A Non-Invasive Fetal QRS Complex Detection Method Based on a Multi-Feature Fusion Neural Network
Abstract
:1. Introduction
2. Signal Collection and Preprocessing
2.1. Signal Sources
2.2. Data Quality Assessment Algorithm Based on Blind Source Separation and Sample Entropy
2.3. Signal Denoising and Normalization
2.4. Sliding Window Segmentation of the Signal
2.5. Signal Multi-Feature Extraction and Combination
2.5.1. ECG Signal Feature Values
2.5.2. Lyapunov Exponent
2.5.3. Higher-Order Statistics
2.5.4. Approximate Entropy and Sample Entropy
2.5.5. Fractal Dimension
2.5.6. SVD
2.5.7. Hilbert–Huang Transform
3. Multi-Feature Fusion Neural Networks
3.1. Feature-Level Fusion
3.2. Late Fusion
- Using LSTM for Time-Domain Signals: ECG signals are time-domain signals, making LSTM networks suitable for processing them [49]. The LSTM model used in this study consists of an LSTM layer and an FC layer, designed to process sequential signals with an input dimension of 1 × 60. The output of this network is four feature values.
- Using 1D-CNN for Frequency-Domain Signals: The 1D-CNN network used here includes two convolutional layers, ReLU activation functions, a max pooling layer, and two FC layers, effectively extracting and classifying local features from frequency-domain data [50]. The input to this network is sixty values, and the output is four values.
- Using DNN for Feature Value Signals: Given the small amount of feature value data extracted from each segment of the ECG signal, this study uses an FC neural network model to analyze feature value signals. The network consists of four FC layers, each followed by a ReLU activation function, automatically extracting valuable features for classification tasks. The input to this network is sixty values, and the output is four values.
- Using ShuffleNet for All Modal Data: ShuffleNet is a lightweight deep neural network architecture designed for efficient computation and parameter usage [51]. Given that the time–frequency domain signals are 24 × 60, significantly larger than the signals from the first three modalities, ShuffleNet was chosen for its ability to quickly analyze such data. The output of this network is four feature values.
3.3. Model-Level Fusion Algorithm
4. Results
4.1. Model Training and Classification
4.2. Evaluation Metrics
4.3. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alfirevic, Z.; Gyte, G.M.; Cuthbert, A.; Devane, D. Continuous Cardiotocography (CTG) as a Form of Electronic Fetal Monitoring (EFM) for Fetal Assessment during Labour. Cochrane Database Syst. Rev. 2017, 2019, CD006066. [Google Scholar] [CrossRef] [PubMed]
- Anisha, M.; Kumar, S.S.; Nithila, E.E.; Benisha, M. Detection of Fetal Cardiac Anomaly from Composite Abdominal Electrocardiogram. Biomed. Signal Process. Control 2021, 65, 102308. [Google Scholar] [CrossRef]
- Hamelmann, P.; Vullings, R.; Kolen, A.F.; Bergmans, J.W.M.; Van Laar, J.O.E.H.; Tortoli, P.; Mischi, M. Doppler Ultrasound Technology for Fetal Heart Rate Monitoring: A Review. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2020, 67, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Verkruysse, W.; Svaasand, L.O.; Nelson, J.S. Remote Plethysmographic Imaging Using Ambient Light. Opt. Express 2008, 16, 21434. [Google Scholar] [CrossRef] [PubMed]
- Varanini, M.; Tartarisco, G.; Billeci, L.; Macerata, A.; Pioggia, G.; Balocchi, R. A Multi-Step Approach for Non-Invasive Fetal ECG Analysis. In Proceedings of the Computing in Cardiology 2013, Zaragoza, Spain, 22–25 September 2013; pp. 281–284. [Google Scholar]
- Ghodsi, M.; Hassani, H.; Sanei, S. Extracting Fetal Heart Signal from Noisy Maternal ECG by Multivariate Singular Spectrum Analysis. Stat. Its Interface 2010, 3, 399–411. [Google Scholar] [CrossRef]
- Varanini, M.; Tartarisco, G.; Billeci, L.; Macerata, A.; Pioggia, G.; Balocchi, R. An Efficient Unsupervised Fetal QRS Complex Detection from Abdominal Maternal ECG. Physiol. Meas. 2014, 35, 1607. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, K.M.; Nissen, M.; Rahm, S.; Titzmann, A.; Fasching, P.A.; Beilner, J.; Eskofier, B.M.; Leutheuser, H. Power-MF: Robust Fetal QRS Detection from Non-Invasive Fetal Electrocardiogram Recordings. Physiol. Meas. 2024, 45, 055009. [Google Scholar] [CrossRef] [PubMed]
- Basak, P.; Nazmus Sakib, A.H.M.; Chowdhury, M.E.H.; Al-Emadi, N.; Cagatay Yalcin, H.; Pedersen, S.; Mahmud, S.; Kiranyaz, S.; Al-Maadeed, S. A Novel Deep Learning Technique for Morphology Preserved Fetal ECG Extraction from Mother ECG Using 1D-CycleGAN. Expert Syst. Appl. 2024, 235, 121196. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, S. Single-Lead Noninvasive Fetal ECG Extraction by Means of Combining Clustering and Principal Components Analysis. Med. Biol. Eng. Comput. 2020, 58, 419–432. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, A.; Xiao, Z.; Dong, K.; Cai, Z.; Zhao, L.; Yang, C.; Li, J.; Zhang, H.; Liu, C. An Effective Integrated Framework for Fetal QRS Complex Detection Based on Abdominal ECG Signal. J. Med. Biol. Eng. 2024, 44, 99–113. [Google Scholar] [CrossRef]
- Kahankova, R.; Mikolasova, M.; Martinek, R. Optimization of Adaptive Filter Control Parameters for Non-Invasive Fetal Electrocardiogram Extraction. PLoS ONE 2022, 17, e0266807. [Google Scholar] [CrossRef] [PubMed]
- Mansourian, N.; Sarafan, S.; Torkamani-Azar, F.; Ghirmai, T.; Cao, H. Fetal QRS Extraction from Single-Channel Abdominal ECG Using Adaptive Improved Permutation Entropy. Phys. Eng. Sci. Med. 2024, 47, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Petrolis, R.; Krisciukaitis, A. Multi Stage Principal Component Analysis Based Method for Detection of Fetal Heart Beats in Abdominal ECGs. In Proceedings of the Computing in Cardiology 2013, Zaragoza, Spain, 22–25 September 2013; pp. 301–304. [Google Scholar]
- Deogire, A.D. Multi Lead Fetal QRS Detection with Principal Component Analysis. In Proceedings of the 2018 3rd International Conference for Convergence in Technology (I2CT), Pune, India, 6–8 April 2018; pp. 1–5. [Google Scholar]
- Algunaidi, M.M.S.; Ali, M.A.M.; Islam, M.F. Evaluation of an Improved Algorithm for Fetal QRS Detection. Int. J. Phys. Sci. 2011, 6, 213–220. [Google Scholar]
- Niknazar, M.; Rivet, B.; Jutten, C. Fetal QRS Complex Detection Based on Three-Way Tensor Decomposition. In Proceedings of the Computing in Cardiology 2013, Zaragoza, Spain, 22–25 September 2013; pp. 185–188. [Google Scholar]
- Perlman, O.; Katz, A.; Zigel, Y. Noninvasive Fetal QRS Detection Using a Linear Combination of Abdomen ECG Signals. In Proceedings of the Computing in Cardiology 2013, Zaragoza, Spain, 22–25 September 2013; pp. 169–172. [Google Scholar]
- Ghonchi, H.; Abolghasemi, V. A Dual Attention-Based Autoencoder Model for Fetal ECG Extraction From Abdominal Signals. IEEE Sens. J. 2022, 22, 22908–22918. [Google Scholar] [CrossRef]
- Sharma, K.; Masood, S. Deep Learning-Based Non-Invasive Fetal Cardiac Arrhythmia Detection. In Applications of Artificial Intelligence and Machine Learning; Springer: Singapore, 2021; pp. 511–523. ISBN 9789811630668. [Google Scholar]
- Vadivu, M.S.; Kavithaa, G. Fetal QRS Complexes Detection Using Deep Learning Technique. J. Electr. Eng. Technol. 2023, 19, 1909–1918. [Google Scholar] [CrossRef]
- Nguyen, V.D. Fetal ECG Extraction on Time-Frequency Domain Using Conditional GAN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17–21 June 2024. [Google Scholar]
- Zhong, W.; Liao, L.; Guo, X.; Wang, G. A Deep Learning Approach for Fetal QRS Complex Detection. Physiol. Meas. 2018, 39, 045004. [Google Scholar] [CrossRef]
- Lee, J.S.; Seo, M.; Kim, S.W.; Choi, M. Fetal QRS Detection Based on Convolutional Neural Networks in Noninvasive Fetal Electrocardiogram. In Proceedings of the 2018 4th International Conference on Frontiers of Signal Processing (ICFSP), Poitiers, France, 24–27 September 2018; pp. 75–78. [Google Scholar]
- Vo, K.; Le, T.; Rahmani, A.M.; Dutt, N.; Cao, H. An Efficient and Robust Deep Learning Method with 1-D Octave Convolution to Extract Fetal Electrocardiogram. Sensors 2020, 20, 3757. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed]
- Clifford, G.D.; Silva, I.; Behar, J.; Moody, G.B. Non-Invasive Fetal ECG Analysis. Physiol. Meas. 2014, 35, 1521. [Google Scholar] [CrossRef]
- Behar, J.; Andreotti, F.; Zaunseder, S.; Oster, J.; Clifford, G.D. A Practical Guide to Non-Invasive Foetal Electrocardiogram Extraction and Analysis. Physiol. Meas. 2016, 37, R1–R35. [Google Scholar] [CrossRef]
- Jezewski, J.; Matonia, A.; Kupka, T.; Roj, D.; Czabanski, R. Determination of Fetal Heart Rate from Abdominal Signals: Evaluation of Beat-to-Beat Accuracy in Relation to the Direct Fetal Electrocardiogram. Biomed. Tech./Biomed. Eng. 2012, 57, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, P.; Maria, C.D.; Zhao, L.; Zhang, H.; Chen, Z. A Multi-Step Method with Signal Quality Assessment and Fine-Tuning Procedure to Locate Maternal and Fetal QRS Complexes from Abdominal ECG Recordings. Physiol. Meas. 2014, 35, 1665. [Google Scholar] [CrossRef] [PubMed]
- Khadiri, K.E.; Elouaham, S.; Nassiri, B.; Melhoaui, O.E.; Said, S.; Kamoun, N.E.; Zougagh, H. A Comparison of the Denoising Performance Using Capon Time-Frequency and Empirical Wavelet Transform Applied on Biomedical Signal. Int. J. Eng. Appl. (IREA) 2023, 11, 358–365. [Google Scholar] [CrossRef]
- Mohebbian, M.R.; Vedaei, S.S.; Wahid, K.A.; Dinh, A.; Marateb, H.R.; Tavakolian, K. Fetal ECG Extraction From Maternal ECG Using Attention-Based CycleGAN. IEEE J. Biomed. Health Inform. 2022, 26, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Fotiadou, E.; Van Sloun, R.J.G.; Van Laar, J.O.E.H.; Vullings, R. A Dilated Inception CNN-LSTM Network for Fetal Heart Rate Estimation. Physiol. Meas. 2021, 42, 045007. [Google Scholar] [CrossRef]
- Darmawahyuni, A.; Tutuko, B.; Nurmaini, S.; Rachmatullah, M.N.; Ardiansyah, M.; Firdaus, F.; Sapitri, A.I.; Islami, A. Accurate Fetal QRS-Complex Classification from Abdominal Electrocardiogram Using Deep Learning. Int. J. Comput. Intell. Syst. 2023, 16, 158. [Google Scholar] [CrossRef]
- Karvounis, E.C.; Tsipouras, M.G.; Fotiadis, D.I.; Naka, K.K. An Automated Methodology for Fetal Heart Rate Extraction From the Abdominal Electrocardiogram. IEEE Trans. Inform. Technol. Biomed. 2007, 11, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Krishna, B.T. Fetal ECG Extraction Using Time-Frequency Analysis Techniques. In Proceedings of the 2017 International Conference on Robotics and Automation Sciences (ICRAS), Hong Kong, China, 26–29 August 2017; pp. 167–171. [Google Scholar]
- Ting, Y.-C.; Lo, F.-W.; Tsai, P.-Y. Implementation for Fetal ECG Detection from Multi-Channel Abdominal Recordings with 2D Convolutional Neural Network. J. Sign. Process. Syst. 2021, 93, 1101–1113. [Google Scholar] [CrossRef]
- Germán-Salló, Z.; Germán-Salló, M. Non-Linear Methods in HRV Analysis. Procedia Technol. 2016, 22, 645–651. [Google Scholar] [CrossRef]
- Papadimitriou, S.; Bezerianos, A. Nonlinear Analysis of the Performance and Reliability of Wavelet Singularity Detection Based Denoising for Doppler Ultrasound Fetal Heart Rate Signals. Int. J. Med. Inform. 1999, 53, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Xia, C.; Wang, H.; Wang, Y.; Guo, R.; Li, F.; Yan, H. Nonlinear Dynamic Analysis of Wrist Pulse with Lyapunov Exponents. In Proceedings of the 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, Shanghai, China, 16–18 May 2008; pp. 2177–2180. [Google Scholar]
- Theiler, J. Estimating Fractal Dimension. J. Opt. Soc. Am. A 1990, 7, 1055. [Google Scholar] [CrossRef]
- Baker, K. Singular value decomposition tutorial. Ohio State Univ. 2005, 24, 22. [Google Scholar]
- Huang, N.E. (Ed.) Hilbert-Huang Transform and Its Applications; Interdisciplinary Mathematical Sciences; Repr.; World Scientific: Hackensack, NJ, USA, 2008; ISBN 978-981-256-376-7. [Google Scholar]
- Lee, K.J.; Lee, B. End-to-End Deep Learning Architecture for Separating Maternal and Fetal ECGs Using W-Net. IEEE Access 2022, 10, 39782–39788. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Hori, C.; Hori, T.; Lee, T.-Y.; Zhang, Z.; Harsham, B.; Hershey, J.R.; Marks, T.K.; Sumi, K. Attention-Based Multimodal Fusion for Video Description. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4203–4212. [Google Scholar]
- Salman, A.G.; Heryadi, Y.; Abdurahman, E.; Suparta, W. Single Layer & Multi-Layer Long Short-Term Memory (LSTM) Model with Intermediate Variables for Weather Forecasting. Procedia Comput. Sci. 2018, 135, 89–98. [Google Scholar] [CrossRef]
- Zhao, J.; Mao, X.; Chen, L. Speech Emotion Recognition Using Deep 1D & 2D CNN LSTM Networks. Biomed. Signal Process. Control 2019, 47, 312–323. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
Literature | Research Methods | Acc (%) | Se (%) | Sp (%) | PPV (%) | F1 (%) |
---|---|---|---|---|---|---|
This paper (multimodal) | Resnet34-Feature Level Fusion | 95.85 | 97 | 95 | 95 | 91 |
Cross-Modal Attention-Post Fusion | 94.48 | 95 | 93 | 94 | 90 | |
MLLSTM-Model Level Fusion | 92.51 | 92 | 93 | 93 | 88 | |
ADFECGDB (Resnet34) | 97.89 | 97 | 98 | 98 | 93 | |
Comparative experiment of this paper (unimodal) | LSTM-Time Domain | 85.42 | 81 | 90 | 89 | 80 |
CNN-Frequency Domain | 88.41 | 91 | 86 | 87 | 84 | |
FCN-Feature Value | 85.09 | 87 | 83 | 84 | 81 | |
ResNet-Time–Frequency Domain | 94.05 | 94 | 94 | 94 | 89 | |
Ablation study | Remove time domain | 92.84 | 93 | 92 | 92 | 88 |
Remove frequency domain | 94.36 | 94 | 95 | 95 | 90 | |
Remove feature values | 94.45 | 94 | 94 | 95 | 90 | |
Remove time–frequency domain | 84.56 | 83 | 86 | 85 | 80 | |
Kahankova et al. [12] | ICA + LMS | — | 89.41 | — | 90.42 | 89.19 |
Mansourian et al. [13] | AIPE | — | 90.77 | — | 91.32 | 90.95 |
Zhong et al. [23] | QRStree | — | 61.5 | — | 61.7 | 61.6 |
Lee et al. [24] | CNN + Post-processing | — | 89.1 | — | 92.8 | — |
Vo et al. [25] | OctConv + ResNet | 91.8 | 90.3 | — | — | 91.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Yu, J.; Shan, Y.; Wang, X. A Non-Invasive Fetal QRS Complex Detection Method Based on a Multi-Feature Fusion Neural Network. Appl. Sci. 2024, 14, 8987. https://doi.org/10.3390/app14198987
Huang Z, Yu J, Shan Y, Wang X. A Non-Invasive Fetal QRS Complex Detection Method Based on a Multi-Feature Fusion Neural Network. Applied Sciences. 2024; 14(19):8987. https://doi.org/10.3390/app14198987
Chicago/Turabian StyleHuang, Zhuya, Junsheng Yu, Ying Shan, and Xiangqing Wang. 2024. "A Non-Invasive Fetal QRS Complex Detection Method Based on a Multi-Feature Fusion Neural Network" Applied Sciences 14, no. 19: 8987. https://doi.org/10.3390/app14198987
APA StyleHuang, Z., Yu, J., Shan, Y., & Wang, X. (2024). A Non-Invasive Fetal QRS Complex Detection Method Based on a Multi-Feature Fusion Neural Network. Applied Sciences, 14(19), 8987. https://doi.org/10.3390/app14198987