Analysis of Spatiotemporal Gait Variables before and after Unilateral Total Knee Arthroplasty
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach
2.2. Participants
2.3. Data Collection Procedures
2.4. Data Analysis Procedures
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bączkowicz, D.; Skiba, G.; Czerner, M.; Majorczyk, E. Gait and functional status analysis before and after total knee arthroplasty. Knee 2018, 25, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Branco, J.C.; Rodrigues, A.M.; Gouveia, N.; Eusébio, M.; Ramiro, S.; Machado, P.M.; da Costa, L.P.; Mourão, A.F.; Silva, I.; Laires, P.; et al. Prevalence of rheumatic and musculoskeletal diseases and their impact on health-related quality of life, physical function and mental health in Portugal: Results from EpiReumaPt—A national health survey. RMD Open 2016, 2, e000166. [Google Scholar] [CrossRef] [PubMed]
- Kiss, R.M.; Bejek, Z.; Szendrői, M. Variability of gait parameters in patients with total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 1252–1260. [Google Scholar] [CrossRef]
- Carr, A.J.; Robertsson, O.; Graves, S.; Price, A.J.; Arden, N.K.; Judge, A.; Beard, D.J. Knee replacement. Lancet 2012, 379, 1331–1340. [Google Scholar] [CrossRef]
- Jabłoński, J.; Sibiński, M.; Polguj, M.; Kowalczewski, J.; Marczak, D.; Faflik, Ł.; Jabłońska, D. The influence of implant position on final clinical outcome and gait analysis after total knee arthroplasty. J. Knee Surg. 2019, 32, 891–896. [Google Scholar] [CrossRef]
- Mandeville, D.; Osternig, L.R.; Chou, L.S. The effect of total knee replacement surgery on gait stability. Gait Posture 2008, 27, 103–109. [Google Scholar] [CrossRef]
- McClelland, J.A.; Webster, K.E.; Feller, J.A. Gait analysis of patients following total knee replacement: A systematic review. Knee 2007, 14, 253–263. [Google Scholar] [CrossRef]
- Naili, J.E.; Iversen, M.D.; Esbjörnsson, A.C.; Hedström, M.; Schwartz, M.H.; Häger, C.K.; Broström, E.W. Deficits in functional performance and gait one year after total knee arthroplasty despite improved self-reported function. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3378–3386. [Google Scholar] [CrossRef] [PubMed]
- Papagiannis, G.I.; Triantafyllou, A.I.; Roumpelakis, I.M.; Papagelopoulos, P.J.; Babis, G.C. Gait analysis methodology for the measurement of biomechanical parameters in total knee arthroplasties. A literature review. J. Orthop. 2018, 15, 181–185. [Google Scholar] [CrossRef]
- Aljehani, M.S.; Christensen, J.C.; Snyder-Mackler, L.; Crenshaw, J.; Brown, A.; Zeni, J.A., Jr. Knee biomechanics and contralateral knee osteoarthritis progression after total knee arthroplasty. Gait Posture 2022, 91, 266–275. [Google Scholar] [CrossRef]
- Rahman, J.; Tang, Q.; Monda, M.; Miles, J.; McCarthy, I. Gait assessment as a functional outcome measure in total knee arthroplasty: A cross-sectional study. BMC Musculoskelet. Disord. 2015, 16, 66. [Google Scholar] [CrossRef] [PubMed]
- Fransen, B.L.; Pijnappels, M.; Butter, I.K.; Burger, B.J.; van Dieën, J.H.; Hoozemans, M.J.M. Patients’ perceived walking abilities, daily-life gait behavior and gait quality before and 3 months after total knee arthroplasty. Arch. Orthop. Trauma Surg. 2022, 142, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Alnahdi, A.H.; Zeni, J.A.; Snyder-Mackler, L. Gait after unilateral total knee arthroplasty: Frontal plane analysis. J. Orthop. Res. 2011, 29, 647–652. [Google Scholar] [CrossRef]
- Piva, S.R.; Farrokhi, S.; Almeida, G.; Fitzgerald, G.K.; Levison, T.J.; DiGioia, A.M. Dose-associated changes in gait parameters in response to exercise programs after total knee arthroplasty: Secondary analysis of two randomized studies. Int. J. Phys. Med. Rehabil. 2015, 3, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Abbasi-Bafghi, H.; Fallah-Yakhdani, H.R.; Meijer, O.G.; de Vet, H.C.; Bruijn, S.M.; Yang, L.Y.; Knol, D.L.; Van Royen, B.J.; van Dieën, J.H. The effects of knee arthroplasty on walking speed: A meta-analysis. BMC Musculoskelet. Disord. 2012, 13, 66. [Google Scholar] [CrossRef]
- Biggs, P.R.; Whatling, G.M.; Wilson, C.; Metcalfe, A.J.; Holt, C.A. Which osteoarthritic gait features recover following total knee replacement surgery? PLoS ONE 2019, 14, e0203417. [Google Scholar] [CrossRef]
- Anand Prakash, A. Knee arthroplasty and gait: Effect on level walking-an overview. Indian J Orthop. 2021, 55, 815–822. [Google Scholar] [CrossRef]
- Heikkilä, A.; Sevander-Kreus, N.; Häkkinen, A.; Vuorenmaa, M.; Salo, P.; Konsta, P.; Ylinen, J. Effect of total knee replacement surgery and postoperative 12 month home exercise program on gait parameters. Gait Posture 2017, 53, 92–97. [Google Scholar] [CrossRef]
- Esposito, F.; Freddolini, M.; Marcucci, M.; Latella, L.; Corvi, A. Biomechanical analysis on total knee replacement patients during gait: Medial pivot or posterior stabilized design? Clin. Biomech. 2020, 78, 105068. [Google Scholar] [CrossRef]
- Elbaz, A.; Mor, A.; Segal, G.; Debi, R.; Shazar, N.; Herman, A. Novel classification of knee osteoarthritis severity based on spatiotemporal gait analysis. Osteoarthr. Cartilage 2014, 22, 457–463. [Google Scholar] [CrossRef]
- Kluge, F.; Hannink, J.; Pasluosta, C.; Klucken, J.; Gaßner, H.; Gelse, K.; Eskofier, B.M.; Krinner, S. Pre-operative sensor-based gait parameters predict functional outcome after total knee arthroplasty. Gait Posture 2018, 66, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, H.; Allard, P.; Prince, F.; Labelle, H. Symmetry and limb dominance in able-bodied gait: A review. Gait Posture 2000, 12, 34–45. [Google Scholar] [CrossRef]
- Insall, J.N.; Dorr, L.D.; Scott, R.D.; Scott, W.N. Rationale of the Knee Society clinical rating system. Clin. Orthop. Relat. Res. 1989, 248, 13–14. [Google Scholar] [CrossRef] [PubMed]
- Scuderi, G.R.; Bourne, R.B.; Noble, P.C.; Benjamin, J.B.; Lonner, J.H.; Scott, W.N. The new Knee Society knee scoring system. Clin Orthop. Relat. Res. 2012, 470, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.L.P.E.; Croci, A.T.; Gobbi, R.G.; Hinckel, B.B.; Pecora, J.R.; Demange, M.K. Translation and validation of the new version of the Knee Society Score—The 2011 KS Score—into Brazilian Portuguese. Rev. Bras. Ortop. 2017, 52, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, N.; Buchanan, W.W.; Goldsmith, C.H.; Campbell, J.; Stitt, L.W. Validation study of WOMAC: A health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J. Rheumatol. 1988, 15, 1833–1840. [Google Scholar] [PubMed]
- Fernandes, M.I. Translation and Validation of the Specific Quality of Life Questionnaire for Osteoarthritis WOMAC (Western Ontario McMaster Universities) for Portuguese Language. Master’s Thesis, Federal University of São Paulo, São Paulo, Brazil, 2003. [Google Scholar]
- Lage, P.T.S.; Machado, L.A.C.; Barreto, S.M.; de Figueiredo, R.C.; Telles, R.W. Measurement properties of Portuguese-Brazil Western Ontario and McMaster Universities osteoarthritis index (WOMAC) for the assessment of knee complaints in Brazilian adults: ELSA-Brasil Musculoskeletal cohort. Rheumatol. Int. 2020, 40, 233–242. [Google Scholar] [CrossRef]
- Almeida E Reis, D.; Sousa, J.; Pires, J.; Moreira, F.; Alves, F.; Teixeira-Vaz, A.; Oliveira, P.; Barroso, J.; Fonseca, P.; Vilas-Boas, J.P. Postural stability computerized evaluation in total knee arthroplasty. Disabil. Rehabil. 2024, 4, 2691–2698. [Google Scholar] [CrossRef]
- Leardini, A.; Sawacha, Z.; Paolini, G.; Ingrosso, S.; Nativo, R.; Benedetti, M.G. A new anatomically based protocol for gait analysis in children. Gait Posture 2007, 26, 560–571. [Google Scholar] [CrossRef]
- Kroneberg, D.; Elshehabi, M.; Meyer, A.C.; Doss, S.; Kühn, A.; Maetzler, W.; Schmitz-Hübsch, T. How many steps are enough? Assessment of gait variability in realistically confined clinical settings. Basal Ganglia 2017, 100, 3–4. [Google Scholar] [CrossRef]
- Kwong, W.H.; Sidarta, A.; Chua, S.G.K.; Ang, W.T.; Liang, P.; Pataky, T.; Donnelly, C. Recommendations for minimum trial numbers during walking gait. ISBS Proc. Archive 2020, 38, 156–159. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates, Publishers: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Bascuas, I.; Tejero, M.; Monleón, S.; Boza, R.; Muniesa, J.M.; Belmonte, R. Balance 1 year after TKA: Correlation with clinical variables. Orthopedics 2013, 36, e6–e12. [Google Scholar] [CrossRef] [PubMed]
- Notarnicola, A.; Maccagnano, G.; Fiore, A.; Spinarelli, A.; Montenegro, L.; Paoloni, M.; Pastore, F.; Tafuri, S.; Moretti, B. Baropodometry on patients after total knee arthroplasty. Musculoskelet. Surg. 2018, 102, 29–137. [Google Scholar] [CrossRef] [PubMed]
Clinical Parameter | Pre | Post | Z-Value | p-Value | dcohen | |||
---|---|---|---|---|---|---|---|---|
Number of falls in last month | 0.0 (1.0) | 0.0 (0.0) | −1.15 | 0.24 | 0.52 | |||
Knee Pain | Ipsilateral | 6.0 (2.0) | 2.0 (3.0) | −3.83 | <0.001 * | 3.05 | ||
Contralateral | 5.0 (4.0) | 4.0 (5.0) | −0.06 | 0.95 | 0.02 | |||
Joint ROM | Ipsilateral | Extension | Active | 9.0 (6.0) | 4.0 (4.0) | −3.52 | <0.001 * | 2.41 |
Passive | 0.0 (6.0) | 0.0 (1.0) | −2.10 | 0.03 * | 1.03 | |||
Flexion | Active | 102.0 (18.0) | 102.0 (10.0) | −1.17 | 0.87 | 0.52 | ||
Passive | 114.0 (15.0) | 114.0 (12.0) | −1.58 | 0.79 | 0.73 | |||
Contralateral | Extension | Active | 4.0 (8.0) | 4.0 (8.0) | −0.15 | 0.24 | 0.06 | |
Passive | 0.0 (2.0) | 0.0 (6.0) | −0.26 | 0.11 | 0.11 | |||
Flexion | Active | 112.0 (15.0) | 114.0 (12.0) | −1.16 | 0.24 | 0.52 | ||
Passive | 118.0 (18.0) | 124.0 (15.0) | −1.64 | 0.10 | 0.77 | |||
Dynamometry | Ipsilateral | 208.2 (67.7) | 221.5 (84.7) | −1.44 | 0.14 | 0.66 | ||
Contralateral | 221.1 (68.7) | 243.3 (72.0) | −1.61 | 0.10 | 0.75 | |||
2011KSS | 15.0 (12.0) | 24.0 (14.0) | −3.61 | <0.001 * | 2.57 | |||
WOMAC | 61.0 (21.0) | 30.0 (23.0) | −3.98 | <0.001 * | 3.51 |
Variables | Pre | Post | Z-Value | p-Value | dcohen |
---|---|---|---|---|---|
Gait Speed (m/s) | 0.51 (0.16) | 0.54 (0.15) | −5.95 | <0.001 * | 0.95 |
Cycle Time (s) | 1.23 (0.22) | 1.17 (0.21) | −5.93 | <0.001 * | 0.94 |
Stance Time (%GC) | 62.97 (4.16) | 63.45 (2.84) | −0.69 | 0.49 | 0.11 |
Swing Time (%GC) | 37.02 (4.16) | 36.54 (2.84) | −0.69 | 0.49 | 0.10 |
Step Time (%GC) | 50.74 (1.73) | 50.05 (1.44) | −6.08 | <0.001 * | 0.97 |
Double Limb Support Time (%GC) | 14.93 (4.14) | 13.27 (3.45) | −6.82 | <0.001 * | 1.13 |
Step Length (%S) | 31.51 (7.05) | 32.91 (5.37) | −5.56 | <0.001 * | 0.87 |
Stride Length (%S) | 60.54 (12.34) | 64.37 (11.02) | −5.03 | <0.001 * | 0.77 |
Cadence (Steps/Minute) | 98.36 (17.07) | 103.35 (17.82) | −7.23 | <0.001 * | 1.22 |
Cadence (Strides/Minute) | 48.81 (9.15) | 51.23 (9.68) | −5.83 | <0.001 * | 0.94 |
Variables | Non-Dominant | Dominant | U-Value | p-Value | dcohen |
---|---|---|---|---|---|
Gait Speed (m/s) | 0.08 (0.19) [18.6%] | 0.03 (0.17) [6.4%] | 3323 | <0.001 * | 0.49 |
Cycle Time (s) | −0.07 (0.16) [−3.83%] | −0.06 (0.17) [−4.84%] | 4053 | 0.151 | 0.20 |
Stance Time (%GC) | −0.56 (4.22) [0.2%] | 0.46 (3.13) [1.0%] | 3584 | 0.008 * | 0.39 |
Swing Time (%GC) | 0.56 (4.22) [−0.4%] | 0.51 (3.20) [-1.8%] | 3584 | 0.008 * | 0.39 |
Step Time (%GC) | −1.01 (2.67) [−2.1%] | −0.43 (1.68) [−0.8%] | 3580 | 0.008 * | 0.39 |
Double Limb Support Time (%GC) | −1.50 (4.09) [−12.7%] | −0.98 (3.54) [−8.3%] | 3821 | 0.041 * | 0.29 |
Step Length (%S) | 2.96 (6.37) [7.8%] | 1.57 (5.88) [4.8%] | 3538 | 0.006 * | 0.40 |
Stride Length (%S) | 5.07 (13.12) [10.5%] | 1.67 (12.20) [4.5%] | 3086 | <0.001 * | 0.59 |
Cadence (Steps/Minute) | 8.90 (15.13) [7.5%] | 5.51 (15.31) [6.6%] | 3701 | 0.019 * | 0.34 |
Cadence (Strides/Minute) | 3.42 (7.01) [3.9%] | 2.83 (7.11) [5.0%] | 3927 | 0.078 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, D.A.e.; Sousa, M.V.; Fonseca, P.; Chaffaut, A.A.d.; Sousa, J.; Pires, J.; Moreira, F.; Alves, F.; Barroso, J.; Vilas-Boas, J.P. Analysis of Spatiotemporal Gait Variables before and after Unilateral Total Knee Arthroplasty. Appl. Sci. 2024, 14, 8901. https://doi.org/10.3390/app14198901
Reis DAe, Sousa MV, Fonseca P, Chaffaut AAd, Sousa J, Pires J, Moreira F, Alves F, Barroso J, Vilas-Boas JP. Analysis of Spatiotemporal Gait Variables before and after Unilateral Total Knee Arthroplasty. Applied Sciences. 2024; 14(19):8901. https://doi.org/10.3390/app14198901
Chicago/Turabian StyleReis, David Almeida e, Manoela Vieira Sousa, Pedro Fonseca, Antoine Amaudric du Chaffaut, Joana Sousa, Jennifer Pires, Flávia Moreira, Filipe Alves, João Barroso, and J. Paulo Vilas-Boas. 2024. "Analysis of Spatiotemporal Gait Variables before and after Unilateral Total Knee Arthroplasty" Applied Sciences 14, no. 19: 8901. https://doi.org/10.3390/app14198901
APA StyleReis, D. A. e., Sousa, M. V., Fonseca, P., Chaffaut, A. A. d., Sousa, J., Pires, J., Moreira, F., Alves, F., Barroso, J., & Vilas-Boas, J. P. (2024). Analysis of Spatiotemporal Gait Variables before and after Unilateral Total Knee Arthroplasty. Applied Sciences, 14(19), 8901. https://doi.org/10.3390/app14198901