Depth-Optimized Quantum Circuit of Gauss–Jordan Elimination
Abstract
:1. Introduction
Contributions
- Quantum Circuit of Gauss–Jordan Elimination in ISD. We present the implementation of quantum circuit of Gauss–Jordan elimination, which is one of the crucial modules in ISD.
- Depth-Optimized Quantum Circuit Implementation. Our focus is on minimizing both the Toffoli depth and the overall depth in our implementation of the quantum circuit for Gauss–Jordan elimination. To achieve this while keeping the number of qubits reasonable, we employ several methods, including duplicating pivot elements, designing parallel swap and elimination steps in Gauss–Jordan elimination, and using reverse operations to initialize qubits (i.e., set to s 0〉), in order to reuse and reduce the qubit count.
- Concrete Estimates of Required Quantum Cost. Using the quantum programming tool ProjectQ [10] (https://github.com/ProjectQ-Framework/ProjectQ (accessed on 19 September 2024)), we verify our quantum circuit implementation and analyze the needed quantum resources in detail. By decomposing high-level quantum gates (specifically Toffoli gates in this work), we estimate the number of Clifford and T gates needed.
2. Preliminaries
2.1. Syndrome Decoding Problem (SDP)
2.2. Information Set Decoding (ISD)
2.3. Gauss–Jordan Elimination
Algorithm 1: Gauss–Jordan Elimination |
Input:
A matrix H of size , a vector c of size n Output: Transformed matrix H and updated vector c
|
2.4. Grover’s Algorithm
2.5. Parallelization of Grover’s Algorithm
2.6. Quantum Gates
3. Parallel Implementation for Quantum Circuit of Gauss–Jordan Elimination
3.1. Obstacles to the Parallelization of Gauss–Jordan Elimination
3.2. Parallel Implementation of Swap: Copying Pivot
3.2.1. Replacing Controlled-Swap Gates with Toffoli Gates
3.2.2. Exponential Copy
3.2.3. Reuse Technique
3.3. Parallel Implementation of Elimination
Algorithm 2: Quantum Implementation of Gauss–Jordan Elimination |
Input:
A matrix H of size , a vector c of size n (the n-th column of H) Output: Updated vector c
|
4. Performance and Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; IEEE: New York, NY, USA, 1994; pp. 124–134. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. ACM Sigmob. Mob. Comput. Commun. Rev. 2001, 5, 3–55. [Google Scholar] [CrossRef]
- Bernstein, D.J.; Chou, T.; Lange, T.; von Maurich, I.; Misoczki, R.; Niederhagen, R.; Persichetti, E.; Peters, C.; Schwabe, P.; Sendrier, N.; et al. Classic McEliece: Conservative Code-Based Cryptography. 2017. Available online: https://classic.mceliece.org/nist/mceliece-20190331.pdf (accessed on 24 December 2021).
- Aragon, N.; Barreto, P.; Bettaieb, S.; Bidoux, L.; Blazy, O.; Deneuville, J.C.; Gaborit, P.; Ghosh, S.; Gueron, S.; Güneysu, T.; et al. BIKE: Bit Flipping Key Encapsulation. 2022. Available online: https://hal.science/hal-01671903/document (accessed on 19 September 2024).
- Melchor, C.A.; Aragon, N.; Bettaieb, S.; Bidoux, L.; Blazy, O.; Deneuville, J.C.; Gaborit, P.; Persichetti, E.; Zémor, G.; Bourges, I. Hamming quasi-cyclic (HQC). NIST PQC Round 2018, 2, 13. [Google Scholar]
- Bernstein, D.J. Grover vs. mceliece. In Proceedings of the Post-Quantum Cryptography: Third International Workshop, PQCrypto 2010, Darmstadt, Germany, 25–28 May 2010; Proceedings 3. Springer: Berlin/Heidelberg, Germany, 2010; pp. 73–80. [Google Scholar]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219. [Google Scholar]
- Perriello, S.; Barenghi, A.; Pelosi, G. A complete quantum circuit to solve the information set decoding problem. In Proceedings of the 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), Broomfield, CO, USA, 17–22 October 2021; IEEE: New York, NY, USA, 2021; pp. 366–377. [Google Scholar]
- Perriello, S.; Barenghi, A.; Pelosi, G. Improving the efficiency of quantum circuits for information set decoding. ACM Trans. Quantum Comput. 2023, 4, 1–40. [Google Scholar] [CrossRef]
- Steiger, D.S.; Häner, T.; Troyer, M. ProjectQ: An open source software framework for quantum computing. Quantum 2018, 2, 49. [Google Scholar] [CrossRef]
- Prange, E. The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 1962, 8, 5–9. [Google Scholar] [CrossRef]
- Becker, A.; Joux, A.; May, A.; Meurer, A. Decoding random binary linear codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In Proceedings of the Advances in Cryptology–EUROCRYPT 2012: 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, 15–19 April 2012; Proceedings 31. Springer: Berlin/Heidelberg, Germany, 2012; pp. 520–536. [Google Scholar]
- Stern, J. A new identification scheme based on syndrome decoding. In Proceedings of the Annual International Cryptology Conference, Santa Barbara, CA, USA, 22–26 August 1993; Springer: Berlin/Heidelberg, Germany, 1993; pp. 13–21. [Google Scholar]
- Peters, C. Information-set decoding for linear codes over F q. In Proceedings of the Post-Quantum Cryptography: Third International Workshop, PQCrypto 2010, Darmstadt, Germany, 25–28 May 2010; Proceedings 3. Springer: Berlin/Heidelberg, Germany, 2010; pp. 81–94. [Google Scholar]
- NIST. Stateless Hash-Based Digital Signature Standar. 2023. Available online: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.ipd.pdf (accessed on 19 September 2024).
- Kim, P.; Han, D.; Jeong, K.C. Time–space complexity of quantum search algorithms in symmetric cryptanalysis: Applying to AES and SHA-2. Quantum Inf. Process. 2018, 17, 339. [Google Scholar] [CrossRef]
- Jaques, S.; Naehrig, M.; Roetteler, M.; Virdia, F. Implementing Grover Oracles for Quantum Key Search on AES and LowMC. In Proceedings of the Advances in Cryptology-EUROCRYPT 2020-39th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 10–14 May 2020; Proceedings, Part II. Canteaut, A., Ishai, Y., Eds.; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2020; Volume 12106, pp. 280–310. [Google Scholar] [CrossRef]
- Sarah, D.; Peter, C. On the Practical Cost of Grover for AES Key Recovery 2024. Available online: https://csrc.nist.gov/csrc/media/Events/2024/fifth-pqc-standardization-conference/documents/papers/on-practical-cost-of-grover.pdf (accessed on 19 September 2024).
- Amy, M.; Maslov, D.; Mosca, M.; Roetteler, M.; Roetteler, M. A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2013, 32, 818–830. [Google Scholar] [CrossRef]
- Sun, S.N.; Motta, M.; Tazhigulov, R.N.; Tan, A.T.; Chan, G.K.L.; Minnich, A.J. Quantum computation of finite-temperature static and dynamical properties of spin systems using quantum imaginary time evolution. PRX Quantum 2021, 2, 010317. [Google Scholar] [CrossRef]
- Yuan, X.; Endo, S.; Zhao, Q.; Li, Y.; Benjamin, S.C. Theory of variational quantum simulation. Quantum 2019, 3, 191. [Google Scholar] [CrossRef]
- Chen, T.; Shen, R.; Lee, C.H.; Yang, B. High-fidelity realization of the AKLT state on a NISQ-era quantum processor. Scipost Phys. 2023, 15, 170. [Google Scholar] [CrossRef]
- Jones, T.; Benjamin, S.C. Robust quantum compilation and circuit optimisation via energy minimisation. Quantum 2022, 6, 628. [Google Scholar] [CrossRef]
Matrix Size | #CNOT | #1qCliff | #T | Toffoli Depth () | T-Depth ※ | #Qubit (M) | Full Depth | ||
---|---|---|---|---|---|---|---|---|---|
455 | 78 | 392 | 9 | 36 | 53 | 112 | 477 | 5936 | |
3861 | 492 | 3136 | 35 | 140 | 247 | 407 | 8645 | 100,529 | |
31,329 | 3352 | 24,640 | 135 | 540 | 1067 | 1880 | 144,045 | 2,005,960 | |
251,321 | 24,368 | 194,432 | 527 | 2108 | 4435 | 12,260 | 2,337,245 | 54,373,100 | |
848,401 | 79,432 | 652,736 | 1175 | 4700 | 10,107 | 39,488 | 11,875,725 | 399,105,216 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, K.; Oh, Y.; Seo, H. Depth-Optimized Quantum Circuit of Gauss–Jordan Elimination. Appl. Sci. 2024, 14, 8579. https://doi.org/10.3390/app14198579
Jang K, Oh Y, Seo H. Depth-Optimized Quantum Circuit of Gauss–Jordan Elimination. Applied Sciences. 2024; 14(19):8579. https://doi.org/10.3390/app14198579
Chicago/Turabian StyleJang, Kyungbae, Yujin Oh, and Hwajeong Seo. 2024. "Depth-Optimized Quantum Circuit of Gauss–Jordan Elimination" Applied Sciences 14, no. 19: 8579. https://doi.org/10.3390/app14198579
APA StyleJang, K., Oh, Y., & Seo, H. (2024). Depth-Optimized Quantum Circuit of Gauss–Jordan Elimination. Applied Sciences, 14(19), 8579. https://doi.org/10.3390/app14198579