Red-Emitting Cr3+ on α-Al2O3:Cr Spheres Obtained in Seconds Using Laser Processing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphological and Structural Characterization
3.2. Photoluminescence Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maiman, T.H. Stimulated Optical Radiation in Ruby. Nature 1960, 187, 493–494. [Google Scholar] [CrossRef]
- Maiman, T.H.; Hoskins, R.H.; D’Haenens, I.J.; Asawa, C.K.; Evtuhov, V. Stimulated Optical Emission in Fluorescent Solids. II. Spectroscopy and Stimulated Emission in Ruby. Phys. Rev. 1961, 123, 1151–1157. [Google Scholar] [CrossRef]
- Sugano, S.; Tanabe, Y. The line spectra of Cr3+ ion in crystals. Discuss. Faraday Soc. 1958, 26, 43. [Google Scholar] [CrossRef]
- Sugano, S.; Tanabe, Y. Absorption Spectra of Cr3+ in Al2O3 Part A. Theoretical Studies of the Absorption Bands and Lines. J. Phys. Soc. Jpn. 1958, 13, 880–899. [Google Scholar] [CrossRef]
- Sugano, S.; Tsujikawa, I. Absorption Spectra of Cr3+ in Al2O3 Part B. Experimental Studies of the Zeeman Effect and Other Properties of the Line Spectra. J. Phys. Soc. Jpn. 1958, 13, 899–910. [Google Scholar] [CrossRef]
- Sugano, S.; Tanabe, Y.; Kamimura, H. Multiplets of Transition-Metal Ions in Crystals; Academic Press: New York, NY, USA; London, UK, 1970. [Google Scholar]
- Macfarlane, R.M. Analysis of the Spectrum of d3 Ions in Trigonal Crystal Fields. J. Chem. Phys. 1963, 39, 3118–3126. [Google Scholar] [CrossRef]
- McCumber, D.E.; Sturge, M.D. Linewidth and Temperature Shift of the R Lines in Ruby. J. Appl. Phys. 1963, 34, 1682–1684. [Google Scholar] [CrossRef]
- Nelson, D.F.; Sturge, M.D. Relation between Absorption and Emission in the Region of the R Lines of Ruby. Phys. Rev. 1965, 137, A1117. [Google Scholar] [CrossRef]
- Henderson, B.; Imbusch, G.F. Optical Spectroscopy of Inorganic Solids; Oxford University Press: Oxford, UK, 2006; ISBN 0199298629. [Google Scholar]
- Yamaoka, H.; Zekko, Y.; Jarrige, I.; Lin, J.-F.; Hiraoka, N.; Ishii, H.; Tsuei, K.-D.; Mizuki, J. Ruby pressure scale in a low-temperature diamond anvil cell. J. Appl. Phys. 2012, 112, 124503. [Google Scholar] [CrossRef]
- Yang, W.; Cortés-Vega, F.D.; Ahmadi, K.; Castaneda, N.; Paidpilli, M.; Majkic, G.; Selvamanickam, V.; Brankovic, S.R.; Robles-Hernandez, F.C. Accurate Ruby Sensor for Stress Analysis in Electronics. ACS Appl. Electron. Mater. 2022, 4, 4332–4339. [Google Scholar] [CrossRef]
- Mykhaylyk, V.; Kraus, H.; Zhydachevskyy, Y.; Tsiumra, V.; Luchechko, A.; Wagner, A.; Suchocki, A. Multimodal Non-Contact Luminescence Thermometry with Cr-Doped Oxides. Sensors 2020, 20, 5259. [Google Scholar] [CrossRef] [PubMed]
- Mironova-Ulmane, N.; Brik, M.G.; Grube, J.; Krieke, G.; Kemere, M.; Antuzevics, A.; Gabrusenoks, E.; Skvortsova, V.; Elsts, E.; Sarakovskis, A.; et al. EPR, optical and thermometric studies of Cr3+ ions in the α-Al2O3 synthetic single crystal. Opt. Mater. 2022, 132, 112859. [Google Scholar] [CrossRef]
- Oh, R.; Yanagisawa, S.; Tanaka, H.; Takata, T.; Wakabayashi, G.; Tanaka, M.; Sugioka, N.; Koba, Y.; Shinsho, K. Thermal Neutron Measurements Using Thermoluminescence Phosphor Cr-doped Al2O3 and Cd Neutron Converter. Sensors Mater. 2021, 33, 2129. [Google Scholar] [CrossRef]
- Einbergs, E.; Zolotarjovs, A.; Bite, I.; Cipa, J.; Vitola, V.; Laganovska, K.; Trinkler, L. Re-Evaluation of Chromium Doped Alumina for Dosimetric Applications. Latv. J. Phys. Tech. Sci. 2021, 58, 15–22. [Google Scholar] [CrossRef]
- Ahmed, M.; Salah, A.; Ashour, A.; Hafez, H.; El-Faramawy, N. Dosimetric properties of Cr doped Al2O3 nanophosphors. J. Lumin. 2018, 196, 449–454. [Google Scholar] [CrossRef]
- Van Quang, N.; Thi Huyen, N.; Tu, N.; Quang Trung, D.; Duc Anh, D.; Tran, M.T.; Hung, N.D.; Viet, D.X.; Huy, P.T. A high quantum efficiency plant growth LED by using a deep-red-emitting α-Al2O3:Cr3+ phosphor. Dalt. Trans. 2021, 50, 12570–12582. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Seto, T.; Wang, Y. A new efficient deep-red-emission phosphor Al2O3:Cr3+/Y3Al5O12:Ce3+ for plant growth. Dalt. Trans. 2021, 50, 3542–3549. [Google Scholar] [CrossRef]
- Alkahtani, M.H.; Almuqhim, A.A.; Alshehri, A.A.; Almughem, F.A.; AlHazaa, A.N.; Hemmer, P. Fluorescent ruby nanocrystals for biocompatible applications. Appl. Phys. Lett. 2021, 118, 233701. [Google Scholar] [CrossRef]
- Ratzker, B.; Wagner, A.; Favelukis, B.; Ayalon, I.; Shrem, R.; Kalabukhov, S.; Frage, N. Effect of synthesis route on optical properties of Cr:Al2O3 transparent ceramics sintered under high pressure. J. Alloys Compd. 2022, 913, 165186. [Google Scholar] [CrossRef]
- Penilla, E.H.; Devia-Cruz, L.F.; Duarte, M.A.; Hardin, C.L.; Kodera, Y.; Garay, J.E. Gain in polycrystalline Nd-doped alumina: Leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials. Light Sci. Appl. 2018, 7, 33. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, Z. Transparent polycrystalline ruby ceramic by spark plasma sintering. Mater. Res. Bull. 2010, 45, 1127–1131. [Google Scholar] [CrossRef]
- Hensen, T.M.; de Dood, M.J.A.; Polman, A. Luminescence quantum efficiency and local optical density of states in thin film ruby made by ion implantation. J. Appl. Phys. 2000, 88, 5142–5147. [Google Scholar] [CrossRef]
- Okamoto, S.; Inaba, K.; Iida, T.; Ishihara, H.; Ichikawa, S.; Ashida, M. Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials. Sci. Rep. 2014, 4, 5186. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wu, Z.; Ping Shum, P.; Xu, Z.; Keiser, G.; Humbert, G.; Zhang, H.; Zeng, S.; Quyen Dinh, X. Sensing and lasing applications of whispering gallery mode microresonators. Opto-Electron. Adv. 2018, 1, 18001501–18001510. [Google Scholar] [CrossRef]
- Chen, Z.; Dong, G.; Barillaro, G.; Qiu, J.; Yang, Z. Emerging and perspectives in microlasers based on rare-earth ions activated micro-/nanomaterials. Prog. Mater. Sci. 2021, 121, 100814. [Google Scholar] [CrossRef]
- Fabitha, K.; Ramachandra Rao, M.S. Biocompatible miniature temperature sensor based on whispering gallery modes of Sm3+ activated ZnO optical micro-resonators. Appl. Phys. Lett. 2021, 118, 163104. [Google Scholar] [CrossRef]
- Fabitha, K.; Wakiyama, Y.; Oshima, H.; Nakamura, D.; Ramachandra Rao, M.S. Realization of sharp visible WGM lasing from Sm3+:ZnO micro-spheres fabricated by laser ablation technique. J. Phys. D Appl. Phys. 2020, 53, 135302. [Google Scholar] [CrossRef]
- Tasaki, R.; Higashihata, M.; Suwa, A.; Ikenoue, H.; Nakamura, D. High-speed observation of semiconductor microsphere generation by laser ablation in the air. Appl. Phys. A 2018, 124, 161. [Google Scholar] [CrossRef]
- Pugina, R.S.; Hilário, E.G.; da Rocha, E.G.; da Silva-Neto, M.L.; Das, A.; Caiut, J.M.A.; Gomes, A.S.L. Nd3+:YAG microspheres powders prepared by spray pyrolysis: Synthesis, characterization and random laser application. Mater. Chem. Phys. 2021, 269, 124764. [Google Scholar] [CrossRef]
- Li, X.Z.; Liu, H.; Cheng, L.F.; Tong, H.J. Photocatalytic Oxidation Using a New Catalyst TiO2 Microspherefor Water and Wastewater Treatment. Environ. Sci. Technol. 2003, 37, 3989–3994. [Google Scholar] [CrossRef]
- Campbell, Z.S.; Bateni, F.; Volk, A.A.; Abdel-Latif, K.; Abolhasani, M. Microfluidic Synthesis of Semiconductor Materials: Toward Accelerated Materials Development in Flow. Part. Part. Syst. Charact. 2020, 37, 2000256. [Google Scholar] [CrossRef]
- Yang, Z.; Cai, W.; Zhou, J.; Xia, Q.; Wang, T. Fast, Large-Scale, and Stable Preparation of η-Al2O3 Microspheres by Fully Utilizing N,N-Dimethylformamide at Room Temperature. Ind. Eng. Chem. Res. 2020, 59, 4203–4209. [Google Scholar] [CrossRef]
- Zhang, T.; Yue, X.; Yang, D.; Guo, Q.; Qiu, F.; Li, Z. Hybridization of Al2O3 microspheres and acrylic ester resins as a synergistic absorbent for selective oil and organic solvent absorption. Appl. Organomet. Chem. 2018, 32, e4244. [Google Scholar] [CrossRef]
- Wu, J.-M.; Li, M.; Liu, S.-S.; Shi, Y.-S.; Li, C.-H.; Wang, W. Selective laser sintering of porous Al2O3-based ceramics using both Al2O3 and SiO2 poly-hollow microspheres as raw materials. Ceram. Int. 2021, 47, 15313–15318. [Google Scholar] [CrossRef]
- Lewis, P.M.; Keerthana, N.; Hebbar, D.; Choudhari, K.S.; Kulkarni, S.D. Cr3+ doped Al2O3 nanoparticles: Effect of Cr3+ content in intensifying red emission. Curr. Appl. Phys. 2021, 32, 71–77. [Google Scholar] [CrossRef]
- Ratzker, B.; Wagner, A.; Favelukis, B.; Goldring, S.; Kalabukhov, S.; Frage, N. Optical properties of transparent polycrystalline ruby (Cr:Al2O3) fabricated by high-pressure spark plasma sintering. J. Eur. Ceram. Soc. 2021, 41, 3520–3526. [Google Scholar] [CrossRef]
- Apetz, R.; Bruggen, M.P.B. Transparent Alumina: A Light-Scattering Model. J. Am. Ceram. Soc. 2003, 86, 480–486. [Google Scholar] [CrossRef]
- Drdlikova, K.; Klement, R.; Drdlik, D.; Galusek, D.; Maca, K. Processing and properties of luminescent Cr3+ doped transparent alumina ceramics. J. Eur. Ceram. Soc. 2020, 40, 2573–2580. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Q.H.; Zhao, G.G.; Lu, S.Z.; Zhang, H.J. The thermoluminescence and optically stimulated luminescence properties of Cr-doped alpha alumina transparent ceramics. J. Alloys Compd. 2013, 579, 259–262. [Google Scholar] [CrossRef]
- Vlasova, M.; Ragulya, A.; Stetsenko, V.; Kakazey, M.; Aguilar, M.; Timofeeva, I.; Tomila, T.; Arellano, J. The layer by layer selective laser synthesis of ruby. Sci. Sinter. 2010, 42, 3–13. [Google Scholar] [CrossRef]
- Thapa, J.; Liu, B.; Woodruff, S.D.; Chorpening, B.T.; Buric, M.P. Raman scattering in single-crystal sapphire at elevated temperatures. Appl. Opt. 2017, 56, 8598. [Google Scholar] [CrossRef] [PubMed]
- Porto, S.P.S.; Krishnan, R.S. Raman Effect of Corundum. J. Chem. Phys. 1967, 47, 1009–1012. [Google Scholar] [CrossRef]
- Schawlow, A.L.; Wood, D.L.; Clogston, A.M. Electronic Spectra of Exchange-Coupled Ion Pairs in Crystals. Phys. Rev. Lett. 1959, 3, 271–273. [Google Scholar] [CrossRef]
- Powell, R.C.; DiBartolo, B.; Birang, B.; Naiman, C.S. Temperature Dependence of the Widths and Positions of the R and N Lines in Heavily Doped Ruby. J. Appl. Phys. 1966, 37, 4973–4978. [Google Scholar] [CrossRef]
- Imbusch, G.F. Energy Transfer in Ruby. Phys. Rev. 1967, 153, 326–337. [Google Scholar] [CrossRef]
- Powell, R.C.; DiBartolo, B.; Birang, B.; Naiman, C.S. Fluorescence studies of energy transfer between single and pair Cr3+ systems in Al2O3. Phys. Rev. 1967, 155, 296–308. [Google Scholar] [CrossRef]
- Powell, R.C.; Dibartolo, B. Optical properties of heavily doped ruby. Phys. Status Solidi 1972, 10, 315–357. [Google Scholar] [CrossRef]
- Adachi, S. Luminescence spectroscopy of Cr3+ in Al2O3 polymorphs. Opt. Mater. 2021, 114, 111000. [Google Scholar] [CrossRef]
- Birang, B.; Di Bartolo, B.; Powell, R.C. Temperature Effects on Several Fluorescence Pair Lines in Ruby. J. Appl. Phys. 1967, 38, 5113–5116. [Google Scholar] [CrossRef]
- Tokida, Y.; Adachi, S. Photoluminescence spectroscopy and energy-level analysis of metal-organic-deposited Ga2O3:Cr3+ films. J. Appl. Phys. 2012, 112, 063522. [Google Scholar] [CrossRef]
- Fonger, W.H.; Struck, C.W. Temperature dependences of Cr+3 radiative and nonradiative transitions in ruby and emerald. Phys. Rev. B 1975, 11, 3251–3260. [Google Scholar] [CrossRef]
- Dexter, D.L. A Theory of Sensitized Luminescence in Solids. J. Chem. Phys. 1953, 21, 836–850. [Google Scholar] [CrossRef]
- Förster, T. Mechanisms of Energy Transfer. In Comprehensive Biochemistry; Elsevier: Amsterdam, The Netherlands, 1967; pp. 61–80. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, J.; Carvalho, A.F.; Zanoni, J.; Fernandes, A.J.S.; Costa, F.M.; Monteiro, T. Red-Emitting Cr3+ on α-Al2O3:Cr Spheres Obtained in Seconds Using Laser Processing. Appl. Sci. 2024, 14, 528. https://doi.org/10.3390/app14020528
Rodrigues J, Carvalho AF, Zanoni J, Fernandes AJS, Costa FM, Monteiro T. Red-Emitting Cr3+ on α-Al2O3:Cr Spheres Obtained in Seconds Using Laser Processing. Applied Sciences. 2024; 14(2):528. https://doi.org/10.3390/app14020528
Chicago/Turabian StyleRodrigues, Joana, Alexandre Faia Carvalho, Julia Zanoni, António J. S. Fernandes, Florinda M. Costa, and Teresa Monteiro. 2024. "Red-Emitting Cr3+ on α-Al2O3:Cr Spheres Obtained in Seconds Using Laser Processing" Applied Sciences 14, no. 2: 528. https://doi.org/10.3390/app14020528
APA StyleRodrigues, J., Carvalho, A. F., Zanoni, J., Fernandes, A. J. S., Costa, F. M., & Monteiro, T. (2024). Red-Emitting Cr3+ on α-Al2O3:Cr Spheres Obtained in Seconds Using Laser Processing. Applied Sciences, 14(2), 528. https://doi.org/10.3390/app14020528