Pro-Health Potential of Selected Uncommon Oilseed Plants
Abstract
:1. Introduction
2. Methods
3. Pro-Health Potential of Selected Uncommon Oilseed Plants
3.1. Carthamus tinctorius L.
3.1.1. Anti-Inflammatory Properties
3.1.2. Antioxidant Potential
3.1.3. Antibacterial Effect
3.1.4. Antidiabetes Properties
3.1.5. Antiobesity Potential
3.1.6. Anticancer Properties
3.1.7. Cardioprotective Effect
3.1.8. Hepatoprotective Effect
3.2. Camelina sativa L.
3.2.1. Antioxidant Activity
3.2.2. Antimicrobial Properties
3.2.3. Prevention in Metabolic Diseases and Others
3.2.4. Anticancer Activity
3.3. Nigella sativa L.
3.3.1. Anti-Inflammatory Activity
3.3.2. Antioxidant Properties
3.3.3. Antibacterial Activity
3.3.4. Antidiabetic Properties
3.3.5. Antiobesity Effect
3.3.6. Anticancer Potential
3.3.7. Cardioprotective Potential
3.3.8. Hepatoprotective Potential
3.3.9. Immunomodulatory Properties
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mena, P.; Angelino, D. Plant Food, Nutrition, and Human Health. Nutrients 2020, 12, 2157. [Google Scholar] [CrossRef] [PubMed]
- El-Ramady, H.; Hajdú, P.; Törős, G.; Badgar, K.; Llana, X.; Kiss, A.; Abdalla, N.; Omara, A.E.D.; Elsakhawy, T.; Elbasiouny, H.; et al. Plant Nutrition for Human Health: A Pictorial Review on Plant Bioactive Compounds for Sustainable Agriculture. Sustainability 2022, 14, 8329. [Google Scholar] [CrossRef]
- Hazrati, S.; Mollaei, S.; Habibzadeh, F. Chemical and Compositional Structures (Fatty Acids, Sterols, and Tocopherols) of Unconventional Seed Oils and Their Biological Activities. In Multiple Biological Activities of Unconventional Seed Oils, 1st ed.; Mariod, A.A., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 363–382. [Google Scholar] [CrossRef]
- Mondor, M.; Hernández-Álvarez, A.J. Camelina sativa Composition, Attributes, and Applications: A Review. Eur. J. Lipid Sci. Technol. 2022, 124, 2100035. [Google Scholar] [CrossRef]
- Mazaheri, Y.; Torbati, M.; Azadmard-Damirchi, S.; Savage, G.P. A Comprehensive Review of the Physicochemical, Quality and Nutritional Properties of Nigella sativa Oil. Food Rev. Int. 2019, 35, 342–362. [Google Scholar] [CrossRef]
- Fristiohady, A.; Al-Ramadan, W.; Asasutjarit, R.; Purnama, L.O.M.J. Phytochemistry, Pharmacology and Medicinal Uses of Carthamus Tinctorius Linn: An Updated Review. Biointerface Res. Appl. Chem. 2023, 13, 441. [Google Scholar] [CrossRef]
- Dehariya, R.; Dixit, A.K. A Review on Potential Pharmacological Uses of Carthamus tinctorius L. World J. Pharm. Res. 2015, 3, 1741–1746. [Google Scholar]
- Xian, B.; Wang, R.; Jiang, H.; Zhou, Y.; Yan, J.; Huang, X.; Chen, J.; Wu, Q.; Chen, C.; Xi, Z.; et al. Comprehensive Review of Two Groups of Flavonoids in Carthamus tinctorius L. Biomed. Pharmacother. 2022, 153, 113462. [Google Scholar] [CrossRef]
- Zhang, L.L.; Tian, K.; Tang, Z.H.; Chen, X.J.; Bian, Z.X.; Wang, Y.T.; Lu, J.J. Phytochemistry and Pharmacology of Carthamus tinctorius L. Am. J. Chin. Med. 2016, 44, 197–226. [Google Scholar] [CrossRef]
- Adamska, I.; Biernacka, P. Bioactive Substances in Safflower Flowers and Their Applicability in Medicine and Health-Promoting Foods. Int. J. Food Sci. 2021, 2021, 6657639. [Google Scholar] [CrossRef]
- Kim, S.Y.; Hong, M.; Deepa, P.; Sowndhararajan, K.; Park, S.J.; Park, S.J.; Kim, S. Carthamus tinctorius Suppresses LPS-Induced Anti-Inflammatory Responses by Inhibiting the MAPKs/NF-ΚB Signaling Pathway in HaCaT Cells. Sci. Pharm. 2023, 91, 14. [Google Scholar] [CrossRef]
- Li, X.R.; Liu, J.; Peng, C.; Zhou, Q.M.; Liu, F.; Guo, L.; Xiong, L. Polyacetylene Glucosides from the Florets of Carthamus tinctorius and Their Anti-Inflammatory Activity. Phytochemistry 2021, 187, 112770. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Moon, Y.S.; Park, T.S.; Son, J.H. Serotonins of Safflower Seeds Play a Key Role in Anti-Inflammatory Effect in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. J. Plant Biotechnol. 2015, 42, 364–369. [Google Scholar] [CrossRef]
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 7898. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Khémiri, I.; Essghaier, B.; Sadfi-Zouaoui, N.; Bitri, L. Antioxidant and Antimicrobial Potentials of Seed Oil from Carthamus tinctorius L. In the Management of Skin Injuries. Oxid. Med. Cell. Longev. 2020, 2020, 4103418. [Google Scholar] [CrossRef]
- Zemour, K.; Labdelli, A.; Adda, A.; Dellal, A.; Talou, T.; Merah, O. Phenol Content and Antioxidant and Antiaging Activity of Safflower Seed Oil (Carthamus tinctorius L.). Cosmetics 2019, 6, 55. [Google Scholar] [CrossRef]
- Bacchetti, T.; Morresi, C.; Bellachioma, L.; Ferretti, G. Antioxidant and Pro-Oxidant Properties of Carthamus tinctorius, Hydroxy Safflor Yellow A, and Safflor Yellow A. Antioxidants 2020, 9, 119. [Google Scholar] [CrossRef]
- Karimkhani, M.M.; Shaddel, R.; Khodaparast, M.H.H.; Vazirian, M.; Piri-Gheshlaghi, S. Antioxidant and Antibacterial Activity of Safflower (Carthamus tinctorius L.) Extract from Four Different Cultivars. Qual. Assur. Saf. Crop. 2016, 8, 565–574. [Google Scholar] [CrossRef]
- Lee, M.; Zhao, H.; Liu, X.; Liu, D.; Chen, J.; Li, Z.; Chu, S.; Kou, X.; Liao, S.; Deng, Y.; et al. Protective Effect of Hydroxysafflor Yellow A on Nephropathy by Attenuating Oxidative Stress and Inhibiting Apoptosis in Induced Type 2 Diabetes in Rat. Oxid. Med. Cell. Longev. 2020, 2020, 7805393. [Google Scholar] [CrossRef]
- Chai, W.; Zhang, W.; Jin, Z.; Zheng, Y.; Jin, P.; Zhang, Q.; Zhi, J. Hydroxysafflor Yellow A Attenuates Renal Ischemia- Reperfusion Injury in a Rat Model. Lett. Drug Des. Discov. 2016, 9, 967–972. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Peng, W.; Xia, Z.; Gan, P.; Huang, W.; Shi, Y.; Fan, R. Hydroxysafflor Yellow A Exerts Antioxidant Effects in a Rat Model of Traumatic Brain Injury. Mol. Med. Rep. 2016, 14, 3690–3696. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Xu, C.J.; Liu, Y.; Zhou, Y.; Xiong, S.L.; Wu, H.C.; Deng, J.; Yi, Y.W.; Qiao, M.F.; Xiao, H.; et al. Chemical Structures and Antioxidant Activities of Polysaccharides from Carthamus tinctorius L. Polymers 2022, 14, 3510. [Google Scholar] [CrossRef] [PubMed]
- Untachai, J.; Dodgson, W.; Srifa, A.; Dodgson, J.L.A. In-Vitro Antibacterial Activities of Selected Traditional Plants. J. Pure Appl. Microbiol. 2018, 12, 265–276. [Google Scholar] [CrossRef]
- Omidpanah, S.; Vazirian, M.; Hadjiakhondi, A.; Nabavi, S.M.; Manayi, A. Evaluation of Antibacterial Activity of Some Medicinal Plants against Isolated Escherichia Coli from Diseased Laying Hens. Prog. Nutr. 2016, 18, 429–435. [Google Scholar]
- Haleem, A.M.; Hameed, A.H.; Al-Majeed, R.A.; Hussein, N.N.; Hikmat, R.A.; Queen, B.K. Anticancer, Antioxidant, Antimicrobial and Cytogenetic Effects of Ethanol Leaves Extract of Carthamus tinctorius. In Proceedings of the 4th International Conference on Modern Technologies in Agricultural Sciences, Najaf, Iraq, 20–21 September 2023. [Google Scholar]
- Lee, M.; Li, H.; Zhao, H.; Suo, M.; Liu, D. Effects of Hydroxysafflor Yellow A on the PI3K/ AKT Pathway and Apoptosis of Pancreatic β-Cells in Type 2 Diabetes Mellitus Rats. Diabetes Metab. Syndr. Obes. 2020, 13, 1097–1107. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, D.; Feng, Y.; Li, Y.; Liao, H. Pharmacological Actions, Molecular Mechanisms, Pharmacokinetic Progressions, and Clinical Applications of Hydroxysafflor Yellow A in Antidiabetic Research. J. Immunol. Res. 2021, 2021, 4560012. [Google Scholar] [CrossRef]
- Moftah, R.; Rashwan, M.; Abdel-Gawad, A.; Seleim, M. Effect of Nigella sativa and Carthamus tinctorius L. Oils on Various Biochemical Parameters of Streptozotocin-Induced Diabetic Rats. Assiut J. Agric. Sci. 2018, 49, 133–144. [Google Scholar] [CrossRef]
- Fernández-Sánchez, A.; Madrigal-Santillán, E.; Bautista, M.; Esquivel-Soto, J.; Morales-González, Á.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sánchez-Rivera, G.; Valadez-Vega, C.; Morales-González, J.A. Inflammation, Oxidative Stress, and Obesity. Int. J. Mol. Sci. 2011, 12, 3117–3132. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Xia, N. The Interplay Between Adipose Tissue and Vasculature: Role of Oxidative Stress in Obesity. Front. Cardiovasc. Med. 2021, 8, 650214. [Google Scholar] [CrossRef]
- Martínez-Martínez, E.; Cachofeiro, V. Oxidative Stress in Obesity. Antioxidants 2022, 11, 639. [Google Scholar] [CrossRef]
- Yan, K.; Wang, X.; Pan, H.; Wang, L.; Yang, H.; Liu, M.; Zhu, H.; Gong, F. Safflower Yellow and Its Main Component HSYA Alleviate Diet-Induced Obesity in Mice: Possible Involvement of the Increased Antioxidant Enzymes in Liver and Adipose Tissue. Front. Pharmacol. 2020, 11, 482. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, X.; Pan, H.; Dai, Y.; Li, N.; Wang, L.; Yang, H.; Gong, F. The Mechanism by Which Safflower Yellow Decreases Body Fat Mass and Improves Insulin Sensitivity in HFD-Induced Obese Mice. Front. Pharmacol. 2016, 7, 127. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yue, S.; Yang, Z.; Feng, W.; Meng, X.; Wang, A.; Peng, C.; Wang, C.; Yan, D. Oral Hydroxysafflor Yellow A Reduces Obesity in Mice by Modulating the Gut Microbiota and Serum Metabolism. Pharmacol. Res. 2018, 134, 40–50. [Google Scholar] [CrossRef]
- da Silva Pérez, E.M.; de Alencar, N.M.N.; de Figueiredo, I.S.T.; Aragão, K.S.; Gaban, S.V.F. Effect of Safflower Oil (Carthamus tinctorius L.) Supplementation in the Abdominal Adipose Tissues and Body Weight of Male Wistar Rats Undergoing Exercise Training. Food Chem. 2022, 4, 10083. [Google Scholar] [CrossRef]
- Ruyvaran, M.; Zamani, A.; Mohamadian, A.; Zarshenas, M.M.; Eftekhari, M.H.; Pourahmad, S.; Abarghooei, E.F.; Akbari, A.; Nimrouzi, M. Safflower (Carthamus tinctorius L.) Oil Could Improve Abdominal Obesity, Blood Pressure, and Insulin Resistance in Patients with Metabolic Syndrome: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J. Ethnopharmacol. 2022, 282, 114590. [Google Scholar] [CrossRef]
- Ma, Y.C.; Li, M.M.; Wu, Q.; Xu, W.F.; Lin, S.; Chen, Z.W.; Liu, L.; Shi, L.; Sheng, Q.; Li, T.T.; et al. Hydroxysafflor Yellow A Sensitizes Ovarian Cancer Cells to Chemotherapeutic Agent by Decreasing WSB1 Expression. Eur. J. Integr. Med. 2019, 25, 579332. [Google Scholar] [CrossRef]
- Yang, F.; Li, J.; Zhu, J.; Wang, D.; Chen, S.; Bai, X. Hydroxysafflor Yellow A Inhibits Angiogenesis of Hepatocellular Carcinoma via Blocking ERK/MAPK and NF-ΚB Signaling Pathway in H22 Tumor-Bearing Mice. Eur. J. Pharmacol. 2015, 754, 105–114. [Google Scholar] [CrossRef]
- Fu, H.; Liu, X.; Jin, L.; Lang, J.; Hu, Z.; Mao, W.; Cheng, C.; Shou, Q. Safflower Yellow Reduces DEN-Induced Hepatocellular Carcinoma by Enhancing Liver Immune Infiltration through Promotion of Collagen Degradation and Modulation of Gut Microbiota. Food Funct. 2021, 12, 10632–10643. [Google Scholar] [CrossRef] [PubMed]
- Fristiohady, A.; Al-Ramadan, W.; Fitrawan, L.O.M.; Hamsidi, R.; Purnama, L.O.M.J.; Malaka, M.H.; Haruna, L.A. Safflower (Carthamus tinctorius Linn.) Inhibits Cell Proliferation and Induces Apoptotic in Breast Cancer Cell Lines T47D. Pak. J. Biol. Sci. 2023, 26, 427–433. [Google Scholar] [CrossRef]
- Qu, C.; Zhu, W.; Dong, K.; Pan, Z.; Chen, Y.; Chen, X.; Liu, X.; Xu, W.; Lin, H.; Zheng, Q.; et al. Inhibitory Effect of Hydroxysafflor Yellow B on the Proliferation of Human Breast Cancer MCF-7 Cells. Recent Pat. Anticancer Drug Discov. 2019, 14, 187–197. [Google Scholar] [CrossRef]
- Luo, Z.; Zeng, H.; Ye, Y.; Liu, L.; Li, S.; Zhang, J.; Luo, R. Safflower Polysaccharide Inhibits the Proliferation and Metastasis of MCF-7 Breast Cancer Cells. Mol. Med. Rep. 2015, 11, 4611–4616. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Huang, Y.; Jia, M.; Lu, D.; Zhang, H.W.; Huang, D.; Liu, S.H.; Lv, C. Safflower Polysaccharide Inhibits AOM/DSS-Induced Mice Colorectal Cancer Through the Regulation of Macrophage Polarization. Front. Pharmacol. 2021, 12, 761641. [Google Scholar] [CrossRef]
- Yang, J.; Wang, R.; Feng, Q.; Wang, Y.X.; Zhang, Y.Y.; Wu, W.H.; Ge, P.L.; Qi, J.P. Safflower Polysaccharide Induces Cervical Cancer Cell Apoptosis via Inhibition of the PI3K/Akt Pathway. S. Afr. J. Bot. 2018, 118, 209–215. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, J.; Zhang, C.; Zhang, Y.; Wang, R.; Li, X.; Zhang, S. Safflower Polysaccharide Inhibits the Development of Tongue Squamous Cell Carcinoma. World J. Surg. Oncol. 2018, 16, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.X.; Wang, M.; Wang, R.Y.; Liu, H.T.; Qi, Y.D.; Fu, J.H.; Zhang, Q.; Zhang, B.G.; Sun, X.B. Hydroxysafflor Yellow A Inhibits Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury via Regulating the AMPK/NLRP3 Inflammasome Pathway. Int. Immunopharmacol. 2020, 82, 106316. [Google Scholar] [CrossRef]
- Ye, J.; Lu, S.; Wang, M.; Ge, W.; Liu, H.; Qi, Y.; Fu, J.; Zhang, Q.; Zhang, B.; Sun, G.; et al. Hydroxysafflor Yellow A Protects Against Myocardial Ischemia/Reperfusion Injury via Suppressing NLRP3 Inflammasome and Activating Autophagy. Front. Pharmacol. 2020, 11, 1170. [Google Scholar] [CrossRef]
- Li, Y.; Wu, X.; Mao, Y. Protective Effect of Hydroxysafflor Yellow A on Isoproterenol-Induced Myocardial Fibrosis in Rats. J. Biomater. Tissue Eng. 2020, 9, 1563–1570. [Google Scholar] [CrossRef]
- Bunbupha, S.; Wunpathe, C.; Maneesai, P.; Berkban, T.; Kukongviriyapan, U.; Kukongviriyapan, V.; Prachaney, P.; Pakdeechote, P. Carthamus tinctorius L. Extract Improves Hemodynamic and Vascular Alterations in a Rat Model of Renovascular Hypertension through Ang II-AT1R-NADPH Oxidase Pathway. Ann. Anat. 2018, 216, 82–89. [Google Scholar] [CrossRef]
- Ma, M.; Chen, L.; Tang, Z.; Song, Z.; Kong, X. Hepatoprotective Effect of Total Flavonoids from Carthamus tinctorius L. Leaves against Carbon Tetrachloride-Induced Chronic Liver Injury in Mice. Fitoterapia 2023, 171, 105605. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, C.; Zhang, H. Hepatoprotective Effects of Kaempferol 3-O-Rutinoside and Kaempferol 3-O-Glucoside from Carthamus tinctorius L. on CCl4-Induced Oxidative Liver Injury in Mice. J. Food Drug Anal. 2015, 23, 310–317. [Google Scholar] [CrossRef]
- He, Y.; Liu, Q.; Li, Y.; Yang, X.; Wang, W.; Li, T.; Zhang, W.; Cui, Y.; Wang, C.; Lin, R. Protective Effects of Hydroxysafflor Yellow A (HSYA) on Alcohol-Induced Liver Injury in Rats. J. Physiol. Biochem. 2015, 71, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Ratusz, K.; Popis, E.; Ciemniewska-Żytkiewicz, H.; Wroniak, M. Oxidative Stability of Camelina (Camelina sativa L.) Oil Using Pressure Differential Scanning Calorimetry and Rancimat Method. J. Therm. Anal. Calorim. 2016, 126, 343–351. [Google Scholar] [CrossRef]
- Ratusz, K.; Symoniuk, E.; Wroniak, M.; Rudzińska, M. Bioactive Compounds, Nutritional Quality and Oxidative Stability of Cold-Pressed Camelina (Camelina sativa L.) Oils. Appl. Sci. 2018, 8, 2606. [Google Scholar] [CrossRef]
- Berti, M.; Gesch, R.; Eynck, C.; Anderson, J.; Cermak, S. Camelina Uses, Genetics, Genomics, Production, and Management. Ind. Crops Prod. 2016, 94, 690–710. [Google Scholar] [CrossRef]
- Batrina, S.L.; Jurcoane, S.; Imbrea, I.M.; Pop, G.; Popescu, I.M.; Imbrea, F. Nutritive Quality of Camelina Varieties with Special Focus on Oil. Sci. Pap. Ser. A Agronom. 2021, 64, 212–216. [Google Scholar]
- Maghsoudlou, E.; Raftani Amiri, Z.; Esmaeilzadeh kenari, R. Determination and Correlation Analysis of Phytochemical Compounds, Antioxidant Activity, and Oxidative Stability of Different Edible Oils. J. Food Meas. Charact. 2024, 18, 714–726. [Google Scholar] [CrossRef]
- Kapusta-Duch, J.; Smoleń, S.; Jędrszczyk, E.; Leszczyńska, T.; Borczak, B. Basic Composition, Antioxidative Properties, and Selected Mineral Content of the Young Shoots of Nigella (Nigella sativa L.), Safflower (Carthamus tinctorius L.), and Camelina (Camelina sativa L.) at Different Stages of Vegetation. Appl. Sci. 2024, 14, 1065. [Google Scholar] [CrossRef]
- Karamać, M.; Gai, F.; Peiretti, P.G. Effect of the Growth Stage of False Flax (Camelina sativa l.) on the Phenolic Compound Content and Antioxidant Potential of the Aerial Part of the Plant. Pol. J. Food Nutr. Sci. 2020, 70, 189–198. [Google Scholar] [CrossRef]
- Li, F.; Li, Z.; Wei, Y.; Zhang, L.; Ning, E.; Yu, L.; Zhu, J.; Wang, X.; Ma, Y.; Fan, Y. Qualitative and Quantitative Analysis of Polyphenols in Camelina Seed and Theirs Antioxidant Activities. Nat. Prod. Res. 2023, 37, 1888–1891. [Google Scholar] [CrossRef]
- Pathak, R.; Mohsin, M.; Mehta, S.P.S. An Assessment of in Vitro Antioxidant Potential of Camelina sativa L. Seed Oil and Estimation of Tocopherol Content Using HPTLC Method. J. Sci. Res. 2021, 13, 589–600. [Google Scholar] [CrossRef]
- Bravi, E.; Falcinelli, B.; Mallia, G.; Marconi, O.; Royo-Esnal, A.; Benincasa, P. Effect of Sprouting on the Phenolic Compounds, Glucosinolates, and Antioxidant Activity of Five Camelina sativa (L.) Crantz Cultivars. Antioxidants 2023, 12, 1495. [Google Scholar] [CrossRef] [PubMed]
- Răducu, A.L.; Popa, A.; Sicuia, O.; Boiu-Sicuia, O.A.; Israel-Roming, F.; Cornea, C.P.; Jurcoane, S. Antimicrobial Activity of Camelina Oil and Hydroalcoholic Seed Extracts. Rom. Biotechnol. Lett. 2021, 26, 2355–2360. [Google Scholar] [CrossRef]
- Kumar, K.; Gupta, S.M.; Arya, M.C.; Nasim, M. In Vitro Antimicrobial and Antioxidant Activity of Camelina Seed Extracts as Potential Source of Bioactive Compounds. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2017, 87, 521–526. [Google Scholar] [CrossRef]
- Kumar, K.; Pathak, R. Phytochemical Analysis and Assessment of in Vitro Antibacterial Activity of Non-Polar Solvent Based Camelina Seed Extracts. Indian J. Plant Physiol. 2016, 21, 255–262. [Google Scholar] [CrossRef]
- Cambiaggi, L.; Chakravarty, A.; Noureddine, N.; Hersberger, M. The Role of α-Linolenic Acid and Its Oxylipins in Human Cardiovascular Diseases. Int. J. Mol. Sci. 2023, 24, 6110. [Google Scholar] [CrossRef]
- Bertoni, C.; Abodi, M.; D’Oria, V.; Milani, G.P.; Agostoni, C.; Mazzocchi, A. Alpha-Linolenic Acid and Cardiovascular Events: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 14319. [Google Scholar] [CrossRef]
- Kavyani, M.; Saleh-Ghadimi, S.; Dehghan, P.; Abbasalizad Farhangi, M.; Khoshbaten, M. Co-Supplementation of Camelina Oil and a Prebiotic Is More Effective for in Improving Cardiometabolic Risk Factors and Mental Health in Patients with NAFLD: A Randomized Clinical Trial. Food Funct. 2021, 12, 8594–8604. [Google Scholar] [CrossRef] [PubMed]
- Schwab, U.S.; Lankinen, M.A.; de Mello, V.D.; Manninen, S.M.; Kurl, S.; Pulkki, K.J.; Laaksonen, D.E.; Erkkilä, A.T. Camelina sativa Oil, but Not Fatty Fish or Lean Fish, Improves Serum Lipid Profile in Subjects with Impaired Glucose Metabolism—A Randomized Controlled Trial. Mol. Nutr. Food Res. 2018, 62, 1700503. [Google Scholar] [CrossRef]
- Cojocariu, R.O.; Balmus, I.M.; Lefter, R.; Hritcu, L.; Ababei, D.C.; Ciobica, A.; Copaci, S.; Mot, S.E.L.; Copolovici, L.; Copolovici, D.M.; et al. Camelina sativa Methanolic and Ethanolic Extract Potential in Alleviating Oxidative Stress, Memory Deficits, and Affective Impairments in Stress Exposure-Based Irritable Bowel Syndrome Mouse Models. Oxid. Med. Cell. Longev. 2020, 2020, 9510305. [Google Scholar] [CrossRef]
- Prieto, M.A.; López, C.J.; Simal-Gandara, J. Glucosinolates: Molecular Structure, Breakdown, Genetic, Bioavailability, Properties and Healthy and Adverse Effects. In Advances in Food and Nutrition Research, 1st ed.; Ferreira, I.C.F.R., Barros, L., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 90, pp. 305–350. [Google Scholar] [CrossRef]
- Barba, F.J.; Nikmaram, N.; Roohinejad, S.; Khelfa, A.; Zhu, Z.; Koubaa, M. Bioavailability of Glucosinolates and Their Breakdown Products: Impact of Processing. Front. Nutr. 2016, 3, 24. [Google Scholar] [CrossRef]
- Pagliari, S.; Giustra, C.M.; Magoni, C.; Celano, R.; Fusi, P.; Forcella, M.; Sacco, G.; Panzeri, D.; Campone, L.; Labra, M. Optimization of Ultrasound-Assisted Extraction of Naturally Occurring Glucosinolates from by-Products of Camelina sativa L. and Their Effect on Human Colorectal Cancer Cell Line. Front. Nutr. 2022, 9, 901944. [Google Scholar] [CrossRef]
- Tiwari, P.; Jena, S.; Satpathy, S.; Sahu, P.K. Nigella sativa: Phytochemistry, Pharmacology and Its Therapeutic Potential. Res. J. Pharm. Technol. 2019, 12, 3111–3116. [Google Scholar] [CrossRef]
- Begum, S.; Mannan, A. A Review on Nigella sativa: A Marvel Herb. J. Drug Deliv. Ther. 2020, 10, 213–219. [Google Scholar] [CrossRef]
- Hossain, M.S.; Sharfaraz, A.; Dutta, A.; Ahsan, A.; Masud, M.A.; Ahmed, I.A.; Goh, B.H.; Urbi, Z.; Sarker, M.M.R.; Ming, L.C. A Review of Ethnobotany, Phytochemistry, Antimicrobial Pharmacology and Toxicology of Nigella sativa L. Biomed. Pharmacother. 2021, 143, 112182. [Google Scholar] [CrossRef] [PubMed]
- Dalli, M.; Bekkouch, O.; Azizi, S.E.; Azghar, A.; Gseyra, N.; Kim, B. Nigella sativa L. Phytochemistry and Pharmacological Activities: A Review (2019–2021). Biomolecules 2022, 12, 20. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Rahman, M.A.; Sohag, A.A.M.; Uddin, M.J.; Dash, R.; Sikder, M.H.; Rahman, M.S.; Timalsina, B.; Munni, Y.A.; Sarker, P.P.; et al. Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients 2021, 13, 1784. [Google Scholar] [CrossRef]
- Bin Abdulrahman, K.A.; Bamosa, A.O.; Bukhari, A.I.; Siddiqui, I.A.; Arafa, M.A.; Mohsin, A.A.; Althageel, M.F.; Aljuaeed, M.O.; Aldeailej, I.M.; Alrajeh, A.I.; et al. The Effect of Short Treatment with Nigella sativa on Symptoms, the Cluster of Differentiation (CD) Profile, and Inflammatory Markers in Mild COVID-19 Patients: A Randomized, Double-Blind Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 11798. [Google Scholar] [CrossRef]
- Purwatiningsih, S.; Syamsuddin, S.; Lisal, S.T.; Liaury, K.; Bahar, B.; Yustisia, I. Black Seed (Nigella sativa) Efficacy in Improving Clinical Symptoms and Interleukin-6 Levels Schizophrenic Patients. Maced. J. Med. Sci. 2022, 10, 374–382. [Google Scholar] [CrossRef]
- Rahmani, A.; Niknafs, B.; Naseri, M.; Nouri, M.; Tarighat-Esfanjani, A. Effect of Nigella sativa Oil on Oxidative Stress, Inflammatory, and Glycemic Control Indices in Diabetic Hemodialysis Patients: A Randomized Double-Blind, Controlled Trial. Evid. Based Complement. Altern. Med. 2022, 2022, 2753294. [Google Scholar] [CrossRef]
- Kooshki, A.; Taghizadeh, M.; Akbarzadeh, R. The Effects of Nigella sativa Oil on Serum Levels Inflammatory Markers, Oxidative Stress Markers, and Lipid Profile in Dialysis Patients: A Double-Blind Clinical Trail. J. Nutr. Food Secur. 2022, 7, 272–281. [Google Scholar] [CrossRef]
- Razmpoosh, E.; Safi, S.; Mazaheri, M.; Khalesi, S.; Nazari, M.; Mirmiran, P.; Nadjarzadeh, A. A Crossover Randomized Controlled Trial Examining the Effects of Black Seed (Nigella sativa) Supplementation on IL-1β, IL-6 and Leptin, and Insulin Parameters in Overweight and Obese Women. BMC Complement. Med. Ther. 2024, 24, 22. [Google Scholar] [CrossRef] [PubMed]
- Bashir, K.M.I.; Kim, J.K.; Chun, Y.S.; Choi, J.S.; Ku, S.K. In Vitro Assessment of Anti-Adipogenic and Anti-Inflammatory Properties of Black Cumin (Nigella sativa L.) Seeds Extract on 3T3-L1 Adipocytes and Raw264.7 Macrophages. Medicina 2023, 59, 2028. [Google Scholar] [CrossRef] [PubMed]
- Alrashidi, M.; Derawi, D.; Salimon, J.; Yusoff, M.F. The Effects of Different Extraction Solvents on the Yield and Antioxidant Properties of Nigella sativa Oil from Saudi Arabia. J. Taibah Univ. Sci. 2022, 16, 330–336. [Google Scholar] [CrossRef]
- Sakib, R.; Caruso, F.; Aktar, S.; Belli, S.; Kaur, S.; Hernandez, M.; Rossi, M. Antioxidant Properties of Thymoquinone, Thymohydroquinone and Black Cumin (Nigella sativa L.) Seed Oil: Scavenging of Superoxide Radical Studied Using Cyclic Voltammetry, DFT and Single Crystal X-Ray Diffraction. Antioxidants 2023, 12, 607. [Google Scholar] [CrossRef] [PubMed]
- Demir, E.; Taysi, S.; Ulusal, H.; Kaplan, D.S.; Cinar, K.; Tarakcioglu, M. Nigella sativa Oil and Thymoquinone Reduce Oxidative Stress in the Brain Tissue of Rats Exposed to Total Head Irradiation. Int. J. Radiat. Biol. 2020, 96, 228–235. [Google Scholar] [CrossRef]
- Alkis, H.; Demir, E.; Taysi, M.R.; Sagir, S.; Taysi, S. Effects of Nigella sativa Oil and Thymoquinone on Radiation-Induced Oxidative Stress in Kidney Tissue of Rats. Biomed. Pharmacother. 2021, 139, 111540. [Google Scholar] [CrossRef]
- Mouket, S.; Demir, E.; Yucel, A.; Taysi, S. Nigella sativa Oil Reduces Oxidative/Nitrosative Stress in the Salivary Gland of Rats Exposed to Total Cranial Irradiation. Drug Chem. Toxicol. 2023, 46, 1051–1056. [Google Scholar] [CrossRef]
- Cetinkaya, K.; Atasever, M.; Erisgin, Z.; Sonmez, C.; Ozer, C.; Coskun, B.; Alisik, M. The Role of Oxidative Stress in Chemotherapy-Induced Gonadotoxicity in a Rat Model, and the Protective Effects of Nigella sativa Oil on Oxidative Stress, the Anti-Müllerian Hormone Level, and Apoptosis. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 6343–6350. [Google Scholar] [CrossRef]
- Azami, R.; Farshbaf-Khalili, A.; Mahdipour, M.; Firozsalar, F.; Shahnazi, M. Effect of Nigella sativa Oil on Early Menopausal Symptoms and Serum Levels of Oxidative Markers in Menopausal Women: A Randomized, Triple-Blind Clinical Trial. Nurs. Midwifery Stud. 2022, 11, 103–111. [Google Scholar] [CrossRef]
- Sana, S.; Saeed, M.; Muhammad Umair, H. Effect of Nigella sativa on Oxidative Stress in Post-Menopausal Females. J. Islamabad Med. Dent. Coll. 2019, 8, 88–91. [Google Scholar] [CrossRef]
- Tahir, F.; Sonibare, M.; Yagi, S.M. Comparative Chemical Profiling and Antimicrobial Activity of Nigella sativa Seeds Oils Obtained from Different Sources. Natr. Resour. Hum. Health 2022, 2, 194–199. [Google Scholar] [CrossRef]
- Zouirech, O.; Alyousef, A.A.; El Barnossi, A.; El Moussaoui, A.; Bourhia, M.; Salamatullah, A.M.; Ouahmane, L.; Giesy, J.P.; Aboul-Soud, M.A.M.; Lyoussi, B.; et al. Phytochemical Analysis and Antioxidant, Antibacterial, and Antifungal Effects of Essential Oil of Black Caraway (Nigella sativa L.) Seeds against Drug-Resistant Clinically Pathogenic Microorganisms. Biomed. Res. Int. 2022, 2022, 5218950. [Google Scholar] [CrossRef] [PubMed]
- Mouwakeh, A.; Kincses, A.; Nové, M.; Mosolygó, T.; Mohácsi-Farkas, C.; Kiskó, G.; Spengler, G. Nigella sativa Essential Oil and Its Bioactive Compounds as Resistance Modifiers against Staphylococcus aureus. Phytother. Res. 2019, 33, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- Gawron, G.; Krzyczkowski, W.; Lemke, K.; Ołdak, A.; Kadziński, L.; Banecki, B. Nigella sativa Seed Extract Applicability in Preparations against Methicillin-Resistant Staphylococcus aureus and Effects on Human Dermal Fibroblasts Viability. J. Ethnopharmacol. 2019, 244, 112135. [Google Scholar] [CrossRef] [PubMed]
- Elmowalid, G.A.E.; Ahmad, A.A.M.; El-Hamid, M.I.A.; Ibrahim, D.; Wahdan, A.; El Oksh, A.S.A.; Yonis, A.E.; Elkady, M.A.; Ismail, T.A.; Alkhedaide, A.Q.; et al. Nigella sativa Extract Potentially Inhibited Methicillin Resistant Staphylococcus aureus Induced Infection in Rabbits: Potential Immunomodulatory and Growth Promoting Properties. Animals 2022, 12, 2635. [Google Scholar] [CrossRef]
- Shafodino, F.S.; Lusilao, J.M.; Mwapagha, L.M. Phytochemical Characterization and Antimicrobial Activity of Nigella sativa Seeds. PLoS ONE 2022, 17, e0272457. [Google Scholar] [CrossRef]
- Sutrisna, E.; Azizah, T.; Wahyuni, S. Potency of Nigella sativa Linn. Seed as Antidiabetic (Preclinical Study). Res. J. Pharm. Technol. 2022, 15, 381–384. [Google Scholar] [CrossRef]
- Javaheri, J.; Asgari, M.; Ghafarzadegan, R. The Effect of Nigella sativa Powder on Blood Sugar and Lipid Profiles in Type 2 Diabetic Patients. Jundishapur J. Nat. Pharm. Prod. 2023, 18, e135757. [Google Scholar] [CrossRef]
- Moustafa, H.A.M.; El Wakeel, L.M.; Halawa, M.R.; Sabri, N.A.; El-Bahy, A.Z.; Singab, A.N. Effect of Nigella sativa Oil versus Metformin on Glycemic Control and Biochemical Parameters of Newly Diagnosed Type 2 Diabetes Mellitus Patients. Endocrine 2019, 65, 286–294. [Google Scholar] [CrossRef]
- Safi, S.; Razmpoosh, E.; Fallahzadeh, H.; Mazaheri, M.; Abdollahi, N.; Nazari, M.; Nadjarzadeh, A.; Salehi-Abargouei, A. The Effect of Nigella sativa on Appetite, Anthropometric and Body Composition Indices among Overweight and Obese Women: A Crossover, Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Complement. Ther. Med. 2021, 57, 102653. [Google Scholar] [CrossRef]
- Esmail, M.; Anwar, S.; Kandeil, M.; El-Zanaty, A.M.; Abdel-Gabbar, M. Effect of Nigella sativa, Atorvastatin, or L-Carnitine on High Fat Diet-Induced Obesity in Adult Male Albino Rats. Biomed. Pharmacother. 2021, 141, 111818. [Google Scholar] [CrossRef] [PubMed]
- Ramineedu, K.; Sankaran, K.R.; Mallepogu, V.; Rendedula, D.P.; Gunturu, R.; Gandham, S.; Md, S.I.; Meriga, B. Thymoquinone Mitigates Obesity and Diabetic Parameters through Regulation of Major Adipokines, Key Lipid Metabolizing Enzymes and AMPK/p-AMPK in Diet-Induced Obese Rats. 3 Biotech 2024, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Liu, L.; Li, S.; Hou, X.; Yang, J. Advances in Research on the Relationship between Thymoquinone and Pancreatic Cancer. Front. Oncol. 2023, 12, 1092020. [Google Scholar] [CrossRef]
- Salah, A.; Sleem, R.; Abd-Elaziz, A.; Khalil, H. Regulation of NF-ΚB Expression by Thymoquinone; A Role in Regulating Pro-Inflammatory Cytokines and Programmed Cell Death in Hepatic Cancer Cells. Asian Pac. J. Cancer Prev. 2023, 24, 3739–3748. [Google Scholar] [CrossRef]
- Tendulkar, S.; Hattiholi, A.; Dodamani, S. In-silico analysis of the thymoquinone as an anti-cancer agent against chemoresistance-associated proteins in ovarian cancer. J. Adv. Sci. Res. 2023, 14, 36–44. [Google Scholar] [CrossRef]
- Kumari, P.; Dang, S. Evaluation of Enhanced Cytotoxicity Effect of Repurposed Drug Simvastatin/ Thymoquinone Combination against Breast Cancer Cell Line. Cardiovasc. Hematol. Agents Med. Chem. 2023, 22, 348–366. [Google Scholar] [CrossRef]
- Vahitha, V.; Lali, G.; Prasad, S.; Karuppiah, P.; Karunakaran, G.; AlSalhi, M.S. Unveiling the Therapeutic Potential of Thymol from Nigella sativa L. Seed: Selective Anticancer Action against Human Breast Cancer Cells (MCF-7) through down-Regulation of Cyclin D1 and Proliferative Cell Nuclear Antigen (PCNA) Expressions. Mol. Biol. Rep. 2024, 51, 61. [Google Scholar] [CrossRef]
- Ma, J.; Peng, C. Nigella sativa Plant Extract Inhibits the Proliferation of MDA-MB-231 Breast Cancer Cells via Apoptosis and Cell Cycle Arrest. Bangladesh J. Pharmacol. 2024, 19, 29–38. [Google Scholar] [CrossRef]
- Tavakoli-Rouzbehani, O.M.; Abbasnezhad, M.; Kheirouri, S.; Alizadeh, M. Effects of Nigella sativa Oil Supplementation on Selected Metabolic Parameters and Anthropometric Indices in Patients with Coronary Artery Disease: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Phytother. Res. 2021, 35, 3988–3999. [Google Scholar] [CrossRef]
- Shoaei-Hagh, P.; Kamelan Kafi, F.; Najafi, S.; Zamanzadeh, M.; Heidari Bakavoli, A.; Ramezani, J.; Soltanian, S.; Asili, J.; Hosseinzadeh, H.; Eslami, S.; et al. A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial to Evaluate the Benefits of Nigella sativa Seeds Oil in Reducing Cardiovascular Risks in Hypertensive Patients. Phytother. Res. 2021, 35, 4388–4400. [Google Scholar] [CrossRef]
- Emamat, H.; Mousavi, S.H.; Kargar Shouraki, J.; Hazrati, E.; Mirghazanfari, S.M.; Samizadeh, E.; Hosseini, M.; Hadi, V.; Hadi, S. The Effect of Nigella sativa Oil on Vascular Dysfunction Assessed by Flow-Mediated Dilation and Vascular-Related Biomarkers in Subject with Cardiovascular Disease Risk Factors: A Randomized Controlled Trial. Phytother. Res. 2022, 36, 4388–4400. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli-Rouzbehani, O.M.; Abbasnezhad, M.; Kheirouri, S.; Alizadeh, M. Efficacy of Nigella sativa Oil on Endothelial Function and Atherogenic Indices in Patients with Coronary Artery Diseases: A Randomized, Double-Blind, Placebo-Control Clinical Trial. Phytother. Res. 2022, 36, 4516–4526. [Google Scholar] [CrossRef] [PubMed]
- Petagine, L.; Gulrez Zariwala, M.; Patel, V.B. Non-Alcoholic Fatty Liver Disease: Immunological Mechanisms and Current Treatments. World J. Gastroenterol. 2023, 29, 4831–4850. [Google Scholar] [CrossRef] [PubMed]
- Khonche, A.; Huseini, H.F.; Gholamian, M.; Mohtashami, R.; Nabati, F.; Kianbakht, S. Standardized Nigella sativa Seed Oil Ameliorates Hepatic Steatosis, Aminotransferase and Lipid Levels in Non-Alcoholic Fatty Liver Disease: A Randomized, Double-Blind and Placebo-Controlled Clinical Trial. J. Ethnopharmacol. 2019, 234, 106–111. [Google Scholar] [CrossRef]
- Rashidmayvan, M.; Vandyousefi, S.; Barati, M.; Salamat, S.; Ghodrat, S.; Khorasanchi, M.; Jahan-Mihan, A.; Nattagh-Eshtivani, E.; Mohammadshahi, M. The Effect of Nigella sativa Supplementation on Cardiometabolic Outcomes in Patients with Non-Alcoholic Fatty Liver: A Randomized Double-Blind, Placebo-Controlled Trial. Complement. Ther. Clin. Pract. 2022, 48, 101598. [Google Scholar] [CrossRef]
- Ateş, M.B.; Hatipoğlu, D. Effect of Nigella sativa Oil on Bisphenol A-Induced Hepatotoxicity in Wistar Albino Rats: Histopathological and Biochemical Investigation. Int. J. Agric. Sci. 2022, 6, 402–409. [Google Scholar] [CrossRef]
- Erisgin, Z.; Atasever, M.; Cetinkaya, K.; Akarca Dizakar, S.Ö.; Omeroglu, S.; Sahin, H. Protective Effects of Nigella sativa Oil against Carboplatin-Induced Liver Damage in Rats. Biomed. Pharmacother. 2019, 110, 742–747. [Google Scholar] [CrossRef]
- Ebuehi, O.A.T.; Olowojaiye, A.A.; Erukainure, O.L.; Ajagun-Ogunleye, O.M. Nigella sativa (Black Seed) Oil Ameliorates CCl4-Induced Hepatotoxicity and Mediates Neurotransmitter Levels in Male Sprague Dawley Albino Rats. J. Food Biochem. 2020, 44, e13108. [Google Scholar] [CrossRef]
- Raghunandhakumar, S.; Ezhilarasan, D.; Shree Harini, K. Thymoquinone Protects Thioacetamide-Induced Chronic Liver Injury by Inhibiting TGF-Β1/Smad3 Axis in Rats. J. Biochem. Mol. Toxicol. 2024, 38, e23694. [Google Scholar] [CrossRef]
- Salem, A.; Bamosa, A.; Alam, M.; Alshuraim, S.; Alyalak, H.; Alagga, A.; Tarabzouni, F.; Alisa, O.; Sabit, H.; Mohsin, A.; et al. Effect of Nigella sativa on General Health and Immune System in Young Healthy Volunteers; a Randomized, Placebo-Controlled, Double-Blinded Clinical Trial. F1000Research 2021, 10, 1199. [Google Scholar] [CrossRef]
- Hakim, A.S.; Abouelhag, H.A.; Abdou, A.M.; Fouad, E.A.; Khalaf, D.D. Assessment of Immunomodulatory Effects of Black Cumin Seed (Nigella sativa) Extract on Macrophage Activity in Vitro. Int. J. Vet. Sci. 2019, 8, 385–389. [Google Scholar]
- Meles, D.K.; Safitri, E.; Mustofa, I.; Susilowati, S.; Putri, D.K. Immunomodulatory Activity of Black Jinten Oil (Nigella sativa) as Macrophage Activator for Salmonella Typimurium Infected Rat. Indian Vet. J. 2020, 97, 12–14. [Google Scholar]
- Hidayati, T.; Akrom, A.; Apriani, L.; Sun, S. Study of Black Cumin Seed Oil (BCSO) (Nigella sativa L.) as an Immunomodulator in the Healthy Active Smoker Volunteer. In Proceedings of the Sriwijaya International Conference on Earth Science and Environmental Issue (ICESEI), Palembang, Indonesia, 21 October 2020. [Google Scholar]
Potential Pro-Health Properties | Carthamus tinctorius L. | Camelina sativa L. | Nigella sativa L. |
---|---|---|---|
Anti-inflammatory | + | + | + |
Antioxidant | + | + | + |
Antibacterial | + | + | + |
Antidiabetes | + | + | + |
Antiobesity | + | + | + |
Anticancer | + | + | + |
Cardioprotective | + | + | + |
Hepatoprotective | + | + | + |
Immunomodulatory | + |
Plant | Fatty Acids | Other Biological Active Compounds | References |
---|---|---|---|
Carthamus tinctorius L. |
|
| [8,9,10,23] |
Camelina sativa L. |
|
| [54,55,56,57,59,63] |
Nigella sativa L. |
|
| [75,77,78,79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dereń, K.; Kapusta-Duch, J.; Leszczyńska, T.; Borczak, B.; Kotuła, M. Pro-Health Potential of Selected Uncommon Oilseed Plants. Appl. Sci. 2024, 14, 8843. https://doi.org/10.3390/app14198843
Dereń K, Kapusta-Duch J, Leszczyńska T, Borczak B, Kotuła M. Pro-Health Potential of Selected Uncommon Oilseed Plants. Applied Sciences. 2024; 14(19):8843. https://doi.org/10.3390/app14198843
Chicago/Turabian StyleDereń, Karolina, Joanna Kapusta-Duch, Teresa Leszczyńska, Barbara Borczak, and Marta Kotuła. 2024. "Pro-Health Potential of Selected Uncommon Oilseed Plants" Applied Sciences 14, no. 19: 8843. https://doi.org/10.3390/app14198843
APA StyleDereń, K., Kapusta-Duch, J., Leszczyńska, T., Borczak, B., & Kotuła, M. (2024). Pro-Health Potential of Selected Uncommon Oilseed Plants. Applied Sciences, 14(19), 8843. https://doi.org/10.3390/app14198843