Scholar]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant Activity of Dietary Polyphenols As Determined by a Modified Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef]
- Bursch, M.; Mewes, J.-M.; Hansen, A.; Grimme, S. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry. Angew. Chem. Int. Ed. 2022, 61, e202205735. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Caldeweyher, E.; Bannwarth, C.; Grimme, S. Extension of the D3 dispersion coefficient model. J. Chem. Phys. 2017, 147, 034112. [Google Scholar] [CrossRef] [PubMed]
- Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150, 154122. [Google Scholar] [CrossRef] [PubMed]
- Software Avogadro. An Open-Source Molecular Builder and Visualization Tool, Version 1.1.0; Avogadro: Fontenilles, France, 2009. Available online: http://avogadro.cc/.
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Libint. Available online: http://libint.valeyev.net.
- Herzberg, G. Molecular Spectra and Molecular Structure. Part II. Infrared and Raman Spectra of Polyatomic Molecules; Van Nostrand Comp.: New York, NY, USA, 1945. [Google Scholar]
- Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. Chem.—A Eur. J. 2012, 18, 9955–9964. [Google Scholar] [CrossRef]
- libXC. Available online: https://tddft.org/programs/libxc/ (accessed on 15 May 2024).
- Chahardoli, A.; Jalilian, F.; Memariani, Z.; Farzaei, M.H.; Shokoohinia, Y. Chapter 26—Analysis of organic acids. In Recent Advances in Natural Products Analysis; Sanches Silva, A., Nabavi, S.F., Saeedi, M., Nabavi, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 767–823. [Google Scholar] [CrossRef]
- Amarowicz, R.; Pegg, R.B. Chapter One—Natural antioxidants of plant origin. In Advances in Food and Nutrition Research; Ferreira, I.C.F.R., Barros, L., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 90, pp. 1–81. [Google Scholar]
Wavenumber, cm−1 | Citric Acid Monohydrate |
---|---|
3340–3700 | Overlapping of O-H stretching vibration of water and alcohol OH groups; the contribution of water is around 3490 cm−1 |
3000–3340 | O-H stretching vibration of acid OH groups with water contribution at around 3280 cm−1 |
1745–1800 | C=O stretching of ester carbonyl |
1704–1745 | C=O stretching of acid carbonyl overlapping with ester C=O at higher wavenumbers |
1650–1704 | Overlapping of H-O-H bending with C=O stretching of acid carbonyl |
Wavenumber, cm−1 | Citric Acid |
---|---|
3498 | O-H stretching vibration of water |
3445 | O-H stretching vibration of alcohol OH |
3291 | Mostly O-H stretching vibration of water overlapping with acid OH groups |
3000–3340 | O-H stretching vibration of acid OH groups |
1727–1800 | C=O stretching of ester carbonyl |
1650–1727 | Overlapping of H-O-H bending with C=O stretching of acid carbonyl |
Product | ΔG of Reaction, kJ/mol |
---|---|
E33dim | +1.6 |
A13 | +13.9 |
A15 | +29.1 |
A13dim | +42.9 |
E13 | +44.5 |
A11dim | +46.1 |
A33dim | +57.3 |
E13dim | +58.5 |
E33 | +115.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsioptsias, C.; Panagiotou, A.; Mitlianga, P. Thermal Behavior and Infrared Absorbance Bands of Citric Acid. Appl. Sci. 2024, 14, 8406. https://doi.org/10.3390/app14188406
Tsioptsias C, Panagiotou A, Mitlianga P. Thermal Behavior and Infrared Absorbance Bands of Citric Acid. Applied Sciences. 2024; 14(18):8406. https://doi.org/10.3390/app14188406
Chicago/Turabian StyleTsioptsias, Costas, Afroditi Panagiotou, and Paraskevi Mitlianga. 2024. "Thermal Behavior and Infrared Absorbance Bands of Citric Acid" Applied Sciences 14, no. 18: 8406. https://doi.org/10.3390/app14188406
APA StyleTsioptsias, C., Panagiotou, A., & Mitlianga, P. (2024). Thermal Behavior and Infrared Absorbance Bands of Citric Acid. Applied Sciences, 14(18), 8406. https://doi.org/10.3390/app14188406