Physicochemical Properties, Organic Acid, and Sugar Profiles in Edible and Inedible Parts of Parsnip (Pastinaca sativa) Cultivars Harvested in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials for Experiment
2.2. Sample Extraction
2.3. Color
2.4. Firmness, Soluble Solid Content (SSC), pH, and Water Content
2.5. Quantification of Individual Organic Acids
2.6. Quantification of Individual Sugars
2.7. Statistical Analysis
3. Results and Discussion
3.1. Color
3.2. Firmness, Soluble Solid Content (SSC), pH, and Water Content
3.3. Organic Acid Content
3.4. Sugar Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fratianni, A.; Niro, S.; Messia, M.C.; Panfili, G.; Marra, F.; Cinquanta, L. Evaluation of carotenoids and furosine content in air dried carrots and parsnips pre-treated with pulsed electric field (PEF). Eur. Food Res. Technol. 2019, 245, 2529–2537. [Google Scholar] [CrossRef]
- McMoran, D.W.; Seymour, K.; Gundersen, C. Growing parsnips in Western Washington. WSU Peer Rev. 2018, 1–7. [Google Scholar]
- Han, S.Y.; Lee, E.M.; Lee, J.; Lee, H.; Kwon, A.M.; Ryu, K.Y.; Choi, W.S.; Baek, E.J. Red cell manufacturing using parallel stirred-tank bioreactors at the final stages of differentiation enhances reticulocyte maturation. Biotechnol. Bioeng. 2021, 118, 1763–1778. [Google Scholar] [CrossRef] [PubMed]
- Kenari, H.M.; Kordafshari, G.; Moghimi, M.; Eghbalian, F.; TaherKhani, D. Review of pharmacological properties and chemical constituents of Pastinaca sativa. J. Pharmacopunct. 2021, 24, 14. [Google Scholar] [CrossRef]
- Jianu, C.; Goleț, I.; Stoin, D.; Cocan, I.; Lukinich-Gruia, A.T. Antioxidant activity of Pastinaca sativa L. ssp. sylvestris [Mill.] Rouy and Camus essential oil. Molecules 2020, 25, 869. [Google Scholar] [CrossRef]
- Bufler, G.; Horneburg, B. Changes in sugar and starch concentrations in parsnip (Pastinaca sativa L.) during root growth and development and in cold storage. J. Hortic. Sci. Biotechnol. 2013, 88, 756–761. [Google Scholar] [CrossRef]
- Mureșan, E.A.; Vlaic, R.A.; Mureșan, V.; Petruț, G.; Chiș, S.; Muste, S. Development and characterization of a biologically active white sauce based on horseradish, onion, parsley and parsnip. Hop Med. Plants 2017, 25, 139–148. [Google Scholar]
- Castro, A.; Bergenståhl, B.; Tornberg, E. Parsnip (Pastinaca sativa L.). Dietary fibre composition and physicochemical characterization of its homogenized suspensions. Food Res. Int. 2012, 48, 598–608. [Google Scholar] [CrossRef]
- Tozer Seeds. Tozer Vegetable Seed Expertise. Available online: https://www.tozerseeds.com/product-category/root (accessed on 26 June 2024).
- Augustin, I.F.; Butnariu, M.A. A review about Pastinaca sativa L. ssp. sylvestris [Mill.] secondary metabolite diversity and inducibility. J. Appl. Biotechnol. Bioeng. 2022, 9, 5–6. [Google Scholar]
- Koidis, A.; Rawson, A.; Tuohy, M.; Brunton, N. Influence of unit operations on the levels of polyacetylenes in minimally processed carrots and parsnips: An industrial trial. Food Chem. 2012, 132, 1406–1412. [Google Scholar] [CrossRef]
- Kramer, M.; Bufler, G.; Nothnagel, T.; Carle, R.; Kammerer, D.R. Effects of cultivation conditions and cold storage on the polyacetylene contents of carrot (Daucus carota L.) and parsnip (Pastinaca sativa L.). J. Hortic. Sci. Biotechnol. 2012, 87, 101–106. [Google Scholar] [CrossRef]
- Hwang, H.; Kim, Y.J.; Shin, Y. Assessment of physicochemical quality, antioxidant content and activity, and inhibition of cholinesterase between unripe and ripe blueberry fruit. Foods 2020, 9, 690. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kim, Y.J.; Shin, Y. Influence of ripening stage and cultivar on physicochemical properties and antioxidant compositions of aronia grown in South Korea. Foods 2019, 8, 598. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Ryu, J.A.; Liu, R.H.; Nock, J.F.; Watkins, C.B. Harvest maturity, storage temperature and relative humidity affect fruit quality, antioxidant contents and activity, and inhibition of cell proliferation of strawberry fruit. Postharvest Biol. Technol. 2008, 49, 201–209. [Google Scholar] [CrossRef]
- Hedges, L.J.; Lister, C.E. Health attributes of roots and tubers. Crops Food Res. Confid. Rep. 2006. [Google Scholar] [CrossRef]
- Jovanovic-Malinovska, R.; Kuzmanova, S.; Winkelhausen, E. Oligosaccharide profile in fruits and vegetables as sources of prebiotics and functional foods. Int. J. Food Prop. 2014, 17, 949–965. [Google Scholar] [CrossRef]
- Sipahioglu, O.; Barringer, S.A. Dielectric properties of vegetables and fruits as a function of temperature, ash, and moisture content. J. Food Sci. 2003, 68, 234–239. [Google Scholar] [CrossRef]
- Soares, F.D.; Pereira, T.; Marques, M.O.M.; Monteiro, A.R. Volatile and non-volatile chemical composition of the white guava fruit (Psidium guajava) at different stages of maturity. Food Chem. 2007, 100, 15–21. [Google Scholar] [CrossRef]
- Van den Berg, L.; Lentz, C.P. High humidity storage of carrots, parsnips, rutabagas, and cabbage. J. Am. Soc. Hortic. Sci. 1973, 98, 129–132. [Google Scholar] [CrossRef]
- Pande, G.; Akoh, C.C. Organic acids, antioxidant capacity, phenolic content and lipid characterization of Georgia-grown underutilized fruit crops. Food Chem. 2010, 120, 1067–1075. [Google Scholar] [CrossRef]
- Shi, Y.; Pu, D.; Zhou, X.; Zhang, Y. Recent progress in the study of taste characteristics and the nutrition and health properties of organic acids in foods. Foods 2022, 11, 3408. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F.; Ryan, P.R.; Delhaize, E. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 2001, 6, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Bucio, J.; Nieto-Jacobo, M.F.; Ramírez-Rodríguez, V.; Herrera-Estrella, L. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2000, 160, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, E.; Tkacz, K.; Turkiewicz, I.P.; Wojdyło, A.; Nowicka, P. Analysis of chemical compounds’ content in different varieties of carrots, including qualification and quantification of sugars, organic acids, minerals, and bioactive compounds by UPLC. Eur. Food Res. Technol. 2021, 247, 3053–3062. [Google Scholar] [CrossRef]
- Wen, S.; Neuhaus, H.E.; Cheng, J.; Bie, Z. Contributions of sugar transporters to crop yield and fruit quality. J. Exp. Bot. 2022, 73, 2275–2289. [Google Scholar] [CrossRef]
- Sitnicka, D.; Orzechowski, S. Cold-induced starch degradation in potato leaves—Intercultivar differences in the gene expression and activity of key enzymes. Biol. Plant. 2014, 58, 659–666. [Google Scholar] [CrossRef]
Cultivar | L * (Lightness) | a * (Redness) | b * (Yellowness) |
---|---|---|---|
‘Warrior’ | 90.70 ± 0.21 a | 0.45 ± 0.42 a | 28.72 ± 0.91 a |
‘Albion’ | 77.52 ± 0.57 b | −0.48 ± 0.29 b | 24.84 ± 1.63 b |
Cultivar | Firmness (N) | SSC (°Brix) | pH | Water Content (%) |
---|---|---|---|---|
‘Warrior’ | 7.84 ± 0.03 a | 9.83 ± 0.15 b | 6.69 ± 0.16 a | 81.71 ± 0.83 a |
‘Albion’ | 7.18 ± 0.17 b | 12.49 ± 0.90 a | 5.80 ± 0.05 b | 73.28 ± 2.67 b |
Cultivar | Part | Concentration (mg/100 g FW) | |||||||
---|---|---|---|---|---|---|---|---|---|
Oxalic Acid | Malic Acid | Lactic Acid | Acetic Acid | Citric Acid | Succinic Acid | Fumaric Acid | Total Sum | ||
‘Warrior’ | Cortex | 33.66 ± 1.59 e | 137.32 ± 19.58 e | 133.19 ± 6.09 c | N.D. | 68.56 ± 4.48 e | 7.76 ± 1.09 c | 1.45 ± 0.16 d | 381.94 |
Pith | 44.64 ± 6.64 d | 203.94 ± 12.42 d | 230.97 ± 13.20 b | N.D. | 226.56 ± 11.52 a | 11.92 ± 0.15 a | 1.55 ± 0.01 d | 719.58 | |
Skin | 24.74 ± 0.34 f | 362.99 ± 9.71 a | 305.37 ± 37.00 a | N.D. | 203.03 ± 25.75 b | N.D. | 2.15 ± 0.20 c | 898.28 | |
‘Albion’ | Cortex | 887.95 ± 1.21 b | 277.61 ± 2.02 c | N.D. | 23.95 ± 0.51 b | 65.12 ± 0.43 e | 8.24 ± 0.51 c | 4.27 ± 0.19 ab | 1267.14 |
Pith | 393.27 ± 1.02 c | 299.44 ± 5.13 b | N.D. | 23.35 ± 0.05 b | 117.22 ± 0.69 d | 11.08 ± 0.69 ab | 4.07 ± 0.05 b | 848.43 | |
Skin | 1669.34 ± 6.34 a | 295.73 ± 1.87 bc | N.D. | 35.48 ± 0.73 a | 165.55 ± 0.53 c | 10.36 ± 0.31 b | 4.36 ± 0.06 a | 2180.82 |
Cultivar | Part | Concentration (mg/100 g FW) | |||||||
---|---|---|---|---|---|---|---|---|---|
Oxalic Acid | Malic Acid | Lactic Acid | Acetic Acid | Citric Acid | Succinic Acid | Fumaric Acid | Total Sum | ||
‘Warrior’ | Stem | 32.56 ± 1.08 d | 597.48 ± 1.42 b | 263.97 ± 8.92 a | N.D. | 79.24 ± 3.56 c | N.D. | 251.32 ± 0.84 a | 1224.57 |
Leaf | 44.83 ± 0.78 c | 937.71 ± 6.71 a | 189.39 ± 3.31 b | N.D. | 128.11 ± 1.58 a | N.D. | 27.77 ± 0.02 c | 1338.69 | |
‘Albion’ | Stem | 3329.11 ± 1.76 a | 48.84 ± 0.86 d | N.D. | 7.10 ± 0.42 b | 6.83 ± 0.09 d | 10.48 ± 0.03 b | 150.80 ± 0.30 b | 3553.16 |
Leaf | 1715.34 ± 8.02 b | 339.65 ± 0.11 c | N.D. | 14.72 ± 0.41 a | 113.18 ± 1.41 b | 35.41 ± 0.18 a | 24.81 ± 0.05 d | 2243.11 |
Cultivar | Part | Fructose (%) | Glucose (%) | Sucrose (%) | Total Sum (%) |
---|---|---|---|---|---|
‘Warrior’ | Cortex | 0.40 ± 0.02 b | 0.34 ± 0.01 c | 5.90 ± 0.12 a | 6.66 |
Pith | 0.27 ± 0.01 d | 0.23 ± 0.01 e | 4.68 ± 0.13 b | 5.18 | |
Skin | 0.40 ± 0.00 b | 0.42 ± 0.01 b | 3.11 ± 0.02 c | 3.93 | |
‘Albion’ | Cortex | 0.22 ± 0.01 e | 0.20 ± 0.02 f | 3.25 ± 0.09 c | 3.67 |
Pith | 0.44 ± 0.02 a | 0.66 ± 0.01 a | 1.99 ± 0.10 d | 3.09 | |
Skin | 0.31 ± 0.01 c | 0.29 ± 0.00 d | 1.24 ± 0.06 e | 1.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, H.; Kim, Y.-J.; Shin, Y. Physicochemical Properties, Organic Acid, and Sugar Profiles in Edible and Inedible Parts of Parsnip (Pastinaca sativa) Cultivars Harvested in Korea. Appl. Sci. 2024, 14, 9095. https://doi.org/10.3390/app14199095
Shim H, Kim Y-J, Shin Y. Physicochemical Properties, Organic Acid, and Sugar Profiles in Edible and Inedible Parts of Parsnip (Pastinaca sativa) Cultivars Harvested in Korea. Applied Sciences. 2024; 14(19):9095. https://doi.org/10.3390/app14199095
Chicago/Turabian StyleShim, Hyerin, Young-Jun Kim, and Youngjae Shin. 2024. "Physicochemical Properties, Organic Acid, and Sugar Profiles in Edible and Inedible Parts of Parsnip (Pastinaca sativa) Cultivars Harvested in Korea" Applied Sciences 14, no. 19: 9095. https://doi.org/10.3390/app14199095
APA StyleShim, H., Kim, Y.-J., & Shin, Y. (2024). Physicochemical Properties, Organic Acid, and Sugar Profiles in Edible and Inedible Parts of Parsnip (Pastinaca sativa) Cultivars Harvested in Korea. Applied Sciences, 14(19), 9095. https://doi.org/10.3390/app14199095