New Sorbents Based on Polyacrylonitrile Fiber and Transition Metal Ferrocyanides for 137Cs Recovery from Various Composition Solutions
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method of Support Preparation
2.3. Method of Sorbent Production
2.4. Analysis of the Obtained Sorbents by Structural Methods
2.5. Sorption of Cesium Ions
2.6. Sorption of Trace Amounts of 137Cs
3. Results and Discussion
3.1. Selection of Optimal Materials and Conditions for Sorbent Synthesis
3.1.1. Assessment of the Effect of Potassium Ferrocyanide Concentration and pH
- KFeFC-PAN—sorbents based on potassium ferrocyanide and fiber prepared by precipitation of iron(III) hydroxide with ammonia (PAN-Fe(OH)3);
- KMnFC-PAN—sorbents based on potassium ferrocyanide and fiber treated with potassium permanganate (PAN-MnO2).
3.1.2. Assessment of the Influence of Transition Metal Salt Type and Concentration
- for sorbents based on PAN-Fe(OH)3 support:
- for sorbents based on PAN-MnO2 support:
3.1.3. Assessment of Synthesis Temperature Influence
3.2. Structure of the Obtained Sorbents
3.3. Sorption of Trace Amounts of 137Cs
- FNS-10—sorbent based on nickel–potassium ferrocyanide deposited on silica gel (TU 2641-003-51255813-2007. Manufacturer: Institute of Physics and Chemistry of the Russian Academy of Sciences, Moscow, Russia);
- Termoksid-35—spherogranulated inorganic sorbent based on nickel ferrocyanide and zirconium hydroxide (TU 6200-305-12342266-98. Manufacturer: JSC “Inorganic Sorbents” (former NPF “Termoksid”), Zarechny, Russia).
3.4. Selection of Optimal Conditions for Cesium Sorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buesseler, K.; Aoyama, M.; Fukasawa, M. Impacts of the Fukushima nuclear power plants on marine radioactivity. Environ. Sci. Technol. 2011, 45, 9931–9935. [Google Scholar] [CrossRef]
- Novikov, A.P. Migration and concentration of artificial radionuclides in environmental objects. Geochem. Int. 2010, 48, 1263–1387. [Google Scholar] [CrossRef]
- Kondev, F.G.; Wang, M.; Huang, W.J.; Naimi, S.; Audi, G. The NUBASE2020 evaluation of nuclear physics properties. Chin. Phys. C 2021, 45, 030001. [Google Scholar] [CrossRef]
- Hirose, K.; Aoyama, M.; Igarashi, Y.; Komura, K. Improvement of 137Cs analysis in small volume seawater samples using the Ogoya underground facility. J. Radioanal. Nucl. Chem. 2008, 276, 795–798. [Google Scholar] [CrossRef]
- Egorin, A.; Palamarchuk, M.; Tokar, E.; Tutov, M.; Marinin, D.; Avramenko, V. Concentrating cesium-137 from seawater using resorcinol-formaldehyde resin for radioecological monitoring. Radiochim. Acta 2017, 105, 121–127. [Google Scholar] [CrossRef]
- Egorin, A.M.; Sokolnitskaya, T.A.; Matveikin, M.Y.; Avramenko, V.A.; Tutov, M.V.; Tokar’, E.A. Composite selective sorbents for sea water decontamination from cesium and strontium radionuclides. Doklady Phys. Chem. 2015, 460, 10–14. [Google Scholar] [CrossRef]
- Zhuravlev, I. Titanium Silicates Precipitated on the Rice Husk Biochar as Adsorbents for the Extraction of Cesium and Strontium Radioisotope Ions. Colloids Interfaces 2019, 3, 36. [Google Scholar] [CrossRef]
- Ivanov, N.P.; Marmaza, P.A.; Shichalin, O.O.; Drankov, A.N.; Kaspruk, G.D.; Pisarev, S.M.; Fedorets, A.N. Extraction of Cs(I) and Sr(II) From liquid media using crystalline titanosilicates obtained by hydrothermal synthesis. Radiat. Saf. Issues 2023, 2, 14–19. (In Russian) [Google Scholar]
- Yang, J.; Wang, M.; Zhang, L.; Lu, Y.; Di, B.; Shi, K.; Hou, X. Investigation on the thermal stability of cesium in soil pretreatment and its separation using AMP-PAN resin. J. Radioanal. Nucl. Chem. 2023, 332, 877–885. [Google Scholar] [CrossRef]
- Lin, M.; Kajan, I.; Schumann, D.; Türler, A.; Fankhauser, A. Selective Cs-removal from highly acidic spent nuclear fuel solutions. Radiochim. Acta 2020, 108, 615–626. [Google Scholar] [CrossRef]
- Breier, C.F.; Pike, S.M.; Sebesta, F.; Tradd, K.; Breier, J.A.; Buesseler, K.O. New applications of KNiFC-PAN resin for broad scale monitoring of radiocesium following the Fukushima Dai-ichi nuclear distaster. J. Radioanal. Nucl. Chem. 2016, 307, 2193–2200. [Google Scholar] [CrossRef]
- Nilchi, A.; Malek, B.; Maragheh, M.G.; Khanchi, A. Exchange properties of cyanide complex. Part I. Ion exchange of cesium on ferrocyanides. J. Radioanal. Nucl. Chem. 2003, 258, 457–462. [Google Scholar] [CrossRef]
- Kumamoto, Y.; Aoyama, M.; Hamajima, Y.; Murata, A. Activity concentration of Fukushima-derived radiocesium in the western subarctic area of the North Pacific Ocean in summer 2017. J. Radioanal. Nucl. Chem. 2020, 325, 263–270. [Google Scholar] [CrossRef]
- Hegedűs, M.; Tazoe, H.; Yang, G.; Tamakuma, Y.; Hosoda, M.; Akata, N.; Tokonami, S. Caesium retention characteristics of KNIFC–PAN resin from river water. Radiat. Prot. Dosim. 2020, 190, 320–323. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Fu, Y.; Liao, H.; Li, B. Preparation of SiO2-KMCHCF composites and its adsorption characteristics for Cs+ and Sb(V) ions. J. Radioanal. Nucl. Chem. 2022, 331, 4211–4226. [Google Scholar] [CrossRef]
- Bezhin, N.A.; Dovhyi, I.I.; Milyutin, V.V.; Kaptakov, V.O.; Kozlitin, E.A.; Egorin, A.M.; Tokar’, E.A.; Tananaev, I.G. Study of sorbents for analysis of radiocesium in seawater samples by one-column method. J. Radioanal. Nucl. Chem. 2021, 327, 1095–1103. [Google Scholar] [CrossRef]
- Sangvanich, T.; Sukwarotwat, V.; Wiacek, R.J.; Grudzien, R.M.; Fryxell, G.E.; Addleman, R.S.; Timchalk, C.; Yantasee, W. Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J. Hazard. Mater. 2010, 182, 225–231. [Google Scholar] [CrossRef]
- Matel, L.; Dulanska, S.; Silikova, V. Composite sorbents for radionuclide separation. In XXXIX Days of Radiation Protection. Proceedings of Presentations and Posters; Slovenska Zdravotnicka Univerzita: Bratislava, Slovakia, 2018; p. 578. [Google Scholar]
- Milyutin, V.V.; Nekrasova, N.A.; Kaptakov, V.O. Modern Sorption Materials for Cesium and Strontium Radionuclide Extraction from Liquid Radioactive Waste. Radioact. Waste 2020, 4, 66–73. [Google Scholar] [CrossRef]
- Veleshko, A.N.; Veleshko, I.E.; Rumyantseva, E.V.; Dmitrieva, N.A. Chitosan is a promising material for the isolation and concentration of radionuclides from natural and man-made environments. Ecol. Sys. Devices 2013, 11, 8–15. (In Russian) [Google Scholar]
- Kosyakov, V.N.; Veleshko, A.N.; Veleshko, I.E. Determination of 137Cs in seawater under the field conditions. Radiochemistry 2006, 48, 589–592. [Google Scholar] [CrossRef]
- Tokar’, E.; Zemskova, L.; Tutov, M.; Tananaev, I.; Dovhyi, I.; Egorin, A. Development and practical evaluation of the scheme for 137Cs concentrating from seawater using chitosan and mixed ferrocyanides of Zn-K and Ni-K. J. Radioanal. Nucl. Chem. 2020, 325, 567–575. [Google Scholar] [CrossRef]
- Voronina, A.V.; Noskova, A.Y.; Semenishchev, V.S.; Gupta, D.K. Decontamination of seawater from 137Cs and 90Sr radionuclides using inorganic sorbents. J. Environ. Radioact. 2020, 217, 106210. [Google Scholar] [CrossRef]
- Nekrasova, N.A.; Milyutin, V.V.; Kaptakov, V.O.; Kozlitin, E.A. Inorganic Sorbents for Wastewater Treatment from Radioactive Contaminants. Inorganics 2023, 11, 126. [Google Scholar] [CrossRef]
- Kiener, J.; Limousy, L.; Jeguirim, M.; Le Meins, J.-M.; Hajjar-Garreau, S.; Bigoin, G.; Ghimbeu, C.M. Activated Carbon/Transition Metal (Ni, In, Cu) Hexacyanoferrate Nanocomposites for Cesium Adsorption. Materials 2019, 12, 1253. [Google Scholar] [CrossRef]
- Remez, V.P.; Zelenin, V.I.; Smirnov, A.L.; Raspopin, S.P.; Matern, A.I.; Morzherin, Y.Y. Cellulose-inorganic sorbents in radiochemical analysis II. Synthesis and properties of ANFEZH® sorbent. Sorpt. Chromatogr. Process. 2009, 9, 739–744. (In Russian) [Google Scholar]
- Gulin, S.B.; Mirzoyeva, N.Y.; Egorov, V.N.; Polikarpov, G.G.; Sidorov, I.G.; Proskurnin, V.Y. Secondary radioactive contamination of the Black Sea after Chernobyl accident: Recent levels, pathways and trends. J. Environ. Radioact. 2013, 124, 50–56. [Google Scholar] [CrossRef]
- Gulin, S.B.; Egorov, V.N.; Duka, M.S.; Sidorov, I.G.; Proskurnin, V.Y.; Mirzoyeva, N.Y.; Bey, O.N.; Gulina, L.V. Deep-water profiling of 137Cs and 90Sr in the Black Sea: A further insight into dynamics of the post-Chernobyl radioactive contamination. J. Radioanal. Nucl. Chem. 2015, 304, 779–783. [Google Scholar] [CrossRef]
- Sergienko, V.I.; Avramenko, V.A.; Zheleznov, V.V.; Mayorov, V.Y. Method for Producing Ferrocyanide Sorbents. Patent No. 2345833 Russian Federation, IPC B01J 20/02, B01J 20/30, 10 February 2009. (In Russian). [Google Scholar]
- Ivanets, A.I.; Shashkova, I.L.; Drozdova, N.V.; Davydov, D.Y.; Radkevich, A.V. Recovery of cesium ions from aqueous solutions with composite sorbents based on tripolite and copper(II) and nickel(II) ferrocyanides. Radiochemistry 2014, 56, 524–528. [Google Scholar] [CrossRef]
- Voronina, A.V.; Nogovitsyna, E.V.; Semenishchev, V.S.; Blinova, M.O. Method for Producing Inorganic Ferrocyanide Sorbent. Patent No. 2746194 Russian Federation, IPC B01J 20/02, B01J 20/32, 8 April 2021. (In Russian). [Google Scholar]
- Voronina, A.V.; Noskova, A.Y.; Semenishchev, V.S.; Blinova, M.O.; Nikiforov, A.F. Purification of sea water from cesium and strontium radionuclides. Water Manag. Russia Probl. Technol. Manag. 2019, 6, 102–120. (In Russian) [Google Scholar]
- Le, Q.T.N.; Cho, K. Caesium adsorption on a zeolitic imidazolate framework (ZIF-8) functionalized by ferrocyanide. J. Colloid Interface Sci. 2021, 581, 741–750. [Google Scholar] [CrossRef]
- Delchet, C.; Delchet, C.; Tokarev, A.; Dumail, X.; Toquer, G.; Barre’, Y.; Guari, Y.; Guerin, C.; Larionova, J.; Grandjean, A. Extraction of radioactive cesium using innovative functionalized porous materials. RSC Adv. 2012, 2, 5707–5716. [Google Scholar] [CrossRef]
- Shahzad, A.; Moztahida, M.; Tahir, K.; Kim, B.; Jeon, H.; Ghani, A.A.; Maile, N.; Jang, J.; Lee, D.S. Highly effective prussian blue-coated MXene aerogel spheres for selective removal of cesium ions. J. Nucl. Mater. 2020, 539, 152277. [Google Scholar] [CrossRef]
- Zhang, H.; Hodges, C.S.; Mishra, P.K.; Yoon, J.Y.; Hunter, T.N.; Lee, J.W.; Harbottle, D. Bio-Inspired Preparation of Clay–Hexacyanoferrate Composite Hydrogels as Super Adsorbents for Cs+. ACS Appl. Mater. Interfaces 2020, 12, 33173–33185. [Google Scholar] [CrossRef]
- Vincent, T.; Vincent, C.; Guibal, E. Immobilization of Metal Hexacyanoferrate Ion-Exchangers for the Synthesis of Metal Ion Sorbents—A Mini-Review. Molecules 2015, 20, 20582–20613. [Google Scholar] [CrossRef]
- Vincent, T.; Vincent, C.; Barré, Y.; Guari, Y.; Le Saout, G.; Guibal, E. Immobilization of metal hexacyanoferrates in chitin beads for cesium sorption: Synthesis and characterization. J. Mater. Chem. A 2014, 2, 10007–10021. [Google Scholar] [CrossRef]
- Goto, S.; Umino, S.; Amakai, W.; Fujiwara, K.; Sugo, T.; Kojima, T.; Kawai-Noma, S.; Umeno, D.; Saito, K. Impregnation structure of cobalt ferrocyanide microparticles by the polymer chain grafted onto nylon fiber. J. Nucl. Sci. Technol. 2016, 53, 1251–1255. [Google Scholar] [CrossRef]
- Watari, K.; Imai, K.; Izawa, M. Isolation of 137Cs with Copper Ferrocyanide-Anion Exchange Resin. J. Nucl. Sci. Technol. 1967, 4, 190–194. [Google Scholar] [CrossRef]
- Bokor, I.; Sdraulig, S.; Jenkinson, P.; Madamperuma, J.; Martin, P. Development and validation of an automated unit for the extraction of radiocaesium from seawater. J. Environ. Radioact. 2016, 151, 530–536. [Google Scholar] [CrossRef]
- Ohara, E.; Soejima, T.; Ito, S. Removal of low concentration Cs(I) from water using Prussian blue. Inorganica Chim. Acta 2021, 514, 120029. [Google Scholar] [CrossRef]
- Rustamov, M.K.; Gafurova, D.A.; Karimov, M.M.; Rustamova, N.M.; Bekchonov, D.Z.; Mukhamediev, M.G. Application of ion-exchange materials with high specific surface area for solving environmental problems. Russ. J. Gen. Chem. 2014, 84, 2545–2551. [Google Scholar] [CrossRef]
- Anfilatova, O.V. Register of Certified Reference Materials of the Substances and Materials Composition and Properties of the States Parties to the Agreement. Certif. Ref. Mater. 2009, 4, 70–84. (In Russian) [Google Scholar]
- Dovhyi, I.I.; Kremenchutskii, D.A.; Bezhin, N.A.; Shibetskaya, Y.G.; Tovarchii, Y.Y.; Egorin, A.M.; Tokar, E.A.; Tananaev, I.G. MnO2 fiber as a sorbent for radionuclides in oceanographic investigations. J. Radioanal. Nucl. Chem. 2020, 323, 539–547. [Google Scholar] [CrossRef]
- Bezhin, N.A.; Frolova, M.A.; Dovhyi, I.I.; Kozlovskaia, O.N.; Slizchenko, E.V.; Shibetskaia, I.G.; Khlystov, V.A.; Tokar’, E.A.; Tananaev, I.G. The Sorbents Based on Acrylic Fiber Impregnated by Iron Hydrox-ide (III): Production Methods, Properties, Application in Oceanographic Research. Water 2022, 14, 2303. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.A.; Galhoum, A.A.; Alshahrie, A.; Al-Turki, Y.A.; Al-Amri, A.M.; Wageh, S. Mesoporous Magnetic Cysteine Functionalized Chitosan Nanocomposite for Selective Uranyl Ions Sorption: Experimental, Structural Characterization, and Mechanistic Studies. Polymers 2022, 14, 2568. [Google Scholar] [CrossRef]
- Maslova, M.; Mudruk, N.; Ivanets, A.; Shashkova, I.; Kitikova, N. A novel sorbent based on Ti-Ca-Mg phosphates: Synthesis, characterization, and sorption properties. Environ. Sci. Pollut. Res. 2020, 27, 3933–3949. [Google Scholar] [CrossRef] [PubMed]
- Merkushkin, A.O.; Medvedev, V.P.; Rezchikov, D.E. Method for Producing Thin-Layer Ferrocyanide Sorbents. Patent No. 2172208 Russian Federation, IPC B01J 20/02, B01J 20/30, 20 August 2001. (In Russian). [Google Scholar]
- Liu, X.; Millero, F.J. The solubility of iron hydroxide in sodium chloride solutions. Geochim. Cosmochim. Acta 1999, 63, 3487–3497. [Google Scholar] [CrossRef]
- Andriukonis, E.; Ramanaviciene, A.; Ramanavicius, A. Synthesis of Polypyrrole Induced by [Fe(CN)6]3– and Redox Cycling of [Fe(CN)6]4–/[Fe(CN)6]3–. Polymers 2018, 10, 749. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Du, C.W.; Zhou, J.M.; Shen, Y.Z. Investigation of soil properties using different techniques of mid-infrared spectroscopy. Investigation of soil properties using different techniques of mid-infrared spectroscopy. Eur. J. Soil Sci. 2019, 70, 96–106. [Google Scholar] [CrossRef]
- Mohan, V.; Naske, C.D.; Britten, C.N.; Karimi, L.; Walters, K.B. Hydroxide-catalyzed cleavage of selective ester bonds in phosphatidylcholine: An FTIR study. Vib. Spectrosc. 2020, 109, 103055. [Google Scholar] [CrossRef]
- Martin, H.J.; Luo, H.; Chen, H.; Do-Thanh, C.-L.; Kearney, L.T.; Mayes, R.; Naskar, A.K.; Dai, S. Effect of the Ionic Liquid Structure on the Melt Processability of Polyacrylonitrile Fibers. ACS Appl. Mater. Interfaces 2020, 12, 8663–8673. [Google Scholar] [CrossRef]
- Hamoud, M.A.; Allan, K.F.; Sanad, W.A.; Saad, E.A.; Mahmoud, M.R. Synthesis of PAN/ferrocyanide composite incorporated with cetrimonium bromide and its employment as a bifunctional adsorbent for coremoval of Cs+ and HCrO4− from aqueous solutions. J. Radioanal. Nucl. Chem. 2020, 324, 647–661. [Google Scholar] [CrossRef]
- Jing, M.; Wang, C.; Wang, Q.; Bai, Y.-J.; Zhu, B. Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range of 350–600 °C. Polym. Degrad. Stab. 2007, 92, 1737–1742. [Google Scholar] [CrossRef]
- Voronina, A.V.; Semenishchev, V.S. Influence of the concentrations of potassium, sodium, and ammonium ions on the cesium sorption with mixed nickel potassium ferrocyanide sorbent based on hydrated titanium dioxide. Radiochemistry 2013, 55, 399–403. [Google Scholar] [CrossRef]
- Brian, M. Tissue Basics of Analytical Chemistry and Chemical Equilibria: A Quantitative Approach; John Wiley & Sons: Hoboken, NJ, USA, 2023; 496p. [Google Scholar]
Synthesis Conditions | CoFeFC-PAN | NiFeFC-PAN | CuFeFC-PAN | ZnFeFC-PAN | FeMnFC-PAN | CoMnFC-PAN | NiMnFC-PAN | CuMnFC-PAN | ZnMnFC-PAN | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Support | PAN-Fe(OH)3 | + | + | + | + | – | – | – | – | – | ||
PAN-MnO2 | – | – | – | – | + | + | + | + | + | |||
Stage I | Solution of K4[Fe(CN)6] | C, mol/L | 0.05 | + | + | + | + | + | + | + | + | + |
0.1 | + | + | + | + | + | + | + | + | + | |||
0.2 | + | + | + | + | + | + | + | + | + | |||
0.35 | + | + | + | + | + | + | + | + | + | |||
0.5 | + | + | + | + | + | + | + | + | + | |||
pH | 1 | + | + | + | + | + | + | + | + | + | ||
1.2 | + | + | + | + | + | + | + | + | + | |||
1.5 | + | + | + | + | + | + | + | + | + | |||
2 | + | + | + | + | + | + | + | + | + | |||
2.5 | + | + | + | + | + | + | + | + | + | |||
2.9 | + | + | + | + | + | + | + | + | + | |||
3.5 | + | + | + | + | + | + | + | + | + | |||
4.2 | + | + | + | + | + | + | + | + | + | |||
5 | + | + | + | + | + | + | + | + | + | |||
tI, °C | 25 | + | + | + | + | + | + | + | + | + | ||
50 | + | + | + | + | + | + | + | + | + | |||
80 | + | + | + | + | + | + | + | + | + | |||
Stage II | Solution of FeCl3, mol/L | 0.01 | – | – | – | – | + | – | – | – | – | |
0.02 | – | – | – | – | + | – | – | – | – | |||
0.05 | – | – | – | – | + | – | – | – | – | |||
0.1 | – | – | – | – | + | – | – | – | – | |||
Solution of CoCl2, mol/L | 0.01 | + | – | – | – | – | + | – | – | – | ||
0.02 | + | – | – | – | – | + | – | – | – | |||
0.05 | + | – | – | – | – | + | – | – | – | |||
0.1 | + | – | – | – | – | + | – | – | – | |||
Solution of NiCl2, mol/L | 0.01 | – | + | – | – | – | – | + | – | – | ||
0.02 | – | + | – | – | – | – | + | – | – | |||
0.05 | – | + | – | – | – | – | + | – | – | |||
0.1 | – | + | – | – | – | – | + | – | – | |||
Solution of CuCl2, mol/L | 0.01 | – | – | + | – | – | – | – | + | – | ||
0.02 | – | – | + | – | – | – | – | + | – | |||
0.05 | – | – | + | – | – | – | – | + | – | |||
0.1 | – | – | + | – | – | – | – | + | – | |||
Solution of ZnCl2, mol/L | 0.01 | – | – | – | + | – | – | – | – | + | ||
0.02 | – | – | – | + | – | – | – | – | + | |||
0.05 | – | – | – | + | – | – | – | – | + | |||
0.1 | – | – | – | + | – | – | – | – | + | |||
tII, °C | 25 | + | + | + | + | + | + | + | + | + | ||
50 | + | + | + | + | + | + | + | + | + | |||
80 | + | + | + | + | + | + | + | + | + |
Sorbent | Fe, % | Mn, % | Co, % | K, % | C, % | O, % | N, % |
---|---|---|---|---|---|---|---|
CoFeFC-PAN | 26.75 | − | 5.44 | 3.54 | 28.86 | 17.24 | 18.17 |
CoMnFC-PAN | 7.55 | 15.23 | 4.89 | 4.01 | 32.97 | 15.32 | 20.03 |
FeMnFC-PAN | 9.68 | 33.37 | − | 4.41 | 32.38 | 8.63 | 11.53 |
Sorbent | Kd 137Cs (mL/g) for Various Sorbents in Solution of | ||
---|---|---|---|
0.1 mol/L NaNO3 | 1.0 mol/L NaNO3 | Seawater | |
CoFeFC-PAN | (1.4 ± 0.4) × 105 | (1.0 ± 0.2) × 105 | (5.3 ± 1.7) × 105 |
CoMnFC-PAN | (1.5 ± 0.7) × 105 | (4.5 ± 0.1) × 104 | (2.0 ± 0.2) × 104 |
FeMnFC-PAN | (7.4 ± 0.3) × 104 | (1.1 ± 0.3) × 105 | (1.6 ± 0.3) × 105 |
FNS-10 | (8.4 ± 0.3) × 104 | (7.3 ± 0.2) × 104 | (1.1 ± 0.3) × 104 |
Termoksid-35 | (1.2 ± 0.4) × 105 | (8.1 ± 0.2) × 104 | (3.1 ± 0.3) × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shibetskaia, I.G.; Razina, V.A.; Bezhin, N.A.; Tokar’, E.A.; Milyutin, V.V.; Nekrasova, N.A.; Yankovskaya, V.S.; Tananaev, I.G. New Sorbents Based on Polyacrylonitrile Fiber and Transition Metal Ferrocyanides for 137Cs Recovery from Various Composition Solutions. Appl. Sci. 2024, 14, 627. https://doi.org/10.3390/app14020627
Shibetskaia IG, Razina VA, Bezhin NA, Tokar’ EA, Milyutin VV, Nekrasova NA, Yankovskaya VS, Tananaev IG. New Sorbents Based on Polyacrylonitrile Fiber and Transition Metal Ferrocyanides for 137Cs Recovery from Various Composition Solutions. Applied Sciences. 2024; 14(2):627. https://doi.org/10.3390/app14020627
Chicago/Turabian StyleShibetskaia, Iuliia G., Victoria A. Razina, Nikolay A. Bezhin, Eduard A. Tokar’, Vitaly V. Milyutin, Natalya A. Nekrasova, Victoria S. Yankovskaya, and Ivan G. Tananaev. 2024. "New Sorbents Based on Polyacrylonitrile Fiber and Transition Metal Ferrocyanides for 137Cs Recovery from Various Composition Solutions" Applied Sciences 14, no. 2: 627. https://doi.org/10.3390/app14020627
APA StyleShibetskaia, I. G., Razina, V. A., Bezhin, N. A., Tokar’, E. A., Milyutin, V. V., Nekrasova, N. A., Yankovskaya, V. S., & Tananaev, I. G. (2024). New Sorbents Based on Polyacrylonitrile Fiber and Transition Metal Ferrocyanides for 137Cs Recovery from Various Composition Solutions. Applied Sciences, 14(2), 627. https://doi.org/10.3390/app14020627