Aortic Pressure Control Based on Deep Reinforcement Learning for Ex Vivo Heart Perfusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lumped Parameter Model of the EVHP System in Langendorff Mode
2.2. Reinforcement Learning for Pulsatile Pump Control
- State
- 2.
- Action
- 3.
- Reward
3. Results
3.1. Model Veritification
3.2. Heartbeat Change Conditions
3.3. AoP Change Conditions
3.4. RCA Change Conditions
3.5. Mixed Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moonsamy, P.; Axtell, A.L.; Ibrahim, N.E.; Funamoto, M.; Tolis, G.; Lewis, G.D.; D’Alessandro, D.A.; Villavicencio, M.A. Survival after Heart Transplantation in Patients Bridged with Mechanical Circulatory Support. J. Am. Coll. Cardiol. 2020, 75, 2892–2905. [Google Scholar] [CrossRef]
- Jawitz, O.K.; Raman, V.; DeVore, A.D.; Mentz, R.J.; Patel, C.B.; Rogers, J.; Milano, C. Increasing the United States heart transplant donor pool with donation after circulatory death. J. Thorac. Cardiovasc. Surg. 2020, 159, e307–e309. [Google Scholar] [CrossRef]
- Wang, L.; MacGowan, G.A.; Ali, S.; Dark, J.H. Ex situ heart perfusion: The past, the present, and the future. J. Heart Lung Transplant. 2021, 40, 69–86. [Google Scholar] [CrossRef]
- Rocchi, M.; Ingram, M.; Claus, P.; D’hooge, J.; Meyns, B.; Fresiello, L. Use of 3D anatomical models in mock circulatory loops for cardiac medical device testing. Artif. Organs 2023, 47, 260–272. [Google Scholar] [CrossRef]
- Messer, S.; Ardehali, A.; Tsui, S. Normothermic donor heart perfusion: Current clinical experience and the future. Transpl. Int. 2015, 28, 634–642. [Google Scholar] [CrossRef]
- Hatami, S.; Freed, D.H. Machine Perfusion of Donor Heart: State of the Art. Curr. Transplant. Rep. 2019, 6, 242–250. [Google Scholar] [CrossRef]
- Becker, D.; Hefti, M.; Schuler, M.J.; Borrego, L.B.; Hagedorn, C.; Muller, X.; Graf, R.; Dutkowski, P.; Tibbitt, M.W.; Onder, C.; et al. Model Assisted Analysis of the Hepatic Arterial Buffer Response during Ex Vivo Porcine Liver Perfusion. IEEE Trans. Biomed. Eng. 2020, 67, 667–678. [Google Scholar] [CrossRef]
- Duignan, T.; Guariento, A.; Doulamis, I.P.; Kido, T.; Regan, W.L.; Saeed, M.; Hoganson, D.M.; Emani, S.M.; Del Nido, P.J.; McCully, J.D.; et al. A Multi-Mode System for Myocardial Functional and Physiological Assessment during Ex Situ Heart Perfusion. J. Extra Corpor. Technol. 2020, 52, 303–313. [Google Scholar] [CrossRef]
- Campos-Delgado, D.U.; Bonilla, I.; Rodríguez-Martínez, M.; Sánchez-Briones, M.E.; Ruiz-Hernández, E. Closed-Loop Control of Renal Perfusion Pressure in Physiological Experiments. IEEE Trans. Biomed. Eng. 2013, 60, 1776–1784. [Google Scholar] [CrossRef]
- Huang, F.; Ruan, X.; Fu, X. Pulse-Pressure–Enhancing Controller for Better Physiologic Perfusion of Rotary Blood Pumps Based on Speed Modulation. ASAIO J. 2014, 60, 269–279. [Google Scholar] [CrossRef]
- Xin, L.; Yao, W.; Peng, Y.; Qi, N.; Xie, S.; Ru, C.; Badiwala, M.; Sun, Y. Model Reference Adaptive Control for Aortic Pressure Regulation in Ex Vivo Heart Perfusion. IEEE Trans. Control Syst. Technol. 2021, 29, 884–892. [Google Scholar] [CrossRef]
- Yao, W.; Xin, L.; Du, D.; Song, H.; Badiwala, M.; Sun, Y. Semiparametric Model-Based Adaptive Control for Aortic Pressure Regulation in Ex Situ Heart Perfusion. IEEE Trans. Ind. Electron. 2023, 70, 6131–6140. [Google Scholar] [CrossRef]
- Truby, L.K.; Casalinova, S.; Patel, C.B.; Agarwal, R.; Holley, C.L.; Mentz, R.J.; Milano, C.; Bryner, B.; Schroder, J.N.; Devore, A.D. Donation after Circulatory Death in Heart Transplantation: History, Outcomes, Clinical Challenges, and Opportunities to Expand the Donor Pool. J. Card. Fail. 2022, 28, 1456–1463. [Google Scholar] [CrossRef]
- Pahuja, M.; Case, B.C.; Molina, E.J.; Waksman, R. Overview of the FDA’s Circulatory System Devices Panel virtual meeting on the TransMedics Organ Care System (OCS) Heart—Portable extracorporeal heart perfusion and monitoring system. Am. Heart J. 2022, 247, 90–99. [Google Scholar] [CrossRef]
- Gómez-Hospital, J.A.; Ferreiro, J.L. Percutaneous circulatory support in high-risk PCI: Pulsatile or continuous flow devices? Int. J. Cardiol. 2022, 366, 80–81. [Google Scholar] [CrossRef]
- Ahmed, Z.; Mohamed, K.; Zeeshan, S.; Dong, X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database 2020, 2020, baaa010. [Google Scholar] [CrossRef]
- Zhu, T.; Li, K.; Herrero, P.; Georgiou, P. Basal Glucose Control in Type 1 Diabetes Using Deep Reinforcement Learning: An In Silico Validation. IEEE J. Biomed. Health Inform. 2021, 25, 1223–1232. [Google Scholar] [CrossRef]
- Xin, L.; Gellner, B.; Ribeiro, R.V.P.; Ruggeri, G.M.; Banner, D.; Meineri, M.; Rao, V.; Zu, J.; Badiwala, M.V. A New Multi-Mode Perfusion System for Ex Vivo Heart Perfusion Study. J. Med. Syst. 2017, 42, 25. [Google Scholar] [CrossRef]
- Bell, R.M.; Mocanu, M.M.; Yellon, D.M. Retrograde heart perfusion: The Langendorff technique of isolated heart perfusion. J. Mol. Cell. Cardiol. 2011, 50, 940–950. [Google Scholar] [CrossRef]
- Garber, L.; Khodaei, S.; Keshavarz-Motamed, Z. The Critical Role of Lumped Parameter Models in Patient-Specific Cardiovascular Simulations. Arch. Comput. Methods Eng. 2022, 29, 2977–3000. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, M.; Zhang, Y.; Meng, F.; Yang, T.; Fang, Z. Effects of Pulsatile Frequency of Left Ventricular Assist Device (LVAD) on Coronary Perfusion: A Numerical Simulation Study. Med. Sci. Monit. 2020, 26, e925367. [Google Scholar] [CrossRef]
- Xin, L.; Yao, W.; Peng, Y.; Lu, P.; Ribeiro, R.; Wei, B.; Gellner, B.; Simmons, C.; Zu, J.; Sun, Y.; et al. Primed Left Ventricle Heart Perfusion Creates Physiological Aortic Pressure in Porcine Hearts. ASAIO J. 2020, 66, 55–63. [Google Scholar] [CrossRef]
- Goodwill, A.G.; Baker, H.E.; Dick, G.M.; McCallinhart, P.E.; Bailey, C.A.; Brown, S.M.; Man, J.J.; Tharp, D.L.; Clark, H.E.; Blaettner, B.S.; et al. Mineralocorticoid receptor blockade normalizes coronary resistance in obese swine independent of functional alterations in Kv channels. Basic Res. Cardiol. 2021, 116, 35. [Google Scholar] [CrossRef]
- White, C.W.; Avery, E.; Müller, A.; Li, Y.; Le, H.; Thliveris, J.; Arora, R.C.; Lee, T.W.; Dixon, I.M.C.; Tian, G.; et al. Avoidance of Profound Hypothermia auring Initial Reperfusion Improves the Functional Recovery of Hearts Donated after Circulatory Death. Am. J. Transplant. 2016, 16, 773–782. [Google Scholar] [CrossRef]
- Konst, R.E.; Guzik, T.J.; Kaski, J.-C.; Maas, A.H.E.M.; Elias-Smale, S.E. The pathogenic role of coronary microvascular dysfunction in the setting of other cardiac or systemic conditions. Cardiovasc. Res. 2020, 116, 817–828. [Google Scholar] [CrossRef]
- Stevens, T.S.W.; Tigrek, R.F.; Tammam, E.S.; Sloun, R.J.G.v. Automated Gain Control Through Deep Reinforcement Learning for Downstream Radar Object Detection. In Proceedings of the 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021; pp. 1780–1784. [Google Scholar]
- Hatami, S.; White, C.W.; Ondrus, M.; Qi, X.; Buchko, M.; Himmat, S.; Lin, L.; Cameron, K.; Nobes, D.; Chung, H.-J.; et al. Normothermic Ex Situ Heart Perfusion in Working Mode: Assessment of Cardiac Function and Metabolism. J. Vis. Exp. 2019, 143, e58430. [Google Scholar] [CrossRef]
- Aupperle, H.; Garbade, J.; Ullmann, C.; Schneider, K.; Krautz, C.; Dhein, S.; Gummert, J.F.; Schoon, H.-A. Comparing the ultrastructural effects of two different cardiac preparation- and perfusion-techniques in a porcine model of extracorporal long-term preservation. Eur. J. Cardio-Thorac. Surg. 2007, 31, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Simakov, S.; Liu, Y.; Liang, F. Impact of Arrhythmia on Myocardial Perfusion: A Computational Model-Based Study. Mathematics 2021, 9, 2128. [Google Scholar] [CrossRef]
- Qi, X.; Hatami, S.; Bozso, S.; Buchko, M.; Forgie, K.A.; Olafson, C.; Khan, M.; Himmat, S.; Wang, X.; Nobes, D.S.; et al. The evaluation of constant coronary artery flow versus constant coronary perfusion pressure during normothermic ex situ heart perfusion. J. Heart Lung Transplant. 2022, 41, 1738–1750. [Google Scholar] [CrossRef]
- Kaffka genaamd Dengler, S.E.; Mishra, M.; van Tuijl, S.; de Jager, S.C.; Sluijter, J.P.; Doevendans, P.A.; van der Kaaij, N.P. Validation of the slaughterhouse porcine heart model for ex-situ heart perfusion studies. Perfusion 2024, 39, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.Y.; Moyer, C.; Katerji, A.E.; Keller, S.P.; Edelman, E.R. A Scalable Approach to Determine Intracardiac Pressure from Mechanical Circulatory Support Device Signals. IEEE Trans. Biomed. Eng. 2021, 68, 905–913. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value | Parameter | Value |
---|---|---|---|
RS | LCA | ||
CS | |||
LS | |||
RCA | |||
CCA | CIMC |
Parameter | Value |
---|---|
Max episodes | 1000 |
Minibatch size | 64 |
Learning rate of actor | 0.01 |
Learning rate of critic | 0.01 |
Stop training value | 500 |
Discount factor | 0.995 |
Parameter | The Range of Value | Unit |
---|---|---|
HR | [50, 120] | bpm |
[20, 80] | mmHg | |
[0.5, 1.2] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Yang, M.; Liu, Y.; Yu, J. Aortic Pressure Control Based on Deep Reinforcement Learning for Ex Vivo Heart Perfusion. Appl. Sci. 2024, 14, 8735. https://doi.org/10.3390/app14198735
Wang S, Yang M, Liu Y, Yu J. Aortic Pressure Control Based on Deep Reinforcement Learning for Ex Vivo Heart Perfusion. Applied Sciences. 2024; 14(19):8735. https://doi.org/10.3390/app14198735
Chicago/Turabian StyleWang, Shangting, Ming Yang, Yuan Liu, and Junwen Yu. 2024. "Aortic Pressure Control Based on Deep Reinforcement Learning for Ex Vivo Heart Perfusion" Applied Sciences 14, no. 19: 8735. https://doi.org/10.3390/app14198735
APA StyleWang, S., Yang, M., Liu, Y., & Yu, J. (2024). Aortic Pressure Control Based on Deep Reinforcement Learning for Ex Vivo Heart Perfusion. Applied Sciences, 14(19), 8735. https://doi.org/10.3390/app14198735