A Comparative Study of Oleuropein Extraction from Wild Olive Leaves (Olea europea subsp. oleaster, Hoffmanns. & Link), Its Gastrointestinal Stability, and Biological Potential
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Extractions of Wild Olive Leaves
2.2.1. Solvent Extraction
2.2.2. Microwave Assisted-Extraction (MAE)
2.2.3. Supercritical CO2 Extraction
2.3. HPLC Analysis of Phenolic Compounds Extracted from Wild Olive Leaves
2.4. Collection of Human Digestive Enzymes and Determination of the Enzymatic Activity of Digestive Juices
2.5. In Vitro Digestion
2.6. UHPLC Analysis of In Vitro Digesta Samples
2.7. Antiproliferative Activity
2.8. Anti-Inflammatory Activity
2.8.1. Cell Culture
2.8.2. Gene Expression Analysis–qPCR
2.9. Statistical Analysis
3. Results and Discussion
3.1. Extraction of Wild Olive Leaves
3.2. Gastrointestinal Stability of Oleuropein from WOLE-S
3.3. Biological Potential of WOLE-S vs. Pure Oleuropein
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coppa, C.; Gonçalves, B.; Lee, S.; Nunes, V. Extraction of Oleuropein from Olive Leaves and Applicability in Foods. Qual. Assur. Saf. Crops Foods 2020, 12, 50–62. [Google Scholar] [CrossRef]
- Cruess, W.V.; Alsberg, C.L. The bitter glucoside of the olive. J. Am. Chem. Soc. 1934, 56, 2115–2117. [Google Scholar] [CrossRef]
- Kranz, P.; Braun, N.; Schulze, N.; Kunz, B. Sensory Quality of Functional Beverages: Bitterness Perception and Bitter Masking of Olive Leaf Extract Fortified Fruit Smoothies. J. Food Sci. 2010, 75, S308–S311. [Google Scholar] [CrossRef] [PubMed]
- Omar, S.H. Oleuropein in Olive and its Pharmacological Effects. Sci. Pharm. 2010, 78, 133–154. [Google Scholar] [CrossRef] [PubMed]
- Rios, J.L.; Gonzalez Arbelaez, L.F.; Schinella, G.; Andújar, I. Olive Leaf: A Traditional Phytomedicine for Diabetes and Hypertension. In Phytotherapy in the Management of Diabetes and Hypertension; Bentham Science Publishers: Sharjah, United Arab Emirates, 2020; Volume 4, pp. 79–99. [Google Scholar] [CrossRef]
- Boss, A.; Bishop, K.S.; Marlow, G.; Barnett, M.P.; Ferguson, L.R. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions. Nutrients 2016, 8, 513. [Google Scholar] [CrossRef]
- Magrone, T.; Spagnoletta, A.; Salvatore, R.; Magrone, M.; Dentamaro, F.; Russo, M.A.; Difonzo, G.; Summo, C.; Caponio, F.; Jirillo, E. Olive Leaf Extracts Act as Modulators of the Human Immune Response. Endocr. Metab. Immune Disord. Drug Targets 2018, 18, 85–93. [Google Scholar] [CrossRef]
- Selim, S.; Albqmi, M.; Al-Sanea, M.M.; Alnusaire, T.S.; Almuhayawi, M.S.; AbdElgawad, H.; Al Jaouni, S.K.; Elkelish, A.; Hussein, S.; Warrad, M.; et al. Valorizing the usage of olive leaves, bioactive compounds, biological activities, and food applications: A comprehensive review. Front. Nutr. 2022, 9, 1008349. [Google Scholar] [CrossRef]
- Mansour, H.M.M.; Zeitoun, A.A.; Abd-Rabou, H.S.; El Enshasy, H.A.; Dailin, D.J.; Zeitoun, M.A.A.; El-Sohaimy, S.A. Antioxidant and Anti-Diabetic Properties of Olive (Olea europaea) Leaf Extracts: In Vitro and In Vivo Evaluation. Antioxidants 2023, 12, 1275. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; de la Rosa, R.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of Phenolic Compounds of “Sikitita” Olive Leaves by HPLC-DAD-TOF-MS. Comparison with its Parents “Arbequina” and “Picual” Olive Leaves. LWT—Food Sci. Technol. 2014, 58, 28–34. [Google Scholar] [CrossRef]
- Yasemi, M.; Heydarinasab, A.; Rahimi, M.; Ardjmand, M. Microchannels Effective Method for the Extraction of Oleuropein Compared with Conventional Methods. J. Chem. 2017, 2017, 6594156. [Google Scholar] [CrossRef]
- Di Meo, M.C.; Izzo, F.; Rocco, M.; Zarrelli, A.; Mercurio, M.; Varricchio, E. Mid-Infrared Spectroscopic Characterization: New Insights on Bioactive Molecules of Olea europea L. Leaves from Selected Cultivars. Infrared Phys. Technol. 2022, 127, 104439. [Google Scholar] [CrossRef]
- Silveira da Rosa, G.; Martiny, T.R.; Dotto, G.L.; Kranthi Vanga, S.; Parrine, D.; Gariepy, Y.; Lefsrud, M.; Raghavan, V. Eco-friendly extraction for the recovery of bioactive compounds from Brazilian olive leaves. Sustain. Mater. Technol. 2021, 28, e00276. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef] [PubMed]
- Xynos, N.; Papaefstathiou, G.; Psychis, M.; Argyropoulou, A.; Aligiannis, N.; Skaltsounis, A.L. Development of a Green Extraction Procedur with Super/Subcritical Fluids to Produce Extracts Enriched in Oleuropein from Olive Leaves. J. Supercrit. Fluids 2012, 67, 89–93. [Google Scholar] [CrossRef]
- Bastante, C.C.; Casas Cardoso, L.; Fernández Ponce, M.T.; Mantell Serrano, C.; Martínez de la Ossa-Fernández, E.J. Characterization of Olive Leaf Extract Polyphenols Loaded by Supercritical Solvent Impregnation into PET/PP Food Packaging Films. J. Supercrit. Fluids 2018, 140, 196–206. [Google Scholar] [CrossRef]
- Baldino, L.; Della Porta, G.; Sesti Osseo, L.; Reverchon, E.; Adami, R. Concentrated Oleuropein Powder from Olive Leaves Using Alcoholic Extraction and Supercritical CO2 Assisted Extraction. J. Supercrit. Fluids 2018, 133, 65–69. [Google Scholar] [CrossRef]
- Le Floch, F.; Tena, M.T.; Ríos, V.; Valcárcel, M. Supercritical Fluid Extraction of Phenol Compounds from Olive Leaves. Talanta 1998, 46, 1123–1130. [Google Scholar] [CrossRef]
- Nediani, C.; Ruzzolini, J.; Romani, A.; Calorini, L. Oleuropein, a Bioactive Compound from Olea europaea L., as a Potential Preventive and Therapeutic Agent in Non-Communicable Diseases. Antioxidants 2019, 8, 578. [Google Scholar] [CrossRef]
- Fayez, N.; Khalil, W.; Abdel-Sattar, E.; Abdel-Fattah, A.M. In Vitro and In vivo Assessment of the Anti-Inflammatory Activity of Olive Leaf Extract in Rats. Inflammopharmacology 2023, 3, 1529–1538. [Google Scholar] [CrossRef]
- Emma, M.R.; Augello, G.; Di Stefano, V.; Azzolina, A.; Giannitrapani, L.; Montalto, G.; Cervello, M.; Cusimano, A. Potential Uses of Olive Oil Secoiridoids for the Prevention and Treatment of Cancer: A Narrative Review of Preclinical Studies. Int. J. Mol. Sci. 2021, 22, 1234. [Google Scholar] [CrossRef]
- Sensoy, I.A. Review on the Food Digestion in the Digestive Tract and the Used In Vitro Models. Curr. Res. Food Sci. 2021, 4, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Ulleberg, E.K.; Comi, I.; Holm, H.; Herud, E.B.; Jacobsen, M.; Vegarud, G.E. Human Gastrointestinal Juices Intended for Use in In Vitro Digestion Models. Food Dig. 2011, 2, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Markopoulos, K.; Vertzoni, M.; Agalias, A.; Magiatis, P. Stability of Oleuropein in the Human Proximal Gut. J. Pharm. Pharmacol. 2009, 61, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Villalva, M.; Silvan, J.M.; Guerrero-Hurtado, E.; Gutierrez-Docio, A.; Navarro Del Hierro, J.; Alarcón-Cavero, T.; Prodanov, M.; Martin, D.; Martinez-Rodriguez, A.J. Influence of In Vitro Gastric Digestion of Olive Leaf Extracts on Their Bioactive Properties against H. pylori. Foods 2022, 11, 1832. [Google Scholar] [CrossRef] [PubMed]
- Duque-Soto, C.; Quirantes-Piné, R.; Borrás-Linares, I.; Segura-Carretero, A.; Lozano-Sánchez, J. Characterization and Influence of Static In Vitro Digestion on Bioaccessibility of Bioactive Polyphenols from an Olive Leaf Extract. Foods 2022, 11, 743. [Google Scholar] [CrossRef]
- Cedola, A.; Palermo, C.; Centoze, D.; Del Nobile, M.A.; Conte, A. Characterization and Bio-Accessibility Evaluation of Olive Leaf Extract-Enriched “Taralli”. Foods 2020, 9, 1268. [Google Scholar] [CrossRef]
- Elamin, M.H.; Daghestani, M.H.; Omer, S.A.; Elobeid, M.A.; Virk, P.; Al-Olayan, E.M.; Hassan, Z.K.; Mohammed, O.B.; Aboussekhra, A. Olive Oil Oleuropein has Anti-Breast Cancer Properties with Higher Efficiency on ER-Negative Cells. Food Chem. Toxicol. 2013, 53, 310–316. [Google Scholar] [CrossRef]
- Asgharzade, S.; Sheikhshabani, S.H.; Ghasempour, E.; Heidari, R.; Rahmati, S.; Mohammadi, M.; Jazaeri, A.; Amini-Farsani, Z. The effect of oleuropein on apoptotic pathway regulators in breast cancer cells. Eur. J. Pharmacol. 2020, 886, 173509. [Google Scholar] [CrossRef]
- Antoniou, C.; Hull, J. The Anti-Cancer Effect of Olea europaea L. Products: A Review. Curr. Nutr. Rep. 2021, 10, 99–124. [Google Scholar] [CrossRef]
- Morandi, F.; Bensa, V.; Calarco, E.; Pastorino, F.; Perri, P.; Corrias, M.V.; Ponzoni, M.; Brignole, C. The Olive Leaves Extract has Anti-Tumor Effects against Neuroblastoma through Inhibition of Cell Proliferation and Induction of Apoptosis. Nutrients 2021, 13, 2178. [Google Scholar] [CrossRef]
- Rishmawi, S.; Haddad, F.; Dokmak, G.; Karaman, R. A Comprehensive Review on the Anti-Cancer Effects of Oleuropein. Life 2022, 12, 1140. [Google Scholar] [CrossRef] [PubMed]
- Berkoz, M.; Kahraman, T.; Shamsulddin, Z.N.; Krośniak, M. Antioxidant and Anti-inflammatory Effect of Olive Leaf Extract Treatment in Diabetic Rat Brain. J. Basic Clin. Physiol. Pharmacol. 2021, 34, 187–196. [Google Scholar] [CrossRef]
- Pekić, B.; Zeković, Z.; Petrović, L.; Aleksandar Tolić, A. Behavior of (−)-α-Bisabolol and (−)-α-Bisabololoxides A and B in Camomile Flower Extraction with Supercritical Carbon Dioxide. Sep. Sci. Technol. 1995, 18, 3567–3576. [Google Scholar] [CrossRef]
- IOC. Determination of Biophenols in Olive Oil by HPLC; COI/T.20/Doc No. 29; International Olive Council: Madrid, Spain, 2009. [Google Scholar]
- Blažević, I.; Đulović, A.; Burčul, F.; Popović, M.; Montaut, S.; Bilušić, T.; Vrca, I.; Markić, J.; Ljubenkov, I.; Ruščić, M.; et al. Stability and Bioaccessibility during Ex Vivo Digestion of Glucoraphenin and Glucoraphasatin from Mathiola incana (L.). R. Br. J. Food Comp. Anal. 2020, 90, 103483. [Google Scholar] [CrossRef]
- Almaas, H.; Cases, A.L.; Devold, T.G.; Holm, H.; Langsrud, T.; Aabakken, L.; Aadnoey, T.; Vegarud, G.E. In Vitro Digestion of Bovine and Caprine Milk by Human Gastric and Duodenal Enzymes. Int. Dairy J. 2006, 16, 961–968. [Google Scholar] [CrossRef]
- Furlund, C.B.; Ulleberg, E.K.; Devold, T.G.; Flengsrud, R.; Jacobsen, M.; Sekse, C.; Holm, H.; Vegarud, G.E. Identification of Lactoferrin Peptides Generated by Digestion with Human Gastrointestinal Enzymes. J. Dairy Sci. 2013, 96, 75–88. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Otero, D.M.; Oliveira, F.M.; Lorini, A.; da Fonseca Antunes, B. Oleuropein: Methods for Extraction, Purifying and Applying. Rev. Ceres 2020, 67, 315–329. [Google Scholar] [CrossRef]
- Gonzalez, E.; Gomez-Caravaca, A.M.; Giménez, B.; Cebrián, R.; Maqueda, M.; Martínez- Férez, A.; Segura-Carretero, A.; Robert, P. Evolution of the Phenolic Compounds Profile of Olive Leaf Extract Encapsulated by Spray-Drying during In Vitro Gastrointestinal Digestion. Food Chem. 2019, 279, 40–48. [Google Scholar] [CrossRef]
- Corona, G.; Tzounisa, X.; Dessìb, M.A.; Deianab, M.; Debnamc, E.S.; Visiolid, F.; Spencer, J.P.E. The Fate of Olive Oil Polyphenols in the Gastrointestinal Tract: Implications of Gastric and Colonic Microflora-Dependent Biotransformation. Free Radic. Res. 2009, 40, 647–658. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; Olmo-García, L.; Figueiredo-González, M.; González-Barreiro, C.; Carrasco-Pancorbo, A.; Cancho-Grande, B. Application of the INFOGEST Standardized Method to Assess the Digestive Stability and Bioaccessibility of Phenolic Compounds from Galician Extra-Virgin Olive Oil. J. Agric. Food Chem. 2021, 69, 11592–11605. [Google Scholar] [CrossRef] [PubMed]
- Najibullah, S.N.M.; Ahamad, J.; Sultana, S.; Uthirapathy, S. Potential Anticancer Activity of Chemically Characterized Extract of Olea europea (Olive) Leaves. Emir. J. Food Agric. 2023, 35, 890–896. [Google Scholar] [CrossRef]
- Goulas, V.; Exarchou, V.; Troganis, A.N.; Psomiadou, E.; Fotsis, T.; Briasoulis, E.; Gerothanassi, J.P. Phytochemicals in Olive-Leaf Extracts and Their Antiproliferative Activity against Cancer and Endothelial Cells. Mol. Nutr. Food Res. 2009, 53, 600–6008. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Nadeem, M.; Gilani, S.A.; Khan, S.; Sajid, M.W.; Amir, R.M. Antitumor Perspectives of Oleuropein and Its Metabolite Hydroxytyrosol: Recent Updates. J. Food Sci. 2018, 83, 1781–1791. [Google Scholar] [CrossRef] [PubMed]
- Bal, Y.; Sürmeli, Y.; Şanlı-Mohamed, G. Antiproliferative and Apoptotic Effects of Olive Leaf Extract Microcapsules on MCF-7 and A549 Cancer Cells. ACS Omega 2023, 8, 28984–28993. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, 016295. [Google Scholar] [CrossRef]
- Pojero, F.; Aiello, A.; Gervasi, F.; Caruso, C.; Ligotti, M.E.; Calabrò, A.; Procopio, A.; Candore, G.; Accardi, G.; Allegra, M. Effects of Oleuropein and Hydroxytyrosol on Inflammatory Mediators: Consequences on Inflammaging. Int. J. Mol. Sci. 2022, 24, 380. [Google Scholar] [CrossRef]
- Silvestrini, A.; Giordani, C.; Bonacci, S.; Giuliani, A.; Ramini, D.; Matacchione, G.; Sabbatinelli, J.; Di Valerio, S.; Pacetti, D.; Procopio, A.D.; et al. Anti-Inflammatory Effects of Olive Leaf Extract and Its Bioactive Compounds Oleacin and Oleuropein-Aglycone on Senescent Endothelial and Small Airway Epithelial Cells. Antioxidants 2023, 12, 1509. [Google Scholar] [CrossRef]
- Lockyer, S.; Corona, G.; Yaqoob, P.; Spences, J.P.E.; Rowland, I. Secoiridoids Delivered as Olive Leaf Extract induce Acute Improvements in Human Vascular Function and Reduction of an Inflammatory Cytokine: A Randomised, Double-blind, Placebo-controlled, Cross-over Trial. Br. J. Nutr. 2015, 114, 75–83. [Google Scholar] [CrossRef]
- Wu, H.; Jiang, K.; Zhang, T.; Zhao, G.; Deng, G. Hydroxytyrosol Exerts an Anti-inflammatory Effect by Suppressing Toll-like Receptor 2 and TLR 2 Downstream Pathways in Staphylococcus aureus-Induced Mastitis in Mice. J. Funct. Foods 2017, 35, 595–604. [Google Scholar] [CrossRef]
GAPDH | Forward | ACCCACTCCTCCACCTTTGAC |
Reverse | CATACCAGGAAATGAGCTTGACAA | |
IL-6 | Forward | CCCCCAGGAGAAGATTCCA |
Reverse | TCAATTCGTTCTGAAGAGGTGAGT | |
IL-8 | Forward | CTGGCCGTGGCTCTCTTG |
Reverse | CCTTGGCAAAACTGCACCTT | |
IL-10 | Forward | TGAGAACAGCTGCACCCACTT |
Reverse | GCTGAAGGCATCTCGGAGAT |
Solvent Extraction | Supercritical CO2 Extraction | MAE Extraction | Retention Time | |
---|---|---|---|---|
Compound | Concentration (µg/mL) | (min) | ||
hydroxytyrosol | 9.72 ± 0.48 a | 1.41 ± 0.02 b | 0.16 ± 0.01 c | 18.10 |
3,4-hydroxybenzoic acid | 1.70 ± 0.09 a | 0.20 ± 0.01 c | 0.89 ± 0.05 b | 19.86 |
tyrosol | 3.04 ± 0.34 b | 3.51 ± 0.38 b | 17.76 ± 1.05 a | 22.42 |
catechin | 1.91 ± 0.15 a | 0.74 ± 0.05 b | n.d. | 24.86 |
4-hydroxybenzoic acid | 1.24 ± 0.09 c | 4.84 ± 0.16 a | 2.96 ± 0.11 b | 25.27 |
coffee acid | 0.93 ± 0.11 a | 0.47 ± 0.03 ab | n.d. | 28.66 |
p-coumaric acid | 8.60 ± 1.17 a | 1.78 ± 0.13 b | 6.49 ± 0.61 a | 33.46 |
t-ferulic acid | 1.56 ± 0.18 a | 0.72 ± 0.08 b | n.d. | 35.04 |
o-coumaric acid | n.d. | 0.53 ± 0.08 b | 1.91 ± 0.15 a | 37.73 |
oleuropein | 71.97 ± 3.77 a | 2.05 ± 0.13 c | 13.62 ± 0.77 b | 39.57 |
oleuropein aglycone | 20.62 ± 1.89 a | 0.97 ± 0.08 b | 20.60 ± 1.47 a | 40.38 |
pinoresinol | n.d. | 3.34 ± 0.58 a | n.d. | 44.57 |
luteoline | 4.40 ± 0.62 a | 0.37 ± 0.04 b | n.d. | 48.40 |
apigenine | 2.70 ± 0.10 a | 0.33 ± 0.03 b | n.d. | 51.77 |
kaempferol | 0.84 ± 0.07 a | 0.18 ± 0.20 b | n.d. | 52.14 |
Inhibition of Cell Proliferation /% | ||||
---|---|---|---|---|
Sample Concentration | Incubation Period 4 h | Incubation Period 24 h | Incubation Period 48 h | Incubation Period 72 h |
(a) | ||||
1.00 g/L | ||||
WOLE-S | 8.77 ± 0.03 b D | 34.22 ± 0.02 b B | 26.12 ± 0.02 b C | 37.87 ± 0.04 b A |
oleuropein | 52.59 ± 0.01 a D | 63.12 ± 0.03 a C | 77.94 ± 0.01 a B | 89.12 ± 0.03 a A |
0.50 g/L | ||||
WOLE-S | 2.70 ± 0.02 b D | 18.14 ± 0.03 b C | 25.55 ± 0.01 b B | 31.12 ± 0.04 b A |
oleuropein | 23.60 ± 0.02 a D | 44.12 ± 0.03 a C | 60.14 ± 0.01 a B | 77.52 ± 0.03 a A |
Positive control (taxol 0.047 g/L) | 16.25 ± 0.01 | 16.15 ± 0.07 | 50.65 ± 0.05 | 33.16± 0.02 |
(b) | ||||
1.00 g/L | ||||
WOLE-S | 26.88 ± 0.01 b D | 83.61 ± 0.04 a C | 88.07 ± 0.03 a A | 86.67 ± 0.04 b B |
oleuropein | 56.25 ± 0.03 a D | 81.12 ± 0.02 b C | 87.61 ± 0.02 b B | 89.12 ± 0.01 a A |
0.50 g/L | ||||
WOLE-S | 0.00 ± 0.00 b D | 28.83 ± 0.04 b C | 45.16 ± 0.03 b B | 50.12 ± 0.02 b A |
oleuropein | 2.10 ± 0.03 a D | 79.51 ± 0.01 a C | 89.67 ± 0.02 a A | 88.24 ± 0.04 a B |
Positive control (cisplatin 0.05 g/L) | 8.44 ± 0.12 | 13.40 ± 0.08 | 43.80 ± 0.9 | 47.60 ± 0.04 |
(c) | ||||
1.00 g/L | ||||
WOLE-S | 16.91 ± 0.03 a D | 19.20 ± 0.02 b C | 32.45 ± 0.02 b B | 36.14 ± 0.04 b A |
oleuropein | 15.12 ± 0.01 b D | 74.74 ± 0.03 a C | 83.77 ± 0.01 a B | 87.66 ± 0.03 a A |
0.50 g/L | ||||
WOLE-S | 5.40 ± 0.02 b D | 14.04 ± 0.03 b C | 25.30 ± 0.01 b B | 29.88 ± 0.03 b A |
oleuropein | 8.93 ± 0.03 a D | 55.30 ± 0.01 a C | 61.12 ± 0.02 a B | 73.09 ± 0.04 a A |
(d) | ||||
1.00 g/L | ||||
WOLE-S | 18.94 ± 0.01 a D | 19.20 ± 0.01 b C | 29.14 ± 0.07 b B | 32.44 ± 0.04 b A |
oleuropein | 15.59 ± 0.04 b D | 74.74 ± 0.02 a B | 79.73 ± 0.02 a A | 61.95 ± 0.03 a C |
0.50 g/L | ||||
WOLE-S | 10.25 ± 0.02 a D | 14.04 ± 0.02 b C | 17.10 ± 0.05 b B | 28.05 ± 0.02 b A |
oleuropein | 10.07 ± 0.02 b D | 55.30 ± 0.01 a C | 60.14 ± 0.01 a B | 65.29 ± 0.01 a A |
Positive control (cisplatin 0.050 g/L) | 0.00 ± 0.00 | 7.55 ± 0.08 | 18.43 ± 0.06 | 16.00 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soldo, B.; Bilušić, T.; Giacometti, J.; Ljubenkov, I.; Čikeš Čulić, V.; Bratanić, A.; Bošković, P.; Šola, I.; Ilić, K. A Comparative Study of Oleuropein Extraction from Wild Olive Leaves (Olea europea subsp. oleaster, Hoffmanns. & Link), Its Gastrointestinal Stability, and Biological Potential. Appl. Sci. 2024, 14, 869. https://doi.org/10.3390/app14020869
Soldo B, Bilušić T, Giacometti J, Ljubenkov I, Čikeš Čulić V, Bratanić A, Bošković P, Šola I, Ilić K. A Comparative Study of Oleuropein Extraction from Wild Olive Leaves (Olea europea subsp. oleaster, Hoffmanns. & Link), Its Gastrointestinal Stability, and Biological Potential. Applied Sciences. 2024; 14(2):869. https://doi.org/10.3390/app14020869
Chicago/Turabian StyleSoldo, Barbara, Tea Bilušić, Jasminka Giacometti, Ivica Ljubenkov, Vedrana Čikeš Čulić, Andre Bratanić, Perica Bošković, Ivana Šola, and Krunoslav Ilić. 2024. "A Comparative Study of Oleuropein Extraction from Wild Olive Leaves (Olea europea subsp. oleaster, Hoffmanns. & Link), Its Gastrointestinal Stability, and Biological Potential" Applied Sciences 14, no. 2: 869. https://doi.org/10.3390/app14020869
APA StyleSoldo, B., Bilušić, T., Giacometti, J., Ljubenkov, I., Čikeš Čulić, V., Bratanić, A., Bošković, P., Šola, I., & Ilić, K. (2024). A Comparative Study of Oleuropein Extraction from Wild Olive Leaves (Olea europea subsp. oleaster, Hoffmanns. & Link), Its Gastrointestinal Stability, and Biological Potential. Applied Sciences, 14(2), 869. https://doi.org/10.3390/app14020869