A 3D Seismotectonic Model and the Spatiotemporal Relationship of Two Historical Large Earthquakes in the Linfen Basin, North China
Abstract
:1. Introduction
2. Geological Setting
3. Data and Methods
3.1. Deep Seismic Reflection Profile
3.2. Three-Dimensional Model of Velocity Structure
3.3. Earthquake Relocation
3.4. Construction of the Three-Dimensional Model
3.5. Coulomb Stress Simulation
4. Results
4.1. Characteristics and Interpretation of Deep Seismic Reflection Profiles
4.2. Spatial Distribution of Relocated Earthquakes
4.3. Velocity Structure Changes in the Linfen Basin
4.4. Three-Dimensional Model of Active Faults in the Linfen Basin
5. Discussion
5.1. Differences in the Seismic Environment of the Linfen Basin
5.2. Magnitude Estimation of the 1303 Hongtong Earthquake
5.3. Relationship between Two Historical Large Earthquakes
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.T.; Yang, Z.X.; Zhang, Y.; Liu, C. From 2008 Wenchuan earthquake to 2013 Lushan earthquake. Sci. Sin. Terrae 2013, 43, 1064–1072. [Google Scholar]
- Hurukawa, N.; Wulandari, B.R.; Kasahara, M. Earthquake history of the Sumatran Fault, Indonesia, since 1892, derived from relocation of large earthquakes. Bull. Seismol. Soc. Am. 2014, 104, 1750–1762. [Google Scholar] [CrossRef]
- Calais, E.; Camelbeeck, T.; Stein, S.; Liu, M.; Craig, T.J. A new paradigm for large earthquakes in stable continental plate interiors. Geophys. Res. Lett. 2016, 43, 621–637. [Google Scholar] [CrossRef]
- Lu, Y.; Wetzler, N.; Waldmann, N.; Agnon, A.; Biasi, G.P.; Marco, S. A 220,000-year-long continuous large earthquake record on a slow-slipping plate boundary. Sci. Adv. 2020, 6, eaba4170. [Google Scholar] [CrossRef]
- Kato, A.; Ben-Zion, Y. The generation of large earthquakes. Nat. Rev. Earth Environ. 2021, 2, 26–39. [Google Scholar] [CrossRef]
- Xu, X.W.; Chen, G.H.; Yu, G.H.; Cheng, J.; Tan, X.B.; Zhu, A.L.; Wen, X.Z. Seismogenic structure of Lushan earthquake and its relationship with Wenchuan earthquake. Earth Sci. Front. 2013, 20, 11–20. [Google Scholar]
- Meng, J.; Kusky, T.; Mooney, W.D.; Bozkurt, E.; Bodur, M.N.; Wang, L. Surface deformations of the 6 February 2023 earthquake sequence, eastern Türkiye. Science 2024, 383, 298–305. [Google Scholar] [CrossRef]
- Ren, C.; Wang, Z.; Taymaz, T.; Hu, N.; Luo, H.; Zhao, Z.; Yue, H.; Song, X.; Shen, Z.; Xu, H.; et al. Supershear triggering and cascading fault ruptures of the 2023 Kahramanmaraş, Türkiye, earthquake doublet. Science 2024, 383, 305–311. [Google Scholar] [CrossRef]
- Xu, X.W.; Ma, X.Y. Geodynamics of the Shanxi rift system, China. Tectonophysics 1992, 208, 325–340. [Google Scholar] [CrossRef]
- Shi, W.; Cen, M.; Chen, L.; Wang, Y.; Chen, X.; Li, J.; Chen, P. Evolution of the Late Cenozoic tectonic stress regime in the Shanxi Rift, central North China Plate inferred from new fault kinematic analysis. J. Asian Earth Sci. 2015, 114, 54–72. [Google Scholar] [CrossRef]
- Dou, L.T.; Yao, H.; Fang, L.; Luo, S.; Song, M.; Yan, X.; Cheng, C. High-resolution crustal velocity structure in the Shanxi rift zone and its tectonic implications. Sci. China Earth Sci. 2021, 64, 728–743. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Zheng, W.J.; Wang, Y.J.; Zhang, D.L.; Tian, Y.T.; Wang, M.; Zhang, Z.Q.; Zhang, P.Z. Contemporary deformation of the North China plain from global positioning system data. Geophys. Res. Lett. 2018, 45, 1851–1859. [Google Scholar] [CrossRef]
- Xu, Y.R.; He, H.L.; Li, W.Q.; Zhang, W.H.; Tian, Q.J. New evidences for amendment of macro-epicenter location of 1303 AD Hongtong earthquake. Seismol. Geol. 2018, 40, 945–966. [Google Scholar]
- Shen, F.M.; Wang, L.F.; Barbot, S.; Xu, J.H. North China as a mechanical bridge linking Pacific subduction and extrusion of the Tibetan Plateau. Earth Planet. Sci. Lett. 2023, 622, 118407. [Google Scholar] [CrossRef]
- Deng, Q.D.; Wang, K.L.; Wang, Y.P.; Tang, H.J.; Wu, Y.W.; Ding, M.L. Overview of seismic geological conditions and earthquake development trends in the fault depression seismic belt of Shanxi Uplift area. Chin. J. Geol. 1973, 1, 37–47. [Google Scholar]
- Xu, X.W.; Ma, X.; Deng, Q.D. Neotectonic activity along the Shanxi rift system, China. Tectonophysics 1993, 219, 305–325. [Google Scholar] [CrossRef]
- Liu, M.; Stein, S.; Wang, H. 2000 years of migrating earthquakes in North China: How earthquakes in midcontinents differ from those at plate boundaries. Lithosphere 2011, 3, 128–132. [Google Scholar] [CrossRef]
- Song, M.Q.; Zheng, Y.; Can, G.; Li, B. Relocation of small to moderate earthquakes in Shanxi Province and its relation to the seismogenic structures. Chin. J. Geophys. 2012, 55, 513–525. [Google Scholar] [CrossRef]
- Department of Earthquake Disaster Prevention, China Earthquake Administration. The Catalogue of Chinese Historical Strong Earthquakes; Seismological Press: Beijing, China, 1995. [Google Scholar]
- Wang, C.Y.; Duan, Y.H.; Wu, Q.J.; Wang, Z.S. Exploration on the deep tectonic environment of strong earthquakes in North China and relevant research findings. Acta Seismol. Sin. 2016, 38, 511–549. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wu, Q.J.; Duan, Y.H.; Wang, Z.; Lou, H. Crustal and upper mantle structure and deep tectonic genesis of large earthquakes in North China. Sci. China Earth Sci. 2017, 60, 821–857. [Google Scholar] [CrossRef]
- Li, Z.H.; Liu, B.J.; Yuan, H.K.; Feng, S.Y.; Chen, W.; Li, W.; Kou, K.P. Fine crustal structure and tectonics of Linfen Basin-from the results of seismic reflection profile. Chin. J. Geophys. 2014, 57, 1487–1497. [Google Scholar] [CrossRef]
- Su, P.; He, H.; Liu, Y.; Shi, F.; Granger, D.E.; Kirby, E.; Luo, L.; Han, F.; Lu, R. Quantifying the structure and extension rate of the Linfen Basin, Shanxi Rift System since the latest Miocene: Implications for continental magma-poor rifting. Tectonics 2023, 42, TC007885. [Google Scholar] [CrossRef]
- Li, X.N.; Hammond, W.C.; Pierce, I.K.D.; Bormann, J.M.; Zhang, Z.; Li, C.; Zheng, W.; Zhang, P. Present-day strike-slip faulting and intracontinental deformation of North China: Constraints from improved GPS observations. Geochem. Geophys. Geosyst. 2023, 24, GC010781. [Google Scholar] [CrossRef]
- Middleton, T.A.; Elliott, J.R.; Rhodes, E.J.; Sherlock, S.; Walker, R.T.; Wang, W.; Yu, J.; Zhou, Y. Extension rates across the northern Shanxi Grabens, China, from quaternary geology, seismicity and geodesy. Geophys. J. Int. 2017, 209, 535–558. [Google Scholar] [CrossRef]
- Zheng, W.; Peng, H.; Liu, X.; Zhang, Z.; Zhang, D.; Wei, S.; Wang, X. Strong earthquake activities around the Ordos active block in past 15000 years and its implications. Chin. Sci. Bull. 2024. (In Chinese) [Google Scholar] [CrossRef]
- Gu, G.X. Catalogue of Chinese Earthquake(BC 1831-AD 1969); Science Press: Beijing, China, 1983; pp. 15–18. [Google Scholar]
- Yao, G.G.; Jiang, Y.; Yu, X.M. Investigation on the 1303 Zhaocheng, Shanxi, earthquake (M = 8) and its parameters concerned. J. Seismol. Res. 1984, 7, 313–326. [Google Scholar]
- Wu, L.; Qi, S.Q.; Wang, R.D. Hongtong MS = 8.0 earthquake and 1695 Linfen MS = 8.0 earthquake. In Research on Catastrophic Earthquakes in China; Guo, Z., Ed.; Seismological Press: Beijing, China, 1988; pp. 6–35. [Google Scholar]
- Su, Z.Z.; Yuan, Z.M.; Zhao, J.Q. A review on studies concerned with the 1303 Hongtong, Shanxi, earthquake of M8. Earthquake Res. Shanxi 2003, 3, 4–9. [Google Scholar]
- Qi, S.Q. Some problems on strong earthquake with M8.0 in 1303, Shanxi, China. Earthq. Res. China 2005, 21, 224–234. [Google Scholar]
- Xie, X.S.; Jiang, W.L.; Wang, H.Z.; Feng, X.Y. Holocene activities of the Taigu fault zone, Shanxi Province, in relation to the 1303 Hongdong M8 earthquake. Seismol. Geol. 2004, 26, 281–293. [Google Scholar]
- Xu, Y.; He, H.; Deng, Q.; Allen, M.B.; Sun, H.; Bi, L. The CE 1303 Hongdong Earthquake and the Huoshan Piedmont Fault, Shanxi Graben: Implications for magnitude limits of normal fault earthquakes. JGR Solid Earth 2018, 123, 3098–3121. [Google Scholar] [CrossRef]
- Seismological Bureau of Shanxi Province. Compilation of Historical Earthquake Data in Shanxi Province; Seismological Press: Beijing, China, 1991; pp. 55–86. [Google Scholar]
- Deng, Q.D.; Su, Z.Z.; Wang, T.M. Characteristics of Seismic Structures of Linfen Basin and Delineation of Potential Earthquake Sources in Earthquake Research and Disaster Reduction in Linfen, Shanxi; Ma, Z.J., Ed.; Seismological Press: Beijing, China, 1993; pp. 67–95. [Google Scholar]
- Wang, T.M.; Zheng, B.H.; Li, X.Y. Seismotectonic research of the Linfen M 7.75 earthquake in 1695. In Earthquake Research and Disaster Reduction in Linfen, Shanxi; Ma, Z.J., Ed.; Seismological Press: Beijing, China, 1993; pp. 172–189. [Google Scholar]
- Li, Y.J.; Fang, S.M.; Qin, J.Z.; Luo, X.F.; Huang, C.J. Crustal structure and background of earthquake occurrence in Linfen meizoseismal area. Acta Seismol. Sin. 2015, 37, 937–947. [Google Scholar] [CrossRef]
- Yan, X.B.; Zhou, Y.S.; Li, Z.H.; Guo, J. A study on the seismogenic structure of Linfen M73/4 earthquake in 1695. Seismol. Geol. 2018, 40, 883–902. [Google Scholar] [CrossRef]
- Olsen, K.B.; Archuleta, R.J. Three-dimensional simulation of earthquakes on the Los Angeles fault system. Bull. Seismol. Soc. Am. 1996, 86, 575–596. [Google Scholar] [CrossRef]
- Husen, S.; Kissling, E.; Deichmann, N.; Wiemer, S.; Giardini, D.; Baer, M. Probabilistic earthquake location in complex three-dimensional velocity models: Application to Switzerland. J. Geophys. Res. 2003, 108, 1–19. [Google Scholar] [CrossRef]
- Wang, M.M.; Jia, D.; Shaw, J.H.; Hubbard, J.; Plesch, A.; Li, Y.; Liu, B. The 2013 Lushan earthquake: Implications for seismic hazards posed by the Range Front blind thrust in the Sichuan Basin, China. Geology 2014, 42, 915–918. [Google Scholar] [CrossRef]
- Shaw, J.H.; Plesch, A.; Tape, C.; Suess, M.P.; Jordan, T.H.; Ely, G.; Hauksson, E.; Tromp, J.; Tanimoto, T.; Graves, R.; et al. Unified structural representation of the southern California crust and upper mantle. Earth Planet. Sci. Lett. 2015, 415, 1–15. [Google Scholar] [CrossRef]
- Sirovich, L.; Pettenati, F. Test of Source-Parameter Inversion of the Intensities of a 54,000-Deaths Shock of the Seventeeth Century in Southeast Sicily. Bull. Seism. Soc. Am. 2001, 91, 792–811. [Google Scholar] [CrossRef]
- Sirovich, L.; Pettenati, F.; Chiaruttini, C. Test of Source-Parameter Inversion of Intensity Data. Nat. Hazards 2001, 24, 105–131. [Google Scholar] [CrossRef]
- Shanxi Province Institute of Earthquake Engineering Investigation (SPIEEI). Atlas of Shanxi Earthquake Isoseisma; Seismological Press: Beijing, China, 2009; pp. 1–72. [Google Scholar]
- Shen, Z.K.; Wan, Y.G.; Gan, W.J.; Li, T.; Zeng, Y. Crustal stress evolution of the last 700 years in North China and earthquake occurrence. Earthq. Res. China 2004, 20, 211–228. [Google Scholar]
- Chen, Y.F.; Chen, J.; Li, S.; Yu, Z.; Liu, X.; Shen, X. Variations of crustal thickness and average Vp/Vs ratio beneath the Shanxi Rift, North China, from receiver functions. Earth Planets Space 2021, 73, 200. [Google Scholar] [CrossRef]
- State Seismological Bureau. Research on Active Faults System Around the Ordos Block, 1st ed.; Seismological Press: Beijing, China, 1988. [Google Scholar]
- Li, Z.H. Prospecting of Fine Crustal Structure and Research on Seismogenic Tectonics of Linfen Basin; Taiyuan University of Technology: Taiyuan, China, 2014. [Google Scholar]
- Song, H.Z.; Lan, Y.G.; Xu, P.F.; Sun, Z.J.; Zheng, F.D. Analysis of Hongtong 1303 M8 earthquake processes. Seismol. Geol. 1995, 17, 13–24. [Google Scholar]
- Duan, Y.H.; Wang, F.; Zhang, X.; Lin, J.; Liu, Z.; Liu, B.; Yang, Z.; Guo, W.; Wei, Y. Three-dimensional crustal velocity structure model of the middle-eastern North China Craton (HBCrust1.0). Sci. China Earth Sci. 2016, 59, 1477–1488. [Google Scholar] [CrossRef]
- Zheng, T.Y.; Duan, Y.H.; Xu, W.W.; Ai, Y.S. A seismic model for crustal structure in North China Craton. Earth Planet. Phys. Planet Earth 2017, 1, 26–34. [Google Scholar] [CrossRef]
- Shi, F.; He, H.L. Research on Active Tectonics in the Shanxi Rift Basin and Prediction of Strong Earthquake Risk 195–197; Institute of Geology, China Earthquake Administration: Beijing, China, 2018. [Google Scholar]
- Lin, J.; Stein, R.S. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J. Geophys. Res. 2004, 109, B02303. [Google Scholar] [CrossRef]
- Toda, S.; Stein, R.S.; Richards-Dinger, K.; Bozkurt, S.B. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. J. Geophys. Res. 2005, 110, S16. [Google Scholar] [CrossRef]
- Jia, K.; Zhou, S.; Zhuang, J.; Jiang, C. Stress transfer along the western boundary of the Bayan Har block on the Tibet plateau from the 2008 to 2020 Yutian earthquake sequence in China. Geophys. Res. Lett. 2021, 48, e2021. [Google Scholar] [CrossRef]
- Han, Z.J.; Dong, S.P.; Xie, F.R.; An, Y.F. Earthquake triggering by static stress: The 5 major earthquakes with M > 7 (1561~1920) in the northern section of South north seismic zone, China. Chin. J. Geophys. 2008, 51, 1776–1784. [Google Scholar]
- Mancini, S.; Segou, M.; Werner, M.J.; Parsons, T. The predictive skills of elastic Coulomb rate-and-state aftershock forecasts during the 2019 Ridgecrest, California, earthquake sequence. Bull. Seismol. Soc. Am. 2020, 110, 1736–1751. [Google Scholar] [CrossRef]
- Zhu, Z.P.; Zhang, X.; Gai, Y.; Zhang, J.; Nie, W.; Shi, J.; Zhang, C.; Ruan, H. Study on the slow velocity structure of the crust in the Xingtai earthquake source area and adjacent areas. Acta Seismol. Sin. 1995, 17, 328–334. [Google Scholar]
- Toda, S.; Lin, J.; Meghraoui, M.; Stein, R.S. M = 7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Z.; Zheng, D.; Liu, X.; Lei, Q.; Shao, Y. Coulomb stress transfer of strong earthquakes within tectonic belts near western Ordos Block. Chin. J. Geophys. 2021, 64, 3576–3599. [Google Scholar] [CrossRef]
- King, G.C.P.; Stein, R.S.; Lin, J. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 1994, 84, 935–953. [Google Scholar] [CrossRef]
- Li, Z.; Han, B.; Liu, Z.; Zhang, M.; Yu, C.; Chen, B.; Liu, H.; Du, J.; Zhang, S.; Zhu, W.; et al. Source parameters and slip distributions of the 2016 and 2022 Menyuan Qinghai earthquakes constrained by InSAR observations. Geomat. Inform. Sci. Wuhan Univ. 2022, 47, 887–897. [Google Scholar] [CrossRef]
- Dong, C.L.; Li, L.; Zhao, J.Q.; Li, D.M.; Hu, Y.L.; Ren, L.W.; Xu, Z.G. Relocation of small earthquakes in Linfen area, Shanxi. China. Seismol. Geol. 2013, 35, 873–886. [Google Scholar] [CrossRef]
- Wang, S.; Xu, Z.; Pei, S. Velocity structure of uppermost mantle beneath North China from Pn tomography and its implications. Sci. China Ser. D Earth Sci. 2003, 46, 130–140. [Google Scholar] [CrossRef]
- Zhang, C.C.; Song, M.Q.; Wu, H.Y. Double-difference tomography in Linfen Basin and its surrounding areas. J. Geod. Geodyn. 2023, 43, 715–721. [Google Scholar] [CrossRef]
- Deng, Q.H.; Zhang, M.; Zhan, Y.; Liu, G.; Zhao, G.; Tang, J. The observation of electromagnetic array profiling and electrical characteristics of the crust in Xingtai MS 7.2 earthquake area. Acta Geophys. Sin. 1998, 41, 218–225. [Google Scholar]
- Wang, C.Y.; Zhang, X.K.; Lin, Z.Y.; Wu, Q.J.; Zhang, Y.S. Crustal structure beneath the Xingtai earthquake area in North China and its tectonic implications. Tectonophysics 1997, 274, 307–319. [Google Scholar] [CrossRef]
- Liu, G.S.; Lu, R.Q.; He, D.F.; Fang, L.H.; Zhang, Y.; Su, P.; Tao, W. Deep blind fault activity—A fault model of strong Mw 5.5 earthquake seismogenic structures in North China. Remote Sens. 2024, 16, 1796. [Google Scholar] [CrossRef]
- Yan, X.B.; Zhou, Y.S.; Li, Z.H.; Hu, G.R.; Ren, G.R.; Hao, X.J. The late quaternary activity and displacement rate of Fushan Fault in Shanxi. Seismol. Geol. 2022, 44, 35–45. [Google Scholar] [CrossRef]
- Zhao, L.Q.; Zhan, Y.; Wang, Q.L.; Han, J.; Cao, C.; Zhang, S.; Cai, Y. The seismogenic structure of the 1303 Hongtong M 8 earthquake inferred from magnetotelluric imaging. Seismol. Geol. 2022, 44, 686–700. [Google Scholar] [CrossRef]
- Yin, Y.T.; Jin, S.; Wei, W.; Ye, G.; Jing, J.; Zhang, L.; Dong, H.; Xie, C.; Liang, H. Lithospheric rheological heterogeneity across an intraplate rift basin (Linfen Basin, North China) constrained from magnetotelluric data: Implications for seismicity and rift evolution. Tectonophysics 2017, 717, 1–15. [Google Scholar] [CrossRef]
- Sun, X.Y.; Zhao, L.; Zhan, Y.; Wang, Q.; Yang, H.; Liu, X. Electrical structures in the central part of the North China Craton and their implications for the mechanism of craton destruction. Tectonophysics 2023, 862, 229959. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar] [CrossRef]
- Hanks, T.C.; Bakun, W.H. A bilinear source-scaling model for M-log A observations of continental earthquakes. Bull. Seismol. Soc. Am. 2002, 92, 1841–1846. [Google Scholar] [CrossRef]
- Xu, X.W.; Deng, Q.D. The features of late quaternary activity of the piedmont fault of Mt. Huoshan, Shanxi Province and 1303 Hongdong earthquake (Ms = 8). Seismol. Geol. 1990, 12, 21–30. [Google Scholar]
- Feng, X.; Ma, J.; Zhou, Y.; England, P.; Parsons, B.; Rizza, M.A.; Walker, R.T. Geomorphology and paleoseismology of the Weinan fault, Shaanxi, Central China, and the source of the 1556 Huaxian earthquake. JGR Solid Earth 2020, 125, e2019. [Google Scholar] [CrossRef]
- Middleton, T.A.; Walker, R.T.; Parsons, B.; Lei, Q.; Zhou, Y.; Ren, Z. A major, intraplate, normal-faulting earthquake: The 1739 Yinchuan event in northern China. JGR Solid Earth 2016, 121, 293–320. [Google Scholar] [CrossRef]
- Liu, J.; Xu, J.; Qu, O.; Han, L.F.; Wang, Z.J.; Shao, Z.G.; Zhang, P.Z.; Yao, W.Q.; Wang, P. Discussion on the overestimated magnitude of the 1920 Haiyuan Earthquake. Acta Seismol. Sin. 2023, 45, 579–596. [Google Scholar] [CrossRef]
- Stein, R.S. The role of stress transfer in earthquake occurrence. Nature 1999, 402, 605–609. [Google Scholar] [CrossRef]
- Shan, B.; Zheng, Y.; Liu, C.L.; Xie, Z.; Kong, J. Coseismic Coulomb failure stress changes caused by the 2017 M7.0 Jiuzhaigou Earthquake, and its relationship with the 2008 Wenchuan Earthquake. Sci. China Earth Sci. 2017, 60, 2181–2189. [Google Scholar] [CrossRef]
- Wu, D.; Qu, C.; Zhao, D.; Shan, X.; Chen, H. Slip models of the 2016 and 2022 Menyuan, China, earthquakes, illustrating regional tectonic structures. Remote Sen. 2022, 14, 6317. [Google Scholar] [CrossRef]
- Xie, X.S.; Xu, J.H.; Guo, H.; Sun, C.B.; Zhang, L. Map of the Distribution of the Luoyunshan Fault Zone (1:50,000) Instructions; Seismological Press: Beijing, China, 2017. [Google Scholar]
- Xu, J.; Shao, Z.G.; Liu, J.; Ji, L.Y. Analysis of interaction between great earthquakes in the eastern Bayan Har Block based on changes of Coulomb stress. Chin. J. Geophys. 2017, 60, 4056–4068. [Google Scholar] [CrossRef]
- Kuang, J.M.; Ge, L.L.; Metternicht, G.I.; Ng, A.H.M.; Wang, H.; Zare, M.; Kamranzad, F. Coseismic deformation and source model of the 12 November 2017 MW 7.3 Kermanshah Earthquake (Iran-Iraq border) investigated through DInSAR measurements. Int. J. Remote Sens. 2019, 40, 532–554. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.H.; Song, C. Geodetic constraints on recent subduction earthquakes and future seismic hazards in the southwestern coast of Mexico. Geophys. Res. Lett. 2021, 48, e2021. [Google Scholar] [CrossRef]
No. | Time | Macro Location | Long. (°E) | Lat. (°N) | M | Focal Mechanism | ||||
---|---|---|---|---|---|---|---|---|---|---|
Day | Month | Year | Strike (°) | Dip (°) | Rake (°) | |||||
1 | 25 | 09 | 1303 | Hongtong | 111.7 | 36.3 | 8 | 195 | 70 | −153 |
2 | 18 | 05 | 1695 | Linfen | 111.5 | 36.0 | 7.75 | 285 | 60 | −16 |
Hypocenter Depth (km) | Rupture Length (km) | Reference Depth (km) | ΔCFS (Bar) | Reference |
---|---|---|---|---|
15 | 45 | 15 | 2.356 | Figure S1a |
20 | 2.543 | Figure S1b | ||
85 | 15 | 1.527 | Figure S2a | |
20 | 1.291 | Figure S2b | ||
20 | 45 | 15 | 2.035 | Figure S3a |
20 | 1.951 | Figure S3b | ||
85 | 15 | 1.194 | Figure 11a | |
20 | 1.008 | Figure 11b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Lu, R.; Han, Z.; Liu, G.; Shi, F.; Yang, J.; Yan, X. A 3D Seismotectonic Model and the Spatiotemporal Relationship of Two Historical Large Earthquakes in the Linfen Basin, North China. Appl. Sci. 2024, 14, 8412. https://doi.org/10.3390/app14188412
Guo Z, Lu R, Han Z, Liu G, Shi F, Yang J, Yan X. A 3D Seismotectonic Model and the Spatiotemporal Relationship of Two Historical Large Earthquakes in the Linfen Basin, North China. Applied Sciences. 2024; 14(18):8412. https://doi.org/10.3390/app14188412
Chicago/Turabian StyleGuo, Zhaowu, Renqi Lu, Zhujun Han, Guanshen Liu, Feng Shi, Jing Yang, and Xiaobing Yan. 2024. "A 3D Seismotectonic Model and the Spatiotemporal Relationship of Two Historical Large Earthquakes in the Linfen Basin, North China" Applied Sciences 14, no. 18: 8412. https://doi.org/10.3390/app14188412
APA StyleGuo, Z., Lu, R., Han, Z., Liu, G., Shi, F., Yang, J., & Yan, X. (2024). A 3D Seismotectonic Model and the Spatiotemporal Relationship of Two Historical Large Earthquakes in the Linfen Basin, North China. Applied Sciences, 14(18), 8412. https://doi.org/10.3390/app14188412