The Chaperone System in Tumors of the Vocal Cords: Quantity and Distribution Changes of Hsp10, Hsp27, Hsp60, and Hsp90 during Carcinogenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Immunohistochemical Analysis
2.3. Statistical Analysis
3. Results
3.1. Hsp10
3.2. Hsp27
3.3. Hsp60
3.4. Hsp90
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Parkin, D.M.; Steliarova-Foucher, E. Estimates of Cancer Incidence and Mortality in Europe in 2008. Eur. J. Cancer 2010, 46, 765–781. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Smith, A.H.; Handley, M.A.; Wood, R. Epidemiological Evidence Indicates Asbestos Causes Laryngeal Cancer. J. Occup. Environ. Med. 1990, 32, 499–507. [Google Scholar] [CrossRef]
- Hirvikoski, P.; Virtaniemi, J.; Kumpulainen, E.; Johansson, R.; Kosma, V.M. Supraglottic and Glottic Carcinomas: Clinically and Biologically Distinct Entities? Eur. J. Cancer 2002, 38, 1717–1723. [Google Scholar] [CrossRef]
- Miller, K.D.; Sauer, A.G.; Ortiz, A.P.; Fedewa, S.A.; Pinheiro, P.S.; Tortolero-Luna, G.; Martinez-Tyson, D.; Jemal, A.; Siegel, R.L. Cancer Statistics for Hispanics/Latinos, 2018. CA Cancer J. Clin. 2018, 68, 425–445. [Google Scholar] [CrossRef]
- Shin, J.Y.; Truong, M.T. Racial Disparities in Laryngeal Cancer Treatment and Outcome: A Population-Based Analysis of 24,069 Patients. Laryngoscope 2015, 125, 1667–1674. [Google Scholar] [CrossRef]
- Hashibe, M.; Brennan, P.; Benhamou, S.; Castellsagué, X.; Chen, C.; Curado, M.P.; Dal Maso, L.; Daudt, A.W.; Fabianova, E.; Wünsch-Filho, V.; et al. Alcohol Drinking in Never Users of Tobacco, Cigarette Smoking in Never Drinkers, and the Risk of Head and Neck Cancer: Pooled Analysis in the International Head and Neck Cancer Epidemiology Consortium. J. Natl. Cancer Inst. 2007, 99, 777–789. [Google Scholar] [CrossRef]
- Marioni, G.; Marchese-Ragona, R.; Cartei, G.; Marchese, F.; Staffieri, A. Current Opinion in Diagnosis and Treatment of Laryngeal Carcinoma. Cancer Treat. Rev. 2006, 32, 504–515. [Google Scholar] [CrossRef]
- Hendriksma, M.; Van Ruler, M.A.P.; Verbist, B.M.; De Jong, M.A.; Langeveld, T.P.M.; Van Benthem, P.P.G.; Sjögren, E.V. Survival and Prognostic Factors for Outcome after Radiotherapy for T2 Glottic Carcinoma. Cancers 2019, 11, 1319. [Google Scholar] [CrossRef]
- Lucioni, M.; Marioni, G.; Bertolin, A.; Giacomelli, L.; Rizzotto, G. Glottic Laser Surgery: Outcomes According to 2007 ELS Classification. Eur. Arch. Oto-Rhino-Laryngol. 2011, 268, 1771–1778. [Google Scholar] [CrossRef]
- Ansarin, M.; Cattaneo, A.; Santoro, L.; Massaro, M.A.; Zorzi, S.F.; Grosso, E.; Preda, L.; Alterio, D. Laser Surgery of Early Glottic Cancer in Elderly. Acta Otorhinolaryngol. Ital. 2010, 30, 169. [Google Scholar]
- Succo, G.; Peretti, G.; Piazza, C.; Remacle, M.; Eckel, H.E.; Chevalier, D.; Simo, R.; Hantzakos, A.G.; Rizzotto, G.; Lucioni, M.; et al. Open Partial Horizontal Laryngectomies: A Proposal for Classification by the Working Committee on Nomenclature of the European Laryngological Society. Eur. Arch. Oto-Rhino-Laryngol. 2014, 271, 2489–2496. [Google Scholar] [CrossRef]
- Zhai, L.L.; Xie, Q.; Zhou, C.H.; Huang, D.W.; Tang, Z.G.; Ju, T.F. Overexpressed HSPA2 Correlates with Tumor Angiogenesis and Unfavorable Prognosis in Pancreatic Carcinoma. Pancreatology 2017, 17, 457–463. [Google Scholar] [CrossRef]
- Garg, M.; Kanojia, D.; Seth, A.; Kumar, R.; Gupta, A.; Surolia, A.; Suri, A. Heat-Shock Protein 70-2 (HSP70-2) Expression in Bladder Urothelial Carcinoma Is Associated with Tumour Progression and Promotes Migration and Invasion. Eur. J. Cancer 2010, 46, 207–215. [Google Scholar] [CrossRef]
- Scieglinska, D.; Gogler-Piglowska, A.; Butkiewicz, D.; Chekan, M.; Malusecka, E.; Harasim, J.; Habryka, A.; Krawczyk, Z. HSPA2 Is Expressed in Human Tumors and Correlates with Clinical Features in Non-Small Cell Lung Carcinoma Patients. Anticancer Res. 2014, 34, 2833–2840. [Google Scholar]
- Zhang, H.; Chen, W.; Duan, C.J.; Zhang, C.F. Overexpression of HSPA2 Is Correlated with Poor Prognosis in Esophageal Squamous Cell Carcinoma. World J. Surg. Oncol. 2013, 11, 141–148. [Google Scholar] [CrossRef]
- Jalbout, M.; Bouaouina, N.; Gargouri, J.; Corbex, M.; Ben Ahmed, S.; Chouchane, L. Polymorphism of the Stress Protein HSP70-2 Gene Is Associated with the Susceptibility to the Nasopharyngeal Carcinoma. Cancer Lett. 2003, 193, 75–81. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, H.; Li, X.S.; Kang, H.R.; Ma, J.X.; Yao, F.F.; Du, N. Expression of HSPA2 in Human Hepatocellular Carcinoma and Its Clinical Significance. Tumor Biol. 2014, 35, 11283–11287. [Google Scholar] [CrossRef]
- Somensi, N.; Brum, P.O.; Ramos, V.d.M.; Gasparotto, J.; Zanotto-Filho, A.; Rostirolla, D.C.; Morrone, M.d.S.; Moreira, J.C.F.; Gelain, D.P. Extracellular HSP70 Activates ERK1/2, NF-kB and Pro-Inflammatory Gene Transcription Through Binding with RAGE in A549 Human Lung Cancer Cells. Cell Physiol. Biochem. 2017, 42, 2507–2522. [Google Scholar] [CrossRef]
- Pahl, H.L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999, 18, 6853–6866. [Google Scholar] [CrossRef]
- Asea, A.; Rehli, M.; Kabingu, E.; Boch, J.A.; Baré, O.; Auron, P.E.; Stevenson, M.A.; Calderwood, S.K. Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 2002, 277, 15028–15034. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, S.G.; Ezrin, A.; Jackson, E.; Dewey, L.; Doucette, A.A. A robust strategy for proteomic identification of biomarkers of invasive phenotype complexed with extracellular heat shock proteins. Cell Stress Chaperones 2019, 24, 1197–1209, Erratum in Cell Stress Chaperones 2021, 26, 453. [Google Scholar] [CrossRef]
- Ajalyakeen, H.; Almohareb, M.; Al-Assaf, M. Overexpression of heat shock protein 27 (HSP-27) is associated with bad prognosis in oral squamous cell carcinoma. Dent. Med. Probl. 2020, 57, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Siddiqui, T.A.; Sukhia, R.H.; Maqsood, A.; Ghandhi, D. Diagnostic and prognostic role of cancer stem cell biomarkers in oral squamous cell carcinoma; A Systematic Review. J. Pak. Med. Assoc. 2023, 73 (Suppl. 1), S32–S39. [Google Scholar] [CrossRef]
- Stangl, S.; Tontcheva, N.; Sievert, W.; Shevtsov, M.; Niu, M.; Schmid, T.E.; Pigorsch, S.; Combs, S.E.; Haller, B.; Balermpas, P.; et al. Heat shock protein 70 and tumor-infiltrating NK cells as prognostic indicators for patients with squamous cell carcinoma of the head and neck after radiochemotherapy: A multicentre retrospective study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Int. J. Cancer 2018, 142, 1911–1925. [Google Scholar] [CrossRef]
- Sheta, M.; Yoshida, K.; Kanemoto, H.; Calderwood, S.K.; Eguchi, T. Stress-Inducible SCAND Factors Suppress the Stress Response and Are Biomarkers for Enhanced Prognosis in Cancers. Int. J. Mol. Sci. 2023, 24, 5168. [Google Scholar] [CrossRef] [PubMed]
- Ingruber, J.; Dudás, J.; Savic, D.; Schweigl, G.; Steinbichler, T.B.; Greier, M.D.C.; Santer, M.; Carollo, S.; Trajanoski, Z.; Riechelmann, H. EMT-related transcription factors and protein stabilization mechanisms involvement in cadherin switch of head and neck squamous cell carcinoma. Exp. Cell Res. 2022, 414, 113084, Erratum in Exp. Cell Res. 2022, 416, 113174. [Google Scholar] [CrossRef] [PubMed]
- García Lorenzo, J.; León Vintró, X.; Camacho Pérez de Madrid, M. HSP-90 expression as a predictor of response to radiotherapy in head and neck cancer patients. Acta Otorrinolaringol. Esp. 2016, 67, 130–134. [Google Scholar] [CrossRef]
- Wang, J.; Xiang, Y.; Xie, Z.; Fan, M.; Fang, S.; Wan, H.; Zhao, R.; Zeng, F.; Hua, Q. USP14 Positively Modulates Head and Neck Squamous Carcinoma Tumorigenesis and Potentiates Heat Shock Pathway through HSF1 Stabilization. Cancers 2023, 15, 4385. [Google Scholar] [CrossRef]
- Saini, J.; Sharma, P.K. Clinical, Prognostic and Therapeutic Significance of Heat Shock Proteins in Cancer. Curr. Drug Targets 2018, 19, 1478–1490. [Google Scholar] [CrossRef]
- Zheng, G.; Zhang, Z.; Liu, H.; Xiong, Y.; Luo, L.; Jia, X.; Peng, C.; Zhang, Q.; Li, N.; Gu, Y.; et al. HSP27-Mediated Extracellular and Intracellular Signaling Pathways Synergistically Confer Chemoresistance in Squamous Cell Carcinoma of Tongue. Clin. Cancer Res. 2018, 24, 1163–1175. [Google Scholar] [CrossRef]
- Seclì, L.; Fusella, F.; Avalle, L.; Brancaccio, M. The dark-side of the outside: How extracellular heat shock proteins promote cancer. Cell. Mol. Life Sci. 2021, 78, 4069–4083. [Google Scholar] [CrossRef]
- Wang, X.; An, D.; Wang, X.; Liu, X.; Li, B. Extracellular Hsp90α clinically correlates with tumor malignancy and promotes migration and invasion in esophageal squamous cell carcinoma. OncoTargets Ther. 2019, 12, 1119–1128, Retraction in Onco Targets Ther. 2020, 13, 7353. [Google Scholar] [CrossRef] [PubMed]
- Campanella, C.; Rappa, F.; Sciumè, C.; Gammazza, A.M.; Barone, R.; Bucchieri, F.; David, S.; Curcurù, G.; Bavisotto, C.C.; Pitruzzella, A.; et al. Heat Shock Protein 60 Levels in Tissue and Circulating Exosomes in Human Large Bowel Cancer before and after Ablative Surgery. Cancer 2015, 121, 3230–3239. [Google Scholar] [CrossRef]
- Rappa, F.; Farina, F.; Zummo, G.; David, S.; Campanella, C.; Carini, F.; Tomasello, G.; Damiani, P.; Cappello, F.; Conway de Macario, E.; et al. HSP-Molecular Chaperones in Cancer Biogenesis and Tumor Therapy: An Overview. Anticancer Res. 2012, 32, 5139–5150. [Google Scholar] [PubMed]
- Rappa, F.; Pitruzzella, A.; Gammazza, A.M.; Barone, R.; Mocciaro, E.; Tomasello, G.; Carini, F.; Farina, F.; Zummo, G.; de Macario, E.C.; et al. Quantitative Patterns of Hsps in Tubular Adenoma Compared with Normal and Tumor Tissues Reveal the Value of Hsp10 and Hsp60 in Early Diagnosis of Large Bowel Cancer. Cell Stress Chaperones 2016, 21, 927–933. [Google Scholar] [CrossRef]
- Wu, J.; Liu, T.; Rios, Z.; Mei, Q.; Lin, X.; Cao, S. Heat Shock Proteins and Cancer. Trends Pharmacol. Sci. 2017, 38, 226–256. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Huang, J.; Liu, J.; Li, C.; Kroemer, G.; Tang, D.; Kang, R. HSP90 Mediates IFNγ-Induced Adaptive Resistance to Anti-PD-1 Immunotherapy. Cancer Res. 2022, 82, 2003–2018. [Google Scholar] [CrossRef]
- Sasame, J.; Ikegaya, N.; Kawazu, M.; Natsumeda, M.; Hayashi, T.; Isoda, M.; Satomi, K.; Tomiyama, A.; Oshima, A.; Honma, H.; et al. HSP90 Inhibition Overcomes Resistance to Molecular Targeted Therapy in BRAFV600E-mutant High-grade Glioma. Clin. Cancer Res. 2022, 28, 2425–2439. [Google Scholar] [CrossRef]
- Dong, L.; Xue, L.; Zhang, C.; Li, H.; Cai, Z.; Guo, R. HSP90 interacts with HMGCR and promotes the progression of hepatocellular carcinoma. Mol. Med. Rep. 2019, 19, 524–532. [Google Scholar] [CrossRef]
- Niu, M.; Zhang, B.; Li, L.; Su, Z.; Pu, W.; Zhao, C.; Wei, L.; Lian, P.; Lu, R.; Wang, R.; et al. Targeting HSP90 Inhibits Proliferation and Induces Apoptosis Through AKT1/ERK Pathway in Lung Cancer. Front. Pharmacol. 2022, 12, 724192. [Google Scholar] [CrossRef]
- Ikwegbue, P.C.; Masamba, P.; Mbatha, L.S.; Oyinloye, B.E.; Kappo, A.P. Interplay between heat shock proteins, inflammation and cancer: A potential cancer therapeutic target. Am. J. Cancer Res. 2019, 9, 242–249. [Google Scholar] [PubMed]
- Yang, T.; Ren, C.; Lu, C.; Qiao, P.; Han, X.; Wang, L.; Wang, D.; Lv, S.; Sun, Y.; Yu, Z. Phosphorylation of HSF1 by PIM2 Induces PD-L1 Expression and Promotes Tumor Growth in Breast Cancer. Cancer Res. 2019, 79, 5233–5244. [Google Scholar] [CrossRef]
- Takayama, S.; Reed, J.C.; Homma, S. Heat-Shock Proteins as Regulators of Apoptosis. Oncogene 2003, 22, 9041–9047. [Google Scholar] [CrossRef] [PubMed]
- Czarnecka, A.M.; Campanella, C.; Zummo, G.; Cappello, F. Mitochondrial Chaperones in Cancer: From Molecular Biology to Clinical Diagnostics. Cancer Biol. Ther. 2006, 5, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.P.; Teng, S.C.; Wu, K.J. Direct Regulation of HSP60 Expression by C-MYC Induces Transformation. FEBS Lett. 2008, 582, 4083–4088. [Google Scholar] [CrossRef]
- Lin, C.S.; He, P.J.; Hsu, W.T.; Wu, M.S.; Wu, C.J.; Shen, H.W.; Hwang, C.H.; Lai, Y.K.; Tsai, N.M.; Liao, K.W. Helicobacter Pylori-Derived Heat Shock Protein 60 Enhances Angiogenesis via a CXCR2-Mediated Signaling Pathway. Biochem. Biophys. Res. Commun. 2010, 397, 283–289. [Google Scholar] [CrossRef]
- Gibert, B.; Simon, S.; Dimitrova, V.; Diaz-Latoud, C.; Arrigo, A.P. Peptide Aptamers: Tools to Negatively or Positively Modulate HSPB1(27) Function. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120075. [Google Scholar] [CrossRef]
- O’Callaghan-Sunol, C.; Gabai, V.L.; Sherman, M.Y. Hsp27 Modulates P53 Signaling and Suppresses Cellular Senescence. Cancer Res. 2007, 67, 11779–11788. [Google Scholar] [CrossRef]
- Aoyagi, Y.; Fujita, N.; Tsuruo, T. Stabilization of Integrin-Linked Kinase by Binding to Hsp90. Biochem. Biophys. Res. Commun. 2005, 331, 1061–1068. [Google Scholar] [CrossRef]
- Ochel, H.J.; Schulte, T.W.; Nguyen, P.; Trepel, J.; Neckers, L. The Benzoquinone Ansamycin Geldanamycin Stimulates Proteolytic Degradation of Focal Adhesion Kinase. Mol. Genet. Metab. 1999, 66, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Y.; Zhao, Y.; Liang, Y.; Xiang, C.; Zhou, H.; Zhang, H.; Zhang, Q.; Qing, H.; Jiang, B.; et al. CD24 Promoted Cancer Cell Angiogenesis via Hsp90-Mediated STAT3/VEGF Signaling Pathway in Colorectal Cancer. Oncotarget 2016, 7, 55663–55676. [Google Scholar] [CrossRef] [PubMed]
Group | Gender | Age (y.o.) | T | N | M |
---|---|---|---|---|---|
Healthy | Female | 48 | - | - | - |
Healthy | Female | 50 | - | - | - |
Healthy | Male | 53 | - | - | - |
Healthy | Male | 57 | - | - | - |
Healthy | Male | 60 | - | - | - |
Healthy | Male | 62 | - | - | - |
Healthy | Female | 65 | - | - | - |
Healthy | Male | 68 | - | - | - |
Healthy | Female | 69 | - | - | - |
Healthy | Male | 70 | - | - | - |
Dysplasia | Female | 45 | - | - | - |
Dysplasia | Female | 49 | - | - | - |
Dysplasia | Male | 53 | - | - | - |
Dysplasia | Female | 55 | - | - | - |
Dysplasia | Male | 59 | - | - | - |
Dysplasia | Male | 62 | - | - | - |
Dysplasia | Male | 65 | - | - | - |
Dysplasia | Female | 71 | - | - | - |
Dysplasia | Male | 76 | - | - | - |
Dysplasia | Male | 78 | - | - | - |
Squamous Cell Carcinoma | Male | 68 | 2 | 0 | 0 |
Squamous Cell Carcinoma | Male | 69 | 3 | 0 | 0 |
Squamous Cell Carcinoma | Female | 70 | 3 | 0 | 0 |
Squamous Cell Carcinoma | Male | 73 | 2 | 0 | 0 |
Squamous Cell Carcinoma | Female | 74 | 2 | 0 | 0 |
Squamous Cell Carcinoma | Male | 77 | 2 | 0 | 0 |
Squamous Cell Carcinoma | Female | 78 | 2 | 0 | 0 |
Squamous Cell Carcinoma | Female | 80 | 2 | 0 | 0 |
Squamous Cell Carcinoma | Female | 81 | 2 | 0 | 0 |
Squamous Cell Carcinoma | Female | 82 | 3 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitruzzella, A.; Fucarino, A.; Modica, M.D.; Lentini, V.L.; Vella, C.; Burgio, S.; Calabrò, F.; Intili, G.; Rappa, F. The Chaperone System in Tumors of the Vocal Cords: Quantity and Distribution Changes of Hsp10, Hsp27, Hsp60, and Hsp90 during Carcinogenesis. Appl. Sci. 2024, 14, 722. https://doi.org/10.3390/app14020722
Pitruzzella A, Fucarino A, Modica MD, Lentini VL, Vella C, Burgio S, Calabrò F, Intili G, Rappa F. The Chaperone System in Tumors of the Vocal Cords: Quantity and Distribution Changes of Hsp10, Hsp27, Hsp60, and Hsp90 during Carcinogenesis. Applied Sciences. 2024; 14(2):722. https://doi.org/10.3390/app14020722
Chicago/Turabian StylePitruzzella, Alessandro, Alberto Fucarino, Michele Domenico Modica, Vincenzo Luca Lentini, Claudio Vella, Stefano Burgio, Federica Calabrò, Giorgia Intili, and Francesca Rappa. 2024. "The Chaperone System in Tumors of the Vocal Cords: Quantity and Distribution Changes of Hsp10, Hsp27, Hsp60, and Hsp90 during Carcinogenesis" Applied Sciences 14, no. 2: 722. https://doi.org/10.3390/app14020722
APA StylePitruzzella, A., Fucarino, A., Modica, M. D., Lentini, V. L., Vella, C., Burgio, S., Calabrò, F., Intili, G., & Rappa, F. (2024). The Chaperone System in Tumors of the Vocal Cords: Quantity and Distribution Changes of Hsp10, Hsp27, Hsp60, and Hsp90 during Carcinogenesis. Applied Sciences, 14(2), 722. https://doi.org/10.3390/app14020722